• 3.58 MB
  • 71页

《农业信息通讯技术》(第12节综述)翻译项目报告.pdf

  • 71页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'巧译专业学位硕±论文《余化AsMfl我术第巧幸徐連^|?舞巧目旅告^'二二-—.,ic.、.I了小涵?巧存教肺I巧安江教巧考泌名汾I巧巧巧丈巧巧巧向:英巧巧译论文巧定时巧I20巧年4月 ̄?———— ̄■一-t';'S巧义巧巧巧间:20化年月论文编号:2016380>-..--■-.-..V’.'-J:.1.一、i■■—.-一.一*—二 SichuanInternationalStudiesUniversityATranslationProjectReportonICTinAgriculture(Overview,Module12)byDingXiaohanAthesissubmittedtotheGraduateSchoolinpartialfulfillmentoftherequirementsforthedegreeofMasterofTranslationandInterpretingunderthesupervisionofProfessorHuAnjiangChongqing,P.R.ChinaMay2016 《农业信息通讯技术》(第12节综述)翻译项目报告摘要本翻译报告的原文是电子资料读物《农业信息通讯技术》第十二节的综述部分。此书由世界银行集团发布在其官网上,并由信息技术咨询公司infoDevo、世界银行集团农业农村发展部以及来自不同组织和大学的专家共同合力编撰。原文主要介绍了食品科学中的“溯源”概念以及溯源系统在发展中国家中食品安全领域的应用案例。此翻译报告在目的论的“目的原则”、“忠实原则”和“连贯原则”的理论指导下,探讨了信息类文相应的翻译技巧,以解决在翻译此类文本的过程中遇到的难题。根据忠实原则和连贯原则,本文探讨了翻译专有名词两大准则,即“采用约定俗成的译文”和“加注”。同时,翻译报告探讨了长句翻译过程中的“逆序法”和“转换法”两大翻译技巧。这样一来,译文在保持了科技文本客观、准确、简洁和逻辑性强的文本特征的同时,也更符合目的语的语言文化习惯,也较好的照顾到了目标读者的可接受性。关键词:溯源;食品安全;信息类文本;目的论;目的论三原则;翻译技巧ii ATranslationProjectReportonICTinAgriculture(Overview,Module12)AbstractThesourcetextofthereportistheoverviewofmodule12ofICTinAgriculturepublishedontheofficialwebsiteoftheWorldBankGroupasane-sourcebook.ThisbookinvolvesapartnershipoftheinfoDev,theAgricultureandRuralDevelopmentDepartmentoftheWorldBankGroup,andsomeexpertsfromvariousorganizationsanduniversities.ThesourcetextmainlyintroduceswhatistraceabilityinthesectoroffoodscienceandICTandhowtoguaranteefoodsafetyindevelopingcountriesthroughICT-aidedtraceabilitysystem.InaccordancewithSkoposrule,fidelityruleandcoherenceruleoftheSkopostheory,thisreportdiscussescorrespondingremediestodealwiththedifficultiesintranslatinginformativetext.Inlinewiththefidelityruleandcoherencerule,twotranslatingtechniquesaremainlydiscussedtodealwithpropernouns,namelyadoptingexistingtranslationandannotatingwhileinversionandconversionareemployedtosolvelongsentencetranslating.Asaresult,theTTismoreadaptabletotheTTlanguagecustomsandmoreunderstandableandacceptabletoitsreceiverswhilesuchcharacteristicsasobjectivity,accuracy,concisenessandlogicalityofscientificandtechnicaltextareretained.Keywords:traceability;foodsafety;informativetext;skopostheory;skoposrule;fidelityrule;coherencerule;translatingtechniquesiii AcknowledgementsMyheartfeltgratitudegoestoallthosewhohavehelpedme,directlyorindirectly,duringthewritingofthisthesis.Ibenefitedalotfromthevaluableadviceandencouragementformthemall.Firstandforemost,Iwouldliketoextendmysinceregratitudeinparticulartomysupervisor,ProfessorHuAnjiang,fromwhomIreceivedbothintellectualguidanceandwarmandconstantencouragementthroughouttheprocessofwritingthereport.Withpatienceandprudence,helaboredthroughthedraftsofthethesisandpointedoutdefectsinmytheorizing.Therefore,Ioweallthemerits,ifany,tohim,thoughIamfullyawarethatthethesismightstillcontainsomemistakes,forwhichIbearthewholeresponsibility.MycordialandsincerethanksalsogotoalltheprofessorsinCollegeofInterpretationandTranslation,whoseinformativecourses,devotedteaching,enlighteninglectures,profoundknowledge,remarkableexpertiseandintellectualingenuityhavebenefitedmealotduringmygraduateyears.AnyprogressIhavemadeistheresultoftheirprofoundconcernandselflessdevotion.SpecialthanksIwillgivetoLuoJingweiwhohelpsmeproofreadingthetranslationandtoGongRongrongwhosparesnoeffortsinassistingwithalltheproblemsIhaveencounteredinthesiswriting.Lastbutnottheleast,Iamextremelygratefultomybelovedfamilyfortheirconstantencouragementandconsideration.Also,IwillthankmyfriendsandclassmateswhohasgivenmealotofhelpandcourageduringmystayinSISUandthroughouttheprocessofwritingthisthesis.iv CONTENTS摘要...............................................................................................................................iiAbstract........................................................................................................................iiiAcknowledgments.........................................................................................................ivChapterOne:GeneralIntroductiontotheProject.........................................................11.1BackgroundoftheProject................................................................................11.2ObjectivesandSignificanceoftheProject.......................................................11.3StructureoftheReport......................................................................................2ChapterTwo:TheSourceTextoftheTranslationProject.............................................32.1IntroductiontotheAuthor.................................................................................32.2IntroductiontotheSourceText.........................................................................32.2.1MainContentsoftheSourceText..........................................................32.2.2TheTextualFeaturesoftheSourceText................................................42.2.3TheLinguisticFeaturesoftheSourceText............................................5ChapterThree:SkoposTheory......................................................................................73.1IntroductiontotheSkoposTheory...................................................................73.2ThreeRulesofSkoposTheory.........................................................................73.2TheApplicationoftheSkoposTheoryandItsThreeRulesintheProject......8ChapterFour:DifficultiesandRelevantRemedies.....................................................104.1PreparationsbeforeTranslating......................................................................104.2DifficultiesinTranslatingandCorrespondingRemedies...............................104.2.1TranslatingProperNouns.....................................................................114.2.1.1AdoptingExistingTranslation....................................................114.2.1.2Annotating...................................................................................134.2.2TranslatingLongSentence...................................................................144.2.2.1Inverting......................................................................................144.2.2.2Converting....................................................................................15ChapterFive:Conclusion............................................................................................175.1FindingsoftheTranslationReport.................................................................175.2ProblemtobeSolvedandExpectationsoftheTranslationReport................18References....................................................................................................................19Appendix1:SourceText..............................................................................................20Appendix2:TargetText................................................................................................45v ChapterOne:GeneralIntroductiontotheProject1.1BackgroundoftheProjectAsane-bookpublishedbytheWorldBankonitsofficialwebsite,thesourcetext,ICTinAgriculture,isco-authoredbytheinfoDev,theAgricultureandRuralDevelopmentDepartmentoftheWorldBankGroupandsomeohterexpertsfromrelatedfields.Aimingatresolvingthefundamentalchallengeofbetteringtheproductivityandfoodsafety,thisbookintroducestheadvancedexpertiseinICTwithempiricalknowledgeofextensiveagriculturalsectorsrespectingthemanagementofththesupplychain.Thistranslationprojectisonthe12moduleofICTinAgriculture.1.2ObjectivesandSignificanceoftheProjectPublicattentionhasbeendrawntofoodsecurityissuesincetheincreasinglyfrequentoutbreaksoffoodborneincidentsinChinainrecentdecades.Foodsafetyissue,initsverynature,isnotsimplyorprimarilyaconsequenceofincompletenessinlawsandregulations,butthedeficiencyorcursorinessinmanagementoffoodsupplychain,whichmayleadtonotonlythelossofenterprisesbuthumanhealthissues.WiththeICTs-aid(ICT,informationandcommunicationtechnologies)traceabilitysystem,itiseasiertoidentifyandrecallthesubstandardproductseffectivelyasappropriatetominimizethelosses,topreventthepublicfromthreatstohealthandeventoachievediseasecontrol.Therefore,itisimperativetoimplementthefoodtraceabilitysystemtohelpresolvefoodsafetyissueinChina.However,evenifwithexistingpracticaltechnologiesandrelatedlawsandregulations,thetraceabilitysystemdoesnotenjoyprevalence,whichisabarrierfordatacollectingandpublicsupervision.Underthiscircumstance,bytranslatingthesourcetextadoptedintheproject,1 whichintroducestraceabilityindetailandhowtoimprovefoodsafetybyempoweringsmallholdersthroughICT-aidedtraceabilitysystemindevelopingcountries,thetranslatorattemptstoprovidevaluableinformationonimplementingthetraceabilitysystemtotheTTreceivers.Hopefully,combinedwithavailabletechnicaltheoriesandassociatedpracticalcasesindevelopingcountries,thisprojectcouldpopularizetheICT-aidedfoodchainmanagementsystemamongsmallholders,whichwouldexertsomepositiveeffectonrealizingpromisingfoodsafetyinChina.1.3StructureoftheReportThereportconsistsofaltogetherfivechapters.Thefirstchapterintroducesthebackground,theobjectandsignificance,andthestructureoftheproject.ChapterTwogivesanintroductiontotheauthorsofthesourcetextandthesourcetextitself.Intheintroductiontothesourcetext,itsmaincontentispresentedandthesourcetextbeenanalyzedfromtextualandlinguisticaspects.ChapterThreereferstowhatareSkoposTheoryanditsthreerulesandhowaretheyappliedinscientificandtechnicaltranslation.ChapterFouraddressestwomaindifficultiesduringtranslatingandcorrespondingremedies.Inscientificandtechnicaltranslating,itiseasytoencounterdifficultiesduetoexpertise,thetextualandlinguisticfeaturesofscientifictextandthedifferentlanguagecustomsinEnglishandChinese.BasedonSkoposTheory,correspondingtechniquesareadoptedasremediesforthesedifficulties.ChapterFivesummarizesthelessonsfromtranslationandproblemtobesolved.2 ChapterTwo:TheSourceTextoftheTranslationProject2.1IntroductiontotheAuthorAlthoughICTinAgricultureisane-sourcebookpublishedbytheWorldBankGrouponitsofficialwebsite,itisco-authoredbyagroupofauthors,theinfoDev,theAgricultureandRuralDevelopmentDepartmentoftheWorldBankGroup,andalsosomeexpertsinthisfieldfromvariousorganizationsanduniversities.Eachmoduleinvolvesdifferentauthorsandthemodule12fromwhichthesourcetextcomesrepresentsapartnershipofthreeauthors,TinaGeorgeKarippacheril(WorldBank),LuzDlazRios(WorldBank),andLaraSrivastava(WebsterUniverstiy).2.2IntroductiontotheSourceTextItisnecessarytohaveathoroughunderstandingofthesourcetextsoastotransmitthecontentsofthesourcetextasaccuratelyaspossibletothetargetreaders.Therefore,themaincontentsandthetextualfeaturesofthesourcetextarediscussedinthispart.2.2.1MainContentsoftheSourceTextICTinAgricultureintroduceshowtoarmsmallholderswithcutting-edgetechnologiesandknowledgethusimrovingtheproductivityandfoodsafety,inwhichICT-aidedtraceabilitysystemisintroducedanddescribedasatoolforsmallholdersindevelopingcountriestostepintotheeraofinformationandknowledgeeconomy.Thesourcetext,namelytheoverviewofModule12,givesadetailedexplanationtoglobalfoodsafetyissue,thedefinitionandcomponentsoffoodtraceabilitysystemsandtheirapplicationindevelopingcountriesinordertorealizefoodsafetybyimprovingqualitycontrol,foodproductauthenticity,diseasecontrol3 andsoforth.2.2.2TextualFeaturesoftheSourceTextKatharinaReisstalksaboutthetextabovethewordorsentencelevel.AccordingtoReiss,therearethreekindsoftexttypes,whichareinformativetext,expressivetextandoperativetext,whosemaincharacteristicscorrespondinglybeing“plaincommunicationoffacts,creativecompositionandintroducingbehavioralresponses”(Reiss,1989,pp.108-109)ICTinAgriculture,atextofscienceandtechnologysource,introducingadvancedtechnologyinICTandawiderangeofitsempiricalknowledgeinagriculturesectorsintermsoffoodsafetyissue,providesreferentialinformationforSTreceivers.Inthisregard,theSTisacontent-orientedinformativetextthatpresentsobjectsandfactinalogicalway.Therefore,theTTshouldtransmitthefullreferentialinformationoftheSTwithoutredundancy.Example1:Foodproductscoveredbytraceabilitystandardsincludefreshproductssuchasmangoes,avocados,andasparagus;bulkfoodsuchasmilk,soybeans,specialtycoffee,andoliveoil;fishandseafood;andlivestockformeatanddairy.适用于溯源标准的食品包括:生鲜食品,如芒果、鳄梨、芦笋;散装食品,如牛奶、大豆、精品咖啡、橄榄油;鱼类和海鲜;以及食源性畜禽(肉制品和奶制品)。Example2:TheCentersforDiseaseControlandPrevention(CDC)estimatedthat48millioncasesoffoodborneillnessoccureachyearintheUnitedStates,including128,000hospitalizationsand3,000deaths.据美国疾病控制中心(CDC)估计,美国每年有480万例食源性疾病发生,其中有12.8万例入院治疗病例和3000例死亡病例。4 InExample1,thecategoriesoffoodproductsunderthetraceabilitystandardaregivenandtheexactproductsarelistedrespectivelyasexamples.Example2givesanobjectstatementoftheofficialstatisticsofthefoodborneillnesscasesfromCDC.ItisobviousthatbothExamples1and2areplaincommunicationoffacts.Inthatcase,thelanguagefunctionofthetranslationshouldbeconsistentwiththeSTandthetranslationshouldpresenttheplaincommunicationoffactsabouttheinformationintheSTwithoutanyredundancy.2.2.3LinguisticFeaturesoftheSourceTextThetextofscienceandtechnology,asthecarrierofprofessionalinformationaboutscienceandtechnology,differentiatesfromothertextsinlightofitsobjectivity,accuracy,concisenessandlogicality.Thatiswhyscientificandtechnicaltextsareusuallycharacterizedbylongandcomplexsentencessoastostatethefactsclearly.Inthisproject,threelinguisticfeaturesmainlycharacterizetheST.Firstly,professionaltermsintheareaofICTandfoodscienceandnamesoforganizationsarewidelyinvolvedintheST,suchasradiofrequencyidentification(无线射频识别),GMOs(转基因生物),E.coli(大肠杆菌),CAC(食品法典委员会),etc..Secondly,inordertopreciselydenoteintricateconceptsorlogicrelationsincompactstructure,theSToftheprojectfeatureslongsentencesasmosttextsofscienceandtechnologydo.Example3:Simplyknowingwhereafoodproductcanbefoundinthesupplychaindoesnotimprovefoodsafety,butwhentraceabilitysystemsarecombinedwithsafetyandqualitymanagementsystems,theycanmakeassociatedfoodsafetymeasuresmoreeffectiveandefficient.(CAC2006)仅了解食品在供应链中的流向并不能改善食品安全问题,只有将溯源系统与安全和质量管理系统相结合,保障食品安全的相关措施才会更为有效。(CAC2006)5 InExample3,thewholesentenceexplainsthefactorsofachievingtheefficiencyofthefoodsafetymeasuresinaclearandlogicalwayduetotheuseoftheconjunctionword“but”andthefollowingadverbialclauseofcondition.Lastly,itisevidentthatstatisticsandfiguresarewidelyusedintheSTtoprovetheSTiswrotewithoutanypersonalinvolvement,suchas“3,000deaths”,“about5,000animals”,“from83to3”,etc..6 ChapterThree:SkoposTheory3.1IntroductiontotheSkoposTheorySkopostheorywasintroducedbyHansJ.Vermeerin1970s,regardingtoatechnicaltermforthepurposeoftheactionoftranslatingandatranslation.Differentfromfunctionalequivalence,skopostheorylargelyemphasizesonthepurposeoftheTT.Thekeyconceptoftheskopostheoryisthattheprimarydeterminantinthetranslatingprocessisthepurposeofthetranslatingaction(LuZuying,2010,p.3).Vermeerthinksthattranslatingisacomplexaction,insteadofdecoding,involvingbothlanguageandculture,whichiswhy“adequacy”comestooverride“equivalence”asthemeasureofthetranslationtranslatingaction.AccordingtoReissandVermeer,adequacyreferstotherelationsbetweenSTandTTwhilestickingtoaskoposduringthetranslationprocess.Therefore,inordertoproduceafunctionallyadequateresult,itiscrucialtoknowwhyaSTistobetranslatedandwhatthefunctionoftheTT(Munday,2008,p.79).3.2ThreeRulesofSkoposTheoryTheskopostheoryconsistsofthreebasicrulesrespectivelybeingtheskoposrule,thefidelityruleandthecoherencerule.Theskoposrule,accordingtotheskopostheory,isthesupremeprincipleamongthethreerulesasthepurposeofthetranslationplaysadecisiveroleonthetranslatingstrategyandmethod.InVermeer’swords(citedandtranslatedbyNord,1997,p.29):Eachtextisproducedforagivenpurposeandshouldservethispurpose.Theskopos7 rulethusreadsasfollows:translate/interpret/speak/writeinawaythatenableyourtext/translationinthesituationitisusedandwiththepeoplewhowanttouseitandpreciselyinthewaytheywantittofunction.Thefidelityrule,referringtotheintertextualcoherencewiththeST,elaboratesthattheSTmustbecoherentwiththeTTbecausetheSTisalwaysthebasisoftheinformationintheTT.Inotherwords,aTTisanofferofinformation(Informationsangebot)inatargetcultureandTLconcerninganofferofinformationinasourcecultureandSL(Reiss&Vermeer,1984,p.119).TheSkoposTheory,however,allowstheSTtobetranslatedindifferentwaysinaccordancewiththeskoposoftheTT.Thatishowthecoherenceruleworksontheactionandthetranslation.Thecoherencerule,relatedtointernaltextualcoherence,statesthattheTTmustbeprocessedcoherentlywiththeTTreceiver’ssituation.Inotherwords,inthetranslatingprocess,theTTreceiversaretobelargelyconsideredinregardtotheircircumstancesandknowledge.3.3ApplicationoftheSkoposTheoryandItsThreeRulestotheProjectTheskoposofthetranslationprojectistopopularizetheknowledgeaboutICT-aidedtreatabilitytechnologydiscussedintheSTtoTTreceivers,whichinaccordancetotheskoposruleshouldserveastheoveralltheoreticalguidingrulethroughouttheproject.AsisnotedinChapter2,theSTasatextofscienceandtechnologycanbeclassifiedintoinformationtext.Asaresult,inthetranslationprocess,thetranslatorshouldcommunicatetheplainfactsintheSTwithoutanydeficiency.Complyingwiththefidelityrule,thetranslatorshouldguaranteethecoherencebetweenthetranslationandtheST.Inotherwords,necessaryinformation,likepropernouns,shouldbetranslatedconsistently,soastoprovidetheTTreceiverswiththe8 samereferentialinformationastheSTdoestoitsreceivers,Undertheguidanceofcoherencerule,theknowledgebackgroundandcircumstancesoftheTTreceiversshouldbetakenintoconsideration.Therefore,inthetranslationprocess,thetranslatorshouldconsiderthefactorsthatinterdisciplinaryknowledgeisinvolvedintheSTandtheTTreceiverscouldcomefromvarioussectorssuchasfoodscienceandICT.Inthatcase,appropriateadjustmentsfromSTtoTTshouldbemade.Forinstance,thetranslatorshallmakeexplanationtosomespecializedICT-relatedtermsintheTT.Additionally,giventhedifferentlanguageculturebetweenSTreceiversandTTreceivers,customsinlanguageswillalsobedifferentfromeachother,especiallyinthescientificandtechnicaltext.Passivevoice,forexample,ispreferredtopositivevoice,especiallyinEnglishforscienceandtechnology(EST),whileitisjustthereverseinChineselanguageculture.Inthatcase,thetranslatorshouldadoptconversionwhiletranslatingtheST.9 ChapterFour:DifficultiesandRelevantRemedies4.1PreparationsbeforeTranslatingAdequatepreparationsareindispensablebeforetranslatingtheST.Firstly,thetranslatorascertainedthattheICTinAgriculturehadnotbeentranslatedthroughawiderangeofInternetsearching.Afterthat,thetranslatorreadthroughtheSTforseveraltimesandsortoutthemaincontents.Duetotheinvolvementofinformationcommunicationtechnology,foodscienceandsupplychainmanagementintheST,theauthorhadconsultedanumberofspecializedbooksorarticlesinrelatedfields,asparalleltext,comprehendingwhattheSTdiscussedandhowtheprofessionaltextwerepresentedintheassociatedfields.Lastly,academicpapersandbooksonscientificandtechnicaltranslatingwerefoundtoassistmanagingthetranslationmethodsandskillsandmakingtheTTareadabletextforTTreceivers.4.2DifficultiesinTranslatingandCorrespondingRemediesIntheprocessoftranslatingtheSToftheproject,thetranslatorhasencounteredmainlytwodifficultiesthataretranslatingpropernounsandtranslatinglongsentences.Asisstatedabove,thetextofscienceandtechnologyisdesignedtotransmitprofessionalinformationinaprecise,conciseandlogicalway,inwhichpropernounsarethecrucialcarrierandtransmitterofinformation.IgnoranceoftheinterdisciplinaryknowledgereferredintheSTandofthedifferenteducationalbackgroundsoftheTTreceiverscouldleadtoinaccurateandinaccuratetranslationof10 thepropernouns.Underthatcircumstance,thetranslatorshouldconsultdictionaryandprofessionalbooks.Longsentenceisanotherdifficultyinthetranslationproject,whichcanattributetothecomplexityoftheprofessionalknowledgeandthedifferenceinlanguagecustoms.TheuseofthelongsentenceisoneofthemajorfeaturesoftheEST.Whileprocessinglongsentences,thetranslatorshouldfirstlysortoutandcomprehendthecontentsofthelongsentencecorrectlyandthenstateitinawaytheTTreceiverscouldunderstand,withoutanylossininformation.4.2.1TranslatingProperNounsPropernouns,referringtothenamesofspecificthings,usuallyprofessionalones,willcertainlybringobstaclestothetranslation.IntheSToftheproject,propernounsincludesprofessionaltermsandnamesoforganizationsandofficiallyreleaseddocuments.Inaccordancewiththeskoposruleandfidelityrule,intensivepropernounsshouldbeprocessedpreciselyintheprocessoftranslatinginordertotransmittheinformationobjectivelyandaccurately.Thus,intheprocessoftranslatingtheSTasaninformativetext,intensivepropernounsshouldbeprocessedprecisely.4.2.1.1AdoptingExistingTranslationAfterconsultingbooksinrelatedfields,thetranslatorfindsoutthatthereareexistingtranslationsformostofthepropernounsintherelatedfieldsinChina.Underthefidelityrule,thetranslatoradoptsexistingtranslationsoastomaintaintheaccurateandobjectiveinformationfromtheSTandnottomaketheTTreceiversfeelconfused.Example4:Forinternaltraceability,dataoningredientsandproductsthatmayundergotransformationwithinafacilitymustbetracked.而内部溯源则要求对可能在设施内发生转变的成分和产品进行追踪。Example5:11 TheVietnameseStateAgencyforTechnologicalInnovationhascollaboratedwiththeVietnameseAssociationofSeafoodExportersandProducersandprivatefirms(IBMandFXAGroup)toimplementaseafoodtraceabilitysystem.越南国家科技创新局(VietnameseStateAgencyforTechnologicalInnovation)与越南海产食品出口商和生产商协会(VietnameseAssociationofSeafoodExportersandProducers)及私人企业(IBM与FXA集团)合作,将基于无线射频技术的海产食品溯源系统投入使用。AsonecanseeinExample4,“traceability”and“track”arethekeywordsintheST.“Traceability”isthenounformof“trace”ofwhichthemeaningissimilarto“track”.Both“Trace”and“track”canbeliterallytranslatedas“追踪”.However,inthecontextoftheST,talkingaboutensuringfoodsafetythroughtraceabilitysystem,thelexicalmeaningsof“trace”and“track”narrowdownandthere’sacriticaldifferencebetweenthem.While“track”istotaildownstreamthemovementlocusoffoodalongsidethefoodsupplychain,“trace”istotrackupstreamtheoriginoffoodproductsalongsidethefoodsupplychain.(ZhangChenghai,2012,p.33)Accordingtotheestablishedtranslation,“track”canbetranslatedas“追踪”and“trace”as“溯源”.Therefore,inlinewiththefidelityrule,thetranslatorshouldadopt“追踪”for“track”,and“溯源”for“trace”inordernottomisleadtheTTreceivers.Inthisway,“traceability”,asthenounformof“trace”,canbetranslatedas“溯源”or“溯源性”.TheofficiallyrecognizedorganizationsinExample5,VietnameseStateAgencyforTechnologicalInnovationandVietnameseAssociationofSeafoodExportersandProducers,haveestablishedtranslationsrespectivelyas“越南国家科技创新局”and“越南海产食品出口商和生产商协会”.Undertheguidanceoffidelityrule,thetranslationshouldcommunicatethepreciseinformationplainlyfromtheSTinsteadofconfusingtheTTreceiversbycreatingnewtranslations.Thus,thetranslatoradoptstheestablishedtranslationsdirectly.4.2.1.2Annotating12 Accordingtothecoherencerule,thesituationoftheTTreceiversshouldbetakenintoconsideration.InregardtotheinterdisciplinaryknowledgeinvolvedintheSTandspecialtyoftheTTreceiverswhoarewithdifferenteducationalbackgrounds,annotatingistheappropriatewaytohelpTTreceiverseasethedifficultyinreadingandcomprehendingtheTT.Inthisproject,thetranslatorutilizestwokindsofannotating,glossandfootnote.Example6:CasesofvariantCreutzfeldt-Jakobdisease(vCJD),whichiscausedbythesameagentasbovinespongiformencephalopathy(BSE),stoodat117worldwide.全球由牛海绵状脑病(BSE)(疯牛病)致病因子诱发的各型克雅氏病(vCJD)(人类疯牛病)病例达117例。Example7:Mobilephones,radiofrequencyidentification(RFID)systems,wirelesssensornetworks,andglobalpositioningsystems(GPS)makeitpossibletomonitorenvironmentalandlocation-basedvariables,communicatethemtodatabasesforanalysis,andcomplywithfoodandtraceabilitystandards.*通过运用移动电话、无线射频识别系统(RFID)、无线传感器网络和全球定位系统(GPS),可对环境变量及定位变量进行监控并导入数据库进行分析,为保障食品安全及满足溯源标准提供了可能性。*无线射频识别系统(RFID):又称射频识别系统,是一种通讯技术,可通过无线电讯号识别特定目标并读写相关数据。无线射频系统通常安装在被识别对象上,储存被识别对象的相关信息,译者注。(ZhangChenghai,2012,p.49)AsisshowninExample6,medicaltermsareemployedtolabelthedisease.Inaccordancetothecoherencerule,thecircumstanceandknowledgeoftheTTreceiversshouldbeconsidered.ConsideringthefactthattheTTreceiversmaycomefrom13 differentsectorslikeICT,thetranslatordecidestoadoptglossasabriefexplanationintheparenthesesrightnexttothetermlike“牛海绵状脑病(BSE)(疯牛病)”and“克雅氏病(vCJD)(人类疯牛病)”as“疯牛病”isfamiliartocommonpeopleandthere’snoneedtomakefootnotestothem.Example7indicatestheuseoffootnote,whichisprimarilyusedintheproject.“Radiofrequencyidentification(RFIDs)”isoneoftheimportanttechnologiesinICT-aidedtraceabilitysystem.InconsiderationofthecircumstancesandtheknowledgeoftheTTreceiversespeciallywhoarenotinthesectorofICT,suchasreceiversfromfoodscience,furtherexplanationsneedtobemadeinordertomaketheTTmoreunderstandabletoitsreceivers.Thus,abidingbythecoherencerule,thetranslatoradoptsfootnotesasdetailedexplanatorynoteaboutRFIDwheretheasterisksassuperscriptshavebeenmadenexttothepropernounsandfollowingwith“译者注”.4.2.2TranslatingLongSentenceScientificandtechnicaltext,aimingatcommunicatingandspreadingscientificandtechnologicalknowledge,isoftencomposedtopresentscientificconcepts,laws,theoriesandsophisticatedrelationsamongvariousthings,whichisrequiretostatefactsandrevealverityinaobjectiveway(FuYonglin&TangYueqin,2012,p.85).ThesentencestructureofscientifictextiscomplexinEST.Inordertoconveythecomplicatedconceptssuccessfullyandmakethetextlogicallywellorganizedandstructurallycompact,thetranslatormainlyemploystwotranslationtechniquestodealwiththelongsentence,whichareinvertingandconverting.4.2.2.1InvertingDuetothedifferenceinthemodesofthinkingandlanguagecustom,thewordorderofChineseandEnglishareoftenpresentedinareversedway,especiallyintheESTwherethelongsentencesarecommonlyusedtorepresentthelogicalrelationamongeachpart.ThewordorderofEnglishisinclinedtodeveloponthebasisofthesubject-predicaterelationsupplementedbyothersentenceconstituentsandvarioussubordinateclauses,whichinChineseisdeployedbycomplyingwithtimesequence,causalityandhierarchicalrelation.Therefore,itispropertomakesomenecessary14 adjustmentonwordorderintheprocessoftranslatingastomaketheTTmoreunderstandabletoitsreceivers.Example8:Forexample,theriseofsupermarketsinLatinAmerica,withtheirqualityandsafetyprocurementstandardsandassociatedrecord-keepingrequirements,hadanegativeimpactonsmallholderparticipation,althoughsomecasesofsuccesswerenotedwheretherewaspublicorprivatetechnicalassistance.Version1:例如:在拉丁美洲,超市的兴起其采购质量与安全标准和相关记录储存要求,都给小农户的参与造成了负面影响,虽然在公共组织或私人技术支的持下,出现过成功实施溯源技术的案例。Version2:例如:在拉丁美洲,虽然在公共组织或私人技术支的持下,出现过成功实施溯源技术的案例,但超市的兴起及其采购质量与安全标准和相关记录储存要求,依旧给小农户的参与带来了负面影响。Itcanbenotedthatthere’sanadverbialclauseofconcessioninExample8.Ifthewholesentenceistranslatedasversion1,thedisorderedorganizewordorderwillmaketheTTreceiverfeelstrangeandconfusedoncetheadverbialclauseofconcessioninChineseisplacedattheendofasentence.Therefore,consideringthedifferentlanguagecustomsandthinkingmode,thetranslatoremploysinversionwhiletranslatingthelongsentence,whichconformstothecoherenceruleofskopostheory.4.2.2.2ConvertingPassivevoiceiswidelyusedinEnglishbutseldomusedinChinese.Theprototypeofpassivevoiceisthestateviewoftheevent,referringtoaself-contained(withoutexternalcause)idealizedstate,whichisastatementtotheobjectivestateandprocessoftheevent.Inotherwords,theextensiveuseofpassivevoiceinscientificandtechnicaltextisprocuredbyitsobjectivityrequirements(FuYonglin&TangYueqin,2012,p.64).Therefore,onthegroundofcoherencerule,thepassivevoiceintheSTisconvertedbythetranslatorintoactivevoiceintheTTsothattheTTismore15 alignedwiththelanguagecustomsinChinese.Example9:Ifanimportingcountryhasobjectivesoroutcomesofitsfoodinspectionandcertificationsystemthatcannotbemetbyanexportingcountry,theimportingcountryshouldconsiderprovidingassistancetotheexportingcountry,especiallyifitisadevelopingcountry.Version1:如果进口国对食品检查和认证体制的要求不能被出口国达到,那么那么进口国应该考虑为出口国提供援助,特别是当出口国为发展中国家的时候。Version2:如果出口国不能达到进口国对食品检查和认证体制的要求,那么进口国应该考虑为出口国提供援助,特别是当出口国为发展中国家的时候。Example9isalongsentencestartingwithanadverbialclauseofconditionfollowedbyaattributiveclauseinpassivevoice,which,ontheonehand,makesthesentencebetterjointedororganizedoveritscontext.Ontheother,bysaying“…cannotbemetbyanexportingcountry”insteadof“theexportingcountrycannotmet…”,thesentencerevealstheemphasisonthefactthatwhethertheobjectivesoroutcomescanbemetbyanexportingcountryistheconditionfortheimportingcountrytoprovideassistancetotheexportingcountry.However,tobetranslatedas“要求被达到”,thelanguagecustomoftheTTreceivershasnotbeentakenintoaccount.Inthatcase,theauthorconvertsthepassivevoiceintoactivevoicetoabidebythecoherencerule.16 ChapterFive:Conclusion5.1LessonsandExperiencefromtheTranslationReportScientificandtechnicaltranslationismuchinneedundertheenvironmentofeconomicglobalization.Textofscienceandtechnology,initsverynature,belongstoinformativetextcommunicatingplainfactsandcharacterizedbyobjectivity,accuracy,logicalityandconciseness.Therefore,undertheguidanceofskoposrule,thecorrespondingtranslationofscientificandtechnicaltextistocarryandtransmitinformationoftheSTwithoutanydeviationanddeficiency,whichinandthroughoutthisprojectistopopularizetheknowledgeabouttraceabilitytechnologyanditsassociatedsystem.Accordingtothefidelityruleoftheskopostheory,adoptingexistingtranslationastranslatingtechniquesisadoptedtocopewithtranslatingpropernounsinordertoproduceanaccuratetranslationwheretheinformationarerelatedtothoseintheSTandnottoconfuseormisleadtheTTreceivers.However,thatdoesnotmeananabsoluteloyaltytotheST.Ontheonehand,theknowledgeinvolvingintheSTisinterdisciplinary.Ontheotherhand,thedifferenceinthemodeofthinkingandlanguagecustomsisinevitable.Therefore,adjustmentsfromSTtoTTshouldbemade.Inlinewiththecoherencerule,thepropernounsareannotatedinordertomaketheTTmoreunderstandabletoTTreceiverswhilelongsentencesareprocessedthroughinvertingandconvertinginordertoconciliatethegapofthinkingmodeandlanguagecustomsbetweenSTreceiversandTTreceivers.Therefore,afterthediscussionabove,wecancometotheconclusionthattheskopostheoryanditsthreerulesisofgreathelpfortheauthortodeliberatelyconsidertheST,TTandTTreceiversandtodecideonpropertranslatingtechniquesasappropriatetomaketheTTaqualifiedtranslationfunctionallyandcommunicatively.17 5.2ProblemstoBeSolvedandExpectationsoftheTranslationReportThroughthediscussiononthetranslatingtechniquesforscientificandtechnicaltranslatingundertheguidanceoftheskopostheoryanditsthreerules,thetranslatorhopestoprovidecertainhelpfulexperienceandreferencetothereaderswhomightbeinthesameresearchfiled.However,theproblemswillunavoidablyexist.Ontheonehand,withconstantstudyandaccumulationfortwoyearsthough,thetranslator’slanguageproficiencystillremainstobeimproved.Ontheotherhand,asaresultofthedeficientscopeofknowledgeandlimitedresources,theauthorisstillnotabletohaveafullunderstandingoftherelatedprofessioninvolvedintheproject.Therefore,thetheoreticalguidanceofskopostheoryintranslatingscientificandtechnicaltextneedstobefurtherstudiedandtestifiedsoastoprovideamoreobjectivereportofhigherreferentialvaluetothereaders.18 ReferencesJayabalanR,etal.(2014).Referencemoduleinfoodscience.Amsterdam:ElsevierKarippacherilG.(2011).Globalmarkets,globalchallenges:ImprovingfoodsafetyandtraceabilitywhileempoweringsmallholdersthroughICT.ICTinAgriculture.[On-line].20Aug.2015.Available:https://openknowledge.worldbank.org/handle/10986/12613MundayJ.(2009).IntroducingTranslationStudies:TheoriesandApplication(p.79).London&NewYork:Routledge.NordC.(1997).TranslatingasaPurposefulActivity:FunctionalistApproachesExplained(p.29).Manchester:StJeromePublishingReissK,VermeerH.J.(1984).GroundworkforaGeneralTheoryofTranslation.Tubingen:Niemeyer.Reiss,K.(1989).TextTypes,TranslationTypesandTranslationAssessment.Readingintranslationtheory(pp.105-115).OyFinnLecturaAb.Vermeer,H.J.(1989/2000).Skoposandcommissionintranslationalaction.(pp.221-232).InL.Venuti(ed.).傅勇林,唐跃勤.(2012).科技翻译.北京:外语教学与研究出版社.连淑能.(2006).英译汉教程.北京:高等教育出版社.卢祖瑛.(2010).目的论在当今翻译实践中的广泛应用.福州:福建省外国语文学会2010年年会论文集.孟凡乔.(2007).食品安全性.北京:中国农业大学出版社.张成海.(2012).食品安全追溯技术与应用.北京:中国质检出版社.张俊.(2014).基于目的论视角的科技英语翻译探讨.海外英语,(8),171-1719 Appendix1:SourceTextModule12:GLOBALMARKETS,GLOBALCHALLENGES:IMPROVINGFOODSAFETYANDTRACEABILITYWHILEEMPOWERINGSMALLHOLDERSTHROUGHICT(Overview)DefiningTraceability“Traceability”isaconceptdevelopedinindustrialengineeringandwasoriginallyseenasatooltoensurethequalityofproductionandproducts(Wall1994).Economicliteraturefromsupply-chainmanagementdefinestraceabilityastheinformationsystemnecessarytoprovidethehistoryofaproductoraprocessfromorigintopointoffinalsale(WilsonandClarke1998,Jack,Pardoe,andRitchie1998,TimonandO’Reilly1998).Traceability(orproducttracing)systemsdifferentiateproductsforanumberofreasons.Foodtraceabilitysystemsallowsupplychainactorsandregulatoryauthoritiestoidentifythesourceofafoodsafetyorqualityproblemandinitiateprocedurestoremedyit.Whiletraceabilityinthefoodsectorhasfocusedincreasinglyonfoodsafety(SmythandPhillips2002),agrifoodandnonfoodsectorssuchasforestryandtextiles(particularlycotton)haveinstitutedtraceabilityrequirementsforproductidentification,differentiation,andhistoricalmonitoring.Specificstandardsforfoodtraceabilityhavebeenmandatedinternationally;bylawintheEuropeanUnion(EU),Japan,andmorerecentlytheUnitedStates;andbyprivatefirmsandassociations.Inthecontextofagriculturalpolicy,traceabilityreferstofulltraceabilityalongthesupplychain,withtheidentificationofproductsandhistoricalmonitoring,andnotjusttheseparationofproductsunderspecificcriteriaatoneormorestagesofthechain.TheCodexAlimentarius1Commission(CAC2006)definestraceabilityas:theabilitytofollowthemovementofafoodthroughspecifiedstage(s)ofproduction,1Establishedin1963bytheFoodandAgricultureOrganizationoftheUnitedNationsandtheWorldHealthOrganization,theCodexAlimentarius(Latinfor“foodcode”or“foodbook”)isacollectionofinternationallyrecognizedstandards,codesofpractice,guidelines,andrecommendationsonfood,foodproduction,andfoodsafety.20 processinganddistribution....Thetraceability/producttracingtoolshouldbeabletoidentifyatanyspecifiedstageofthefoodchain(fromproductiontodistribution)fromwherethefoodcame(onestepback)andtowherethefoodwent(onestepforward),asappropriatetotheobjectivesofthefoodinspectionandcertificationsystem.TheInternationalOrganizationforStandardization(ISO)ISO/DIS22005(November20,2006,N36Rev1)haslargelyadoptedthisdefinition;howeveritisabitbroaderinscopeastraceabilityisviewednotonlyasatoolformeetingfoodsafetyobjectivesbutforachievinganumberofotherobjectivesinothersectors—forinstance,inforestryforchainofcustodytraceability,sustainablecertifications,geographicalindicators,oranimalhealth.TheEUGeneralFoodLaw,Article18Regulation(EC)No178/2002,definestraceabilityas“theabilitytotrackfood,feed,food-producinganimalorsubstanceintendedtobe,orexpectedtobe2usedfortheseproductsatallofthestagesofproduction,processing,anddistribution.”Incomparisontosomeinternationalandcommercialstandardsfortraceability,theEUdoesnot3requireinternaltraceability(thatis,itdoesnotrequireallinputstomatchalloutputs)(CampdenBRI2009).Forfoodproductsthataregeneticallymodified,manycountriesuseidentitypreservationschemes,butonlytheEUrequirestraceability.TheEU(Directive2001/18/EC)addition-allydefinestraceabilityinrelationtogeneticallymodifiedorganisms(GMOs)andproductsas:...theabilitytotraceGMOsandproductsproducedfromGMOsatallstagesoftheplacingonthemarketthroughouttheproductionanddistributionchainsfacili-tatingqualitycontrolandalsothepossibilitytowithdrawproducts.Importantly,effectivetraceabilityprovidesa“safetynet”shouldanyunforeseenadverseeffectsbeestablished.AsnotedinCAC(2006),traceabilitycanalsohelpidentifyaproductatanyspecifiedstageofthesupplychain:wherethefoodcamefrom(onestepback)andwherethefoodwent(onestepforward).Simplyknowingwhereafoodproductcanbefoundinthesupplychaindoesnot2“FoodSafety,”Europa(officialEUwebsite),http://europa.eu/pol/food/index_en.htm,accessedJuly2010.3See“ObjectivesofFoodTraceabilitySystems”inthenextsectionforadefinitionofinternaltraceability.21 improvefoodsafety,butwhentraceabilitysystemsarecombinedwithsafetyandqualitymanagementsystems,theycanmakeassociatedfoodsafetymeasuresmoreeffectiveandefficient(CAC2006)Byprovidinginformationonsuppliersorcustomersinvolvedinpotentialfoodsafetyissues,traceabilitycanenabletargetedproductrecallsorwithdrawals.Similarly,theimplementationoffoodsafetymanagementsystemscansupportefficient,consistenttraceability.Forexample,prerequisiteprogramssuchasgoodagriculturalandmanagementpracticesandtheHazardAnalysisandCriticalControlPoint(HACCP)systemincluderequirementsforrecordkeepingthatcansupportrequirementsfortraceability.Theareasofanimalidentification,diseasepreventionandcontrol,nutrientmanagement,productionsafety,andcertificationforexportallincludepracticesthatcontributetotheefficacyoftraceabilitysystems.Insummary,traceabilitycan:·Improvethemanagementofhazardsrelatedtofoodsafetyandanimalhealth.·Guaranteeproductauthenticityandprovidereliableinformationtocustomers.·Enhancesupply-sidemanagementandimproveproductquality.Thebenefitsoftraceabilityforconsumers,governmentauthorities,andbusinessoperatorsarewidelyrecognized.Yetforsmall-scalefarmersindevelopingcountries,especiallyfarmersproducinghorticulturalandotherfreshfoodproducts,traceabilityrequirementscanrepresentbarrierstotrade.Themarketforsafeandtraceablefoodcanexcludesmall-scaleagriculturalproducerswholacktheresourcestocomplywithincreasinglystrictstandards,particularlyrequire-mentsfortrackingandmonitoringenvironmentalandsupplychainvariablesthroughsophisticatedtechnologies.Thebenefitsoftraceabilityforconsumers,governmentauthorities,andbusinessoperatorsarewidelyrecognized.Yetforsmall-scalefarmersindevelopingcountries,especiallyfarmersproducinghorticulturalandotherfreshfoodproducts,traceabilityrequirementscanrepresentbarrierstotrade.Themarketforsafeandtraceablefoodcanexcludesmall-scaleagriculturalproducerswholacktheresourcestocomplywithincreasinglystrictstandards,particularlyrequirementsfortrackingandmonitoringenvironmentalandsupplychainvariablesthroughsophisticatedtechnologies.WideraccesstoICTsmayliftsomeofthesebarriers.Theproliferationofmobiledevices,advancesincommunications,andgreateraffordabilityofnanotechnologyofferpotentialfor22 small-scaleproducerstoimplementtraceabilitysystemsandconnecttoglobalmarkets.Mobilephones,radiofrequencyidentification(RFID)systems,wirelesssensornetworks,andglobalpositioningsystems(GPS)makeitpossibletomonitorenvironmentalandlocation-basedvariables,communicatethemtodatabasesforanalysis,andcomplywithfoodsafetyandtraceabilitystandards.Inthecontextoffoodsafetyandsmallholders’participationinglobalmarkets,thismoduleexploresincentivesforinvestingintraceabilitysystemsandtheprospectsfortraceabilitytoempowersmall-scaleproducersinthevaluechain.Itincludesdetailedinformationonstandards,technicalsolutions,andinnovativepractices.FoodSafety:AChallengeofGlobalProportionsFoodbornediseaseoutbreaksandincidents,includingthosearisingfromnatural,accidental,anddeliberatecontaminationoffood,havebeenidentifiedbytheWorldHealthOrganization(WHO)asmajorglobalpublichealththreatsofthe21stcentury(WHO2007b).WHOestimatesthat2.2millionpeoplediefromdiarrhealdiseaseslargelyattributedtocontaminatedfoodandwater(WHO(2007a).Theglobalburdenoffoodborneillnesscausedbybacteria,viruses,parasiticmicroorganisms,pesticides,contaminants(includingtoxins),andotherfoodsafetyproblemsisunknownbutthoughttobeconsiderable(Kuchenmülleretal.2009).Foodsafetyissueshavehuman,economic,andpoliticalcosts.Thesecostsareexacerbatedbyanimalhusbandrypracticesthatincreasethenumbersofhumanpathogens,antibiotic-resistantbacteria,andzoonoticpathogensinmeatanddairyproducts;unsafeagriculturalpracticesinvolvingtheuseofmanure,chemicalfertilizer,pesticide,andcontaminatedwateronfreshfruitsandvegetables;theprogressiveinfluenceoftimeandtemperatureongloballytradedproductssuchasseafood,meat,andfreshproduce;thecontaminationofprocessedfoodbybacteria,yeast,mold,viruses,parasites,andmycotoxins;thepresenceofforeignobjectscausinginjurytotheconsumersuchasglass,metal,stones,insects,androdents;andthethreatofbioterrorism(SafeFoodInternational2005).CasesrecordedinWHO’sepidemiologicalrecords,medicaljournals,andotherrecordsystemsoverseveraldecadesdemonstratetheextentoftheproblem(Table12.1).TheCentersforDiseaseControlandPrevention(CDC)estimatedthat48millioncasesoffoodborneillnessoccureachyearintheUnitedStates,including128,000hospitalizationsand3,000deaths.Thethreeprimaryavenuesofcontaminationareproduction,processing,andshippingandhandling.Inlight23 ofglobalfoodsafetyconcerns,theWHOGlobalStrategyforFoodSafety,endorsedinJanuary2002bytheWHOExecutiveBoard,outlinedapreventiveapproachtofoodsafety,withincreasedsurveillanceandmorerapidresponsetofoodborneoutbreaksandcontaminationincidents(WHO2002).Thisapproachsubstantiallyexpandstheabilitytoprotectfoodsuppliesfromnaturalandaccidentalthreatsandprovidesaframeworkforaddressingterroristthreatstofood(WHO2008).TABLE12.1:ExamplesofFoodSafetyOutbreaks(1971-2008)YEARCASE2008·294,000childrenaffectedbyadulteratedformulataintedwithmelamine.Morethan50,000werehospitalizedand6died.(China)a2004-2005·Aflatoxincontaminationofmaizecausedmorethan150deaths.(Kenya)2001·CasesofvariantCreutzfeldt-Jakobdisease(vCJD),whichiscausedbythesameagentasbovinespongiformencephalopathy(BSE),stoodat117worldwide.AnumberofanimalstudiessuggestatheoreticalvCJDriskfromhumanblooddonorsincountriesassociatedwiththeuseofBSE-contaminatedmeatandbonemealandrecyclingofanimalsintotheanimalfeedchain.bTheBSE(“madcow”)outbreakwashighlypublicizedbythemedia.Itremainsetchedinconsumerconsciousnessasanexampleofanacutebreakdowninfoodsafetyandqualityinthedevelopedworld.·E.coliO157:H7,variousanimalfoods,20,000cases,177deathsinJiangsuandAnhuiprovinces.(China)2000s·Contaminatedoliveoil.(Spain)·Staphylococcusinmilk.(Japan)·E.coliinspinach,carrotjuice.(US)·Listeriainready-to-eatmeat.(Canada)·Salmonellainpeanutbutter.(US)2000·WHOnotedthepresenceofantimicrobial-resistantSalmonellabacteriainfoodanimalsinEurope,Asia,andNorthAmerica,whichhavecauseddiarrhea,sepsis,anddeathinhumans,aswellasEnterococciinfections,whichpresentsevere24 treatmentproblemsinimmunocompromisedpatients.c1990s·E.coliinhamburgers.(US)·BSE.(UK)·Cyclosporainraspberries.(US/Canada)·Avianinfluenza.(SoutheastAsia)·Dioxininanimalfeed.(Belgium)1999·Salmonellatyphimurium,morethan1,000cases,meatproducts,Ningxia.(China)1998·StatisticsfromtheMinistryofHealthshowedamarkedincreaseinfoodpoisoningattributedtoVibrioparahaemolyticus,from292incidents(5,241cases)in1996to850incidents(12,346cases)in1998.Onelargeoutbreakof691caseswascausedbyboiledcrabsin1996;anotherinvolved1,167casestracedtocateredmealsin1998(Japan).OutbreakswerealsodocumentedinBangladesh,India,Thailand,andtheUnitedStates.d1980s·Beefhormones.(EU)·Salmonellaineggsandchicken.(UK)·Alarinapples.(US)·HepatitisAinrawoysters,300,000cases,Shanghai.(China)1971-82·SafeFoodInternational,aglobalconsumerorganization,citedcasesoffoodborneillnessarisingfromaccidentalorintentionaladulteration:“Duringthewinterof1971–1972,wheatseedsintendedforcropplantingandtreatedwithmethylmercurywereaccidentallydistributedinruralareasofIraq.Anestimated50,000peoplewereexposedtothecontaminatedbread,ofwhich6,530werehospitalizedand459died.InSpainin1981–1982,contaminatedrapeseedoilkilledmorethan2,000peopleandcauseddisablinginjuriestoanother20,000manypermanently.”Source:CompiledbyTinaGeorgeKarippacherilandLuzDiazRios;dataonspecificcasesfrom(a)Ingelfinger2008,(b)WHO2001,(c)WHO2000,(d)WHO1999,and(e)SafeFoodInternational(2005)25 ComponentsofFoodTraceabilitySystemsNotonlyfoodborneillnessesbutglobalization,consumerdemand,andterrorismthreatshaveimpelledthediffusionandgrowthoftraceabilitysystemsinsupplychainsforfoodandagriculture.Foodisacomplexproduct(Golan,Krissof,andKuchler2004),andmodernfoodproduction,processing,anddistributionsystemsmayintegrateandcomminglefoodfrommultiplesources,farms,regions,andcountries(Cannavann.d.).Foodproductscoveredbytraceabilitystandardsincludefreshproducesuchasman-goes,avocados,andasparagus;bulkfoodssuchasmilk,soybeans,specialtycoffee,andoliveoil;fishandseafood;andlivestockformeatanddairy.ThismodulealsotouchesontheroleofICTsinanimalidentification,aprerequisiteforimplementinglivestocktraceabilityinthemeatanddairysectors.Foodproductsmaybedifferentiatedthroughsystemsof(1)identity-preservedproductionandmarketing(IPPM),(2)segregation,and(3)traceability.IPPMsystemsareimportantforprovidinginformationtoconsumersabouttheprovenanceofaproductwhentheattributesmaynotbevisibleordetectableintheproduct.Theyarealsousefulforcapturingproductpremiums.Segregationsystemsareusedtopreventthemixingofnovelvarietiesinthehandlingoflikevarietiesortodiscouragethemixingofasegregatedproductwithlikeproductsifpotentialfoodsafetyconcernsexist.Traceabilitysystems,ontheotherhand,allowsourcesofcontamina-tioninthesupplychaintobeidentified(SmythandPhillips2002),whichenablesatransparentchainofcustody,raisescredibility,andmakesitpossibletotransferinformationonthestepstakentoalleviatefoodsafetyconcerns(McKean2001).Unsafefoodcanberecalledbecauseinformationonallpossiblesourcesandsuppliesofcontaminatedfoodcanbetracedonestepforward,onestepback,orendtoend.Traceabilitysystemscanbeclassifiedaccordingtheircapacityfor(1)internaltraceabilityand(2)chaintraceability.“Internaltraceability”referstodatarecordedwithinanorganizationorgeographiclocation,whereas“chaintraceability”involvesrecordingandtransferringdatathroughasupplychainbetweenvariousorganizationsandlocationsinvolvedintheprovenanceoffood.Foodcontaminationmayoccuratthefarm,duringprocessingordistribution,intransit,atretailorfoodserviceestablishments,orathome.Fundamentally,traceabilitysystemsinvolvetheuniqueidentificationoffoodproductsandthedocumentationoftheirtransformationthroughthechainofcustodytofacilitatesupplychaintracking,management,anddetectionofpossiblesources26 offailureinfoodsafetyorquality.Thesmallesttraceableunitwillvarybyfoodproductandindustry.Someofthedataelementsmayincludethephysicallocationthatlasthandledtheproduct,aswellasthetypeofsupplychainpartner(producer,processor,orbroker,forexample);incominglotnumbersofproductreceived;amountofproductproducedorshipped;physicallocationwherecaseswereshipped;lotnumberoftheproductshippedtoeachlocation;date/timewhentheproductwasreceivedorshipped;date/timeeachlotwasproducedorharvested;ingredientsusedintheproductionoftheproduct,alongwithcorrespondinglotnumbers;andimmediatesourceofingredientsandwhentheywerereceived.Goodpracticesintraceabilityentailmakingthelotnumberandnameoftheproductionfacilityvisibleoneachcaseofproductandrecordingthelotnumber,quantity,andshippinglocationoninvoicesandbillsoflading.Traceabilityrequireseachfacilitytorecorddatawhenaproductismovedbetweenpremises,transformed/furtherprocessed,orwhendatacaptureisnecessarytotracetheproduct.Suchinstancesarecalledcriticaltrackingevents.Datacapturedincriticaltrackingeventsarevitaltolinkingproducts,bothsimpleandcomplex,withinafacilityandacrossthesupplychain(IFT2009).Traceabilitydatacanbestaticordynamic,mandatoryoroptional.Staticdatadonotchange,whereasdynamicdatacanchangeovertimeandthroughthechainofcustody(Folinas,Manikas,andManos2006).“Traceback”impliesthatasys-temcanidentifyproduction/processingstepsthatresultedinthecreationoftheproduct.“Traceforward”impliesthatasystemcanidentifyallderivativesoftheproductusedasaningredientinnumerousotherproducts.Foodtraceabilitysys-temsanddefinitionsinstandards,laws,andregulationsarebroadlyconceptualizedtopermitproducerstodeterminethebreadth,depth,andprecisionofsystemsbasedonspecificobjectives(Golanetal.2004).(Fordefinitionsandstandards,seeTopicNote12.1.)“Breadth”denotestheamountofinfor-mationatraceabilitysystemcaptures,“depth”referstohowfarbackwardorforwardthesystemtracksanitem,and“precision”showsthedegreetowhichthesystemcanpinpointfoodcharacteristicsandmovement.Figure12.1illustratestheseconceptsfortheattributesofinterestinthestagesofcoffeeproduction.27 FIGURE12.1:Coffee:AttributesofInterestandDepthofTraceabilityTransporationNecessarydepthoftraceabilitySource:Golanetal.2004.Note:GE=geneticallyengineered.Traceabilitydataarerecordedthroughmediaincludingbutnotlimitedtopen/paper,barcodes,RFIDs,wirelesssensornetworks,mobiledevicesandapplications,enterpriseresourceplanning(ERP)applications,andInternet-basedapplications.Informationrelatedtoproducttracingmayberecordedandtransmittedthroughmanagementinformationsystemsor,inthecaseofsmalleroperations,paperworksuchasinvoices,purchaseorders,andbillsoflading.Traceabilitydatamayalsobecaptureddirectlyfromproductssuchasfreshproduce,seafood,andlivestock.ProductsmaybetaggedwithbarcodesorRFIDs,whichstoreproductandassociateddata.Wirelesssensorsmaytransmitdataontemperature,spoilage,orloca-tiontoRFIDstaggedtoprodducts.TopicNote12.2providesdetailedinformationontraceabilitytechnologiesandsystems.ImplementingFoodTraceabilitySystemsinDevelopingCountriesNearly500millionpeopleresideonsmallfarmsindevelopingcountries(Hazelletal.2006).Theirparticipationinmarketstypicallyisconstrainedbyinadequatefarm-levelresources,farm-to-marketlogisticalbottlenecks,andmoregeneraltransactioncostsinmatchingandaggregatingdispersedsuppliestomeetbuyerandconsumerdemand.These“traditional”constraintshavebeenamplifiedandinsomecasessurpassedby“new”challengesrelatedtocomplyingwithproductandprocessstandards,includingstricttraceabilityrequirements,setandenforcedbygovernmentsandprivatesupplychainleaders(Jaffee,Henson,andDiazRios,28 forthcoming).Theimplementationoftraceabilitysystemsandassurancestandardsiscontroversial(Schulzeetal.2008),butitcanbeespeciallysointhecontextofsmall-scaleproducers.WeinbergerandLumpkin(2009)haveexpressedconcernthattraceabilityrequirementsandsanitaryandphytosanitaryissueswillincreasinglyconstrictexportsoffoodproductsfromdevelopingcountries,wherepoorregulationofchemicaluse,pollutants,andasteeplearningcurveintraceabilitycapacityrestrictgrowers’andprocessors’participation.Manydevelopingcountrieslagindevelopingandimplementingfoodsafetyandtraceabilitystandards,butsomehaveselec-tivelymetdemandsinhigh-incomeexportmarketsthankstoregulatory,technical,andadministrativeinvestments.From1997to2003,morethanhalfoftheList1countriesrecog-nizedbytheEUashavingequivalentstandardsofhygieneinthecapture,processing,transportation,andstorageoffishandfishproductswerelow-ormiddle-incomecountries.JaffeeandHenson(2004b)suggestthatsomecountriesuseimprovedfoodqualityandsafetystandardsasacatalysttorepositionthemselvesintheglobalmarket;thekeyfordevel-opingcountriesisto“exploittheirstrengthsandovercometheirweaknessessuchthattheyareoverallgainersratherthanlosersintheemergingcommercialandregulatorycon-text.”Asanexample,thevalueofKenya’sfreshvegetableexportsincreasedfromUS$23milliontoUS$140millionbetween1991and2003afterstricterfoodsafetyandqualitystandardsledproducerstoreorienttheiroperations(JaffeeandHenson2004b).Anyapplicationofproducttraceabilitysystemsmusttakeintoaccountthespecificcapabilitiesofdevelopingcountries.Ifanimportingcountryhasobjectivesoroutcomesofitsfoodinspectionandcertificationsystemthatcannotbemetbyanexportingcountry,theimportingcountryshouldconsiderprovidingassistancetotheexportingcountry,especiallyifitisadevelopingcountry.Assistancemayincludelongertimeframesforimplementation,flexibilityofdesign,andtechnicalassistance(CAC2006).Inrecentyears,avarietyoftraceabil-itysystemshavebeenimplementedinthedevelopingworld,includingsystemsforfreshfruit,vegetables,grain,oilseeds,bulkfoods,seafood,fish,andlivestock(Table12.2).Asidefromtheexamplesinthetable,Koreahasimplementedsystemsforagriculturalproducttracing,andJordanhasestablishedaframeworkforproducttracingandusesanationaldigitaldatabasetotrackandinvestigateproductanddisease29 movement(HashemiteKingdomofJordan2004).TABLE12.2:TraceabilitySystemsAdoptedinDevelopingCountriesCATEGORYTRACEABILITYSYSTEMCOUNTRYFreshproduceMangoesMaliAvocadosChileBulkfoodsSpecialtycoffeeColombiaGreensoybeensThailandOliveoilMoroccoOliveoilPalestineSeafoodSeafoodChileSeafoodVietnamShrimpThailandLivestockDairyIndiaMeatBotswanaMeatChinaMeatKoreaMeatMalaysiaMeatNamibiaMeatSouthAfricaSource:TinaGeorgeKarippacheril.Note:Theseexamplesfromtheagrifoodsectorincludebutarenotlimitedtoissuesoffoodsafety.Supportfortraceabilityprojectsdesignedtoconnectsmall-scaleproducerstoglobalmarketscomesfromavarietyofsources:(1)nonprofitorganizationsanddevelopmentagencies(suchas30 IICDforFreshFoodTraceinMaliandIFCforoliveoiltrackinginPalestine);(2)governments(BotswanaandKoreaforlivestocktracking;ThailandandVietnamforseafood);and(3)theprivatesector(ShellCatchforseafoodtrackinginChile).Thesectionsthatfollowprovideexamplesofhowfoodtraceabilitysystemshavebeenimplemented,particularlyinlow-incomeeconomies.Inadditiontosupportsystemsfordevelopingcountries,mobiletechnologyprovidesnewopportunitiesforsmallholderstoconnectwithexportmarkets.Mobiletechnologieshavenotonlyalleviatedasymmetriesintheflowofinformationfromthemarkettosmallholders(MutoandYamano2009),butholdgreatpotentialforenablingthecounterflowofinformationfromsmall-scaleproducerstomarketstomeettraceabilityrequirements(Figure12.2).Forexample,farmersmayuseamobiledevicetoinputinformationonthevarietygrown,plantingandharvestdates,anduseoffarminginputs.Datacapturedbysmallholderscanbeintegratedwithinformationsystemsandcentralizeddatabasestoprovidegreatertransparencytosupplychainpartnersandconsumersonthefarmingprocess,inputs,andoutput.Theintegrationofwirelesssensornetworks,RFIDs,andmobiletechnologycouldyieldsophisticatedmeanstocapturedataduringfarmingandminimizetheneedformanualdatainputthroughmobiledevices.FIGURE12.2:MobileTechnologyyasaKeyEnablerofInformationCounterflowfromFarmerstoMarketsSource:TinaGeorgeKarippacheril.Byfosteringmorelinkages,socialization,andnetworksbetweensmall-scaleproducers,the31 diffusionofmobiletechnologycanaddressissuesofgeographicdispersionandlinkagestotraders,otherfarmers,ormarketgroupsforqualityassurance,marketing,andsales.EmpoweringSmallholderFarmersinMarkets,aresearchproject,foundthatinternationaltrader-ledlinkagescanempowersmallholderstosupplyhigh-quality,traceableproduceandgainfromquality-linkedawardsfundedbythetrader.Forexample,ItaliancoffeeroasterIllycaffèincreaseditsprocurementofsuperiorBraziliangreencoffeefromsmallholdersbyinvest-ingsignificantlyinqualityassurancetrainingandmarketinformationforsmallholders.Thecompanyhaswoncom-petitionsandawardsforbestgrowersandforcommandingabove-marketpricesfortheproduct(Onumahetal.2007).FreshProduceTraceabilityforQualityControlFreshproducemustmovequicklythroughthesupplychaintoavoidspoilage.Afterharvest,freshproduceishandledandpackedbyashipperorbyagrower-shipperandexportedorsolddirectlyorthroughwholesalersandbrokerstoconsumers,retailers,andfoodserviceestablishments.Traceabilitysystemstrackfreshproducealongthesupplychaintoidentifysourcesofcontamination,monitorcoldchainlogistics,andenhancequalityassurance.AgoodexampleistheuseofRFIDtechnologybyanavocadoproducerinRioBlanco,Chile,fortemperatureandcoldchainmonitoring.RFIDtagscalled“paltags”(paltaistheChileanwordfor“avocado”)areattachedtothefruitonthetree,andafterharvest,thefruitandtagsaresorted,washed,waxed,andtransportedinpallets.Palletsaretaggedtomonitortemperatureduringtransport,andshouldthetemperatureriseabovestandardlevels,palletsareputbackintocoldstoragebyqualityinspectorsattheharbor.OncethepalletsarriveattheportinCalifornia,thetemperatureisreadbyhandheldreaderstoascertainwhetherthetemperaturehasrisenaboveacceptablelevels,thuscheckingqualityandsafetybeforeshippingtheavocadostomarketers(Swedborg2010;“AwardsHonorRFIDInnovators,”RFIDUpdate,2007).Freshproduceexportersmayalsobeofferedcentralizedcoolingandshippingservices.TheFreshProduceTerminalinSouthAfricatracksfruitintothewarehouseandontoshippingvessels,deploying250vehicle-mountedcomputersand100mobilecomputersfromSymbolTechnologies(Parikh,Patel,andSchwartzman2009).BulkProduceTraceabilityforProductAuthenticityBulkproduceismorechallengingtotracethanfreshproduce.Productssuchasgrain,coffee,oliveoil,rice,andmilkfrommultiple32 farmsarecombinedinsilosandstoragetanks,makingitdifficulttotracethembacktotheirsources(IFT2009).Yettraceabilitysystemsforbulkproductshavebeenimple-mentedindevelopingcountries,evenamongsmallholders.Forexample,theNationalFederationofCoffeeGrowersinColombia,anonprofitorganizationfor500,000smallfarmers,identifiesandmarketshigh-qualityColombiancoffeefromuniqueregionsorwithexceptionalcharacteristics(“FinalistsUnveiledfortheFourthAnnualRFIDJournalAwards,”RFIDJournal,2010).Thefederationcommandsa200percentpremiumtransferredentirelytoitsgrowers.Itssubsidiary,Almacafe,whichhandleswarehousing,qualitycontrol,andlogistics,implementedatraceabilitysystemusingRFIDtagsin2007forspecialtycoffeeforitsinternalsupplychain,fromfarmstowarehousesandduringprocessing,bagging,roasting,andtradingforexport.Althoughbarcodeswereconsideredfirst,RFIDtagswereeventuallyusedbecausebarcodesrequirelineofsightandclearlabelstoberead,whichmighthavebeenaproblem,consideringthatcoffeesacksweighmorethan40kilogramsandtendtobethrownaround.TheRFIDtagseachcostaboutUS$0.25(paidbythefed-eration),areencasedinawear-resistantcapsule,andardistributedtofarmerswithafarmidentificationnumberandaspecialtycoffeeprogramcode.Thecoffeeissoldtooneof35cooperativesandtransportedtooneof15warehouses,wheretagsarereadbytwoRFIDantennasoneithersideofaconveyorbeltwith99.9percentaccuracyfordataanddeliverytime.Tagsarereadateachstepoftheprocess,andifthecoffeedoesnotmeetqualitystandards,itisrejectedandthedatabaseisupdated.In2008,thefederationextendeditsprogramwithapilottohelpadaptitstraceabilitymodeltotheTanzaniancoffeesupplychain.Consumersmaydemandsystemstotracefertilizerandpesticideinbulkproducts.InThailand,forexample,exportersrequirefarmerstoprovideproductinformationregardingthefarm,cropvarieties,planting,irrigation,fertilizerapplication,insectordiseaseemergence,pesticidesorchemicalsused,harvestdate,costsincurred,problems,andsellingprice(Manarungsan,Naewbanij,andRerngjakrabhet2005).Figure12.3showstraceabilityactivitiescarriedoutalongthesupplychainforgreensoybeans,fromfarmertobrokertoprocessor.33 FIGURE12.3:SoybeanTraceabilittySysteminThailandSource:Manarungsan,Naewbanij,andRerngjakrabhet2005.Traceabilitysystemsforbulkgoodsarealsoimplementedforchainofcustodymonitoringandqualityassurancebasedonconsumerdemand.Oliveoil,ahigh-valuefood,issometimesblendedandsoldbydistributorsandmarketers,andtraceabilityhelpsidentifythesource,method,variety,andfarmwherethecropwasharvested,soitbecomeseasierforconsumerstodetermineiftheoliveoiltheyarebuyingisgenuine.InNorthAfrica,acombinationofGPS,mobiledevices,electronicsecuritybolts,andsensorsareusedforend-to-end,real-timemonitoringofperishableoliveoilshipmentsfromSpainandMoroccobyTransmedFoods,Inc.,theUnitedStatesdistributionarmofCrespoFoods,andSaviTechnologies(SaviTechnology2009).Inanotherexample,anIFCprojecttoimprovethecompetitivenessandexportprospectsforWestBankoliveoilassistssmallandmedium-sizeenterprisesinimplementingabasictraceabilityprogramtomaintainquality,includingmanagingdatarelatedtothesourcesofoil,pressing,handling,storage,andpackingoperations.SeafoodTraceabilityforSafetyandSustainabilitySeafoodtraceabilityenhancesthevalueofsuppliers’brandsandconsumers’confidenceinthosebrands.Fortraceability,monitoring,andcontrol,dataaboutthefarmoforigin,processingplant,currentlocation,andtemperaturearecollectedandmadeavailabletoparticipantsinthesupplychain,includingwholesalers,shippers,andretailers.Ifaproblemarises,thisinformationenablesa34 targetedmarketrecallandlimitstheimpactonconsumers.SeafoodtraceabilityisimplementedtocomplywiththeEU’szerotoleranceofresiduesofbannedantibiotics(chloramphenicolandnitrofu-ran).Thailand,oneoftheworld’slargestshrimpexporters,sawexportsdropsteeplytoUS$1.72billionin2002fromaverageannualrevenueofUS$2.3billionbetween1998and2001(Manarungsan,Naewbanij,andRerngjakrabhet2005).ThedeclinecausedtheThaiprivateandpublicsectorstotightensanitarymeasuresonchemicalantibioticresiduesinshrimpandadoptprobioticfarmingtechniques,disease-resistantshrimp,andlaboratorydiagnosticsandtesting.Farmersandcooperativesmustregistertofacilitatetraceability,andqualitymanagementsystemshavebeenimplementedtoisolatequalityandsafetyissuesalongthevaluechain.TheDepartmentofFisherieshasbeenworkingwithfarmerstointroduceGAP(GoodAgriculturalPractice),acodeofconductforsustainableshrimpaquaculture,andHACCPstandardsandtoimproveproductdocumentationandtraceability.Thedepartmentrequiresfarmerstofillouta“shrimpcatchingform,”whichincludesthecatchdate,totalshrimpweight,nameofthefarmer,andIDnumber.Somecentralmarketsalsorequiresuppliersandbuyerstocompletethisformtoenhancetraceability.Registeringfortraceabilitygivescooperativemembersaccesstolaboratorytestservices,training,andinformationandexperiencesharingthroughnetworking.TheyalsoreceivefundingofUS$1,160andkitstoperformtheirowndiagnostictests.MarineStewardshiCouncilcertificationrequiresshrimpfarmerstonotifytheDepartmentofFisheriesfivedaysbeforeharvesting,tofacilitatetracingshrimpbacktotheirorigin(ManarungsanNaewbanij,andRerngjakrabhet2005).TheVietnameseStateAgencyforTechnologicalInnovationhascollaboratedwiththeVietnameseAssociationofSeafoodExportersandProducersandprivatefirms(IBMandFXAGroup)toimplementaseafoodtraceabilitysystem.ThesystemisbasedonRFIDtechnology(“VietnameseAgencySeeksSeafoodTraceability,”RFIDNews,2009).LivestockTraceabilityforDiseaseControlandProductSafetyUnlikeotherfoodindustries,thelivestockindustryhasalonghistoryofimplementinganimalidentificationandtraceabilitysystemstocontroldiseaseandensurethesafetyofmeatanddairyproducts.Lessonsfromlivestocktraceabilitysystemsmayapplytootherareasoffoodsafety.Namibiawasanearlyadopterofsuchsystemsin2004.Botswanamaintainsoneoftheworld’slargestlivestockidentificationsystemsandhadtagged3millioncattleby2008.Botswana’s35 livestockidentificationandtrace-backsystemusesRFIDtechnologytouniquelyidentifylivestockthroughoutthecountry.ThesystemenablesaccesstolucrativemarketsintheEuropeanUnion,wheretraceabilityisarequirementforbeeffrombirthtoslaughter.Abolusinsertedintotheanimal’srumencontainsapassiveRFID(ithasnobatteryormovingparts)microchipwithaveryhardceramiccoating,whichdoesnotinteractwithstomachenzymesoracids.Fixedreadersplacedat300locationsscanthebolusofeveryanimalintheherdtoobtainidentificationnumbers,informationonnewregistrations,andthestatusofdiseasetreatmentsintheherd.Theinformationisrelayedtoacentraldatabaseandonto46districtoffices.Asidefromtraceability,thetaggingsystemenablesweightandfeedtobemonitored,yieldtobemanaged,breedinghistorytracked,andanimalsselectedforbreeding(Burger2003).Animalidentificationandtraceabilitysystemshavenumerousapplications,suchastrackinganimalmovement,monitoringhealth,controllingdisease,andmanagingnutritionandyield.RFIDtaggingsystemsforlivestockcontainuniqueidentificationdataandinformationontheanimal’slocation,sex,nameofbreeder,originoflivestock,anddatesofmovement.Handheldreadersareusedtoregistervaccinationinformationanddates;thedataarerelayedtoacentraldatabase.TheMalaysianMinistryofAgriculture’sVeterinaryDepartmenthasintroducedagovernment-runsystemtocontroldiseaseoutbreaksamong80,000cattle.ThesystemwasimplementedtoincreasethecompetitivenessofMalaysia’slivestockindustrybymeetinginternationalimportstandardsanddomestichalalmarketstandards(“MalaysiaBeginsRFID-enabledLivestockTrackingProgram,”RFIDNews,2009).ChinahasapilotRFIDprogramfor1,000pigsinSichuanChunyungtotrackepidemicsandenabletraceabilityfrombirthtoslaughterforconsumers(“ChinaFixesRFIDTagsonPigstoTrackEpidemics,”ICTUpdate2003).InSouthAfrica,theKleinKarooCooperativetagged100,000ostrichestocomplywithtraceabilityrequirementsformeatexportstotheEU(“ProjectKleinKarooCooperativeinSouthAfrica,”ICTUpdate2003).Koreawasanotherearlyadopterofanimalidentificationtechniquesandtechnologies,usinggeneraleartagsfrom1978to1994,barcodesin1995,andRFIDsince2004.Koreaintroducedafullbeeftraceabilitysystemin2008,inthewakeoftheBSEscare,topromptlyidentifyfoodsafetyproblemsandensureend-to-endtraceability.KoreaalsousesDNAmarkerstotracecomponentsofcarcasses.MarkersrecommendedbytheInternationalSocietyforAnimalGeneticsareusedforverification(Bowlingetal.2008).36 Figure12.4illustratesthe2001ScottishBordersfulltraceabilitysystemforcattle.ThesystemsusesRFIDeartagsforuniqueidentificationandaportabletransceiveranddataloggerthattransfersdatatoafarmcomputeroracentralcomputerforfarmerswhodonothaveapersonalcomputer.FIGURE12.4:ScottishBordersTAGCattleTracingSystemSource:FromPettitt2001,WorldOrganisationforAnimalHealth(OIE)ScientificandTechnicalReview.Note:EID=electronicidentification;RFID=radio-frequencyidentificationdevice.Indairyfarming,RFIDtechnologyenablesuniqueidentificationandmonitoringofcattle,theirfeedinghabits,healthissues,andbreedinghistorytoimproveyieldmanagement.Thetechnologyisintegratedwithfeedingmachinestodeterminethecorrectamountofnutritionforindividualanimals.TheRFIDchipsendsdataabouttheanimal’sfeedinghabits,dietaryneeds,andotherinformationtoasensoronthefarm.Thedataarestoredincentraldatabasesandanalyzedbyfarmmanagersandsupervisorstomonitortheanimals’healthandnutritionalmix.IndiahasintroducedcattletaggingfordairyfarminginthestatesofTamilNaduandMaharashtra.TheBGChitaleDairyinMaharashtrahastagged7,000cowsandbuffaloandplanstoextendtaggingtoabout50,000animals(“MilkTastesBetterwithRFID,”RFIDNews,2010).(SeeIPS“RFIDFacilitatesInsuranceCreditforIndia’sLivestockProducers”inModule77.)Traceabilitysystemsmaybeimplementedtoimprovetheglobalcompetitivenessoflivestockand37 meatexports,thequalityofmeat,andchainofcustodytraceability.Beefisplacedinrefrigeratedtrucksandcontainersandsealedwithasensorboltandatagforidentification.Shipmentsaretrackedtoensurethattheydonotremaininoneplacefortoolong.Atkeypointsinthesupplychain,suchaswhenthebeefisunloadedafterithasbeenshippedfromtheport,thetagisreadwithamobilereadertocheckforevidenceoftamperingpriortounloading,andtagdataarestoredinsupplychaindatabases.Namibia,whichstartedtrackingbeefin2004,wasoneoftheearliestemergingmarketadoptersofadvancedtechnologiestoensurequalityandtraceability(Collins2004).Apilotprogramexecutedthroughapublic-privatepartnershipwithSaviTechnologyinvolvedtheapplicationofRFIDsandsensorboltstocontainersofchilledandfrozenbeefshippedfromNamibiatotheUKaspartoftheSmartandSecureTradelanesinitiativeextendedtoAfricanports.InMarch2009,Namibiaissuednewanimalidentificationregulations,whichrequiredlivestockproducerstoidentifycattlewithonevisualeartagandoneRFIDeartag.CattlemustbeindividuallyregisteredintheNamibianLivestockIdentificationandTraceabilitySystem.Namibiahasalsosetupaveterinaryfencetoavoidcontamination:CattlefromnorthernNamibiacannotbeexportedandmustbeconsumedlocally,andcattlefromsouthernNamibiaareprotectedfromdiseasesandexportedtoEurope.Namibiaalsosourcesnon-geneticallymodified(GM)maizefromSouthAfricaatapremiumtoensurethatbeefsoldinEuropeisconsiderednon-GM.Basictechnologiesforanimalidentificationandtraceabilityhaveapplicationsotherthanfoodsafetyandfoodsecurity.CattlerustlingthreatenshumansecurityinEastAfrica,aregioncharacterizedbynomadicmovementsofpeoplewithlivestockovervastandhostileterrain.TheMifugoProject(mifugoisSwahilifor“livestock”),ratifiedbyEthiopia,Kenya,Sudan,Tanzania,andUganda,seekstoprevent,combat,anderadicatecattlerustlinginEastAfrica(Siroretal.2009).Traditionalmethodsofidentifyingcattleareharmonizedwithtechnologicallyadvancedapproachesforuniqueidentification,tracking,andrecoveryofstolenanimals.LivestocktagsmaybequeriedremotelyusingtheInternet,SMS,andwirelesscommunicationthroughmobilephonestotrackandmonitoranimals.KeyChallengesandEnablersImplementingtraceabilitytechnologiesforfoodsafetyandotherpurposesdoesnotcomewithout38 itschallenges.Broadlyspeaking,themainchallengeslieindatacollection,processes,technologicalsolutions,businessmodels,costs,andlearning.SomeofthesechallengeswillbediscussedinmoredepthintheTopicNotes.Intraditionalsocieties,traceabilityisinherent,becauseproductionandconsumptionoccurinthesameplace,butcomplyingwithmoderntraceabilityrequirementsforfarawayglobalmarketsposesachallengeforsmall-scaleproducerswithfewresources.Forexample,complyingwithrecord-keepingarrangementsassociatedwithfoodsafetyassurancethroughHACCP-basedsystems,withtheirdetailedtraceabilitysystems,requireswidespreadeducationandcooperationthroughoutthesupplychain(UnnevehrandJensen1999).Tounderstandtraceabilityapplicationsforfreshproduceandhorticulturalproducts,bulkproduce,seafood,andlivestock,small-scaleproducerswillneedtomasteraconsiderablerangeofskillsandinformation.Althoughtraceabilitycapacitymighthavesomepositiveeffectsondomesticmarketsindevelopingcountries,byandlargetraceabilitysystemsareunidirectional—theytrackthechainofcustodyoffoodexportedfromdevelopingcountriestodevelopedcountries.Developing-countryfarmerswhoareunabletomeettraceabilityrequirementsruntheriskofbeingmarginalized.JaffeeandMasakure(2005)foundthatproduceexportmarketsinKenyareliedontheexporters’ownfarmsforproductsthatrequiredtraceability;productsdemandinglesstraceabilitycamefromsmall-scaleoutgrowers.Someevidenceindicatesthattheglobalmovementtowardstricterfoodsafetyandtraceabilityrequirementshastranslatedintostricterdemandsindomesticmarketsindevelopingcountries.Forexample,theriseofsupermarketsinLatinAmerica,withtheirqualityandsafetyprocurementstandardsandassociatedrecord-keepingrequirements,hadanegativeimpactonsmallholderparticipation,althoughsomecasesofsuccesswerenotedwheretherewaspublicorprivatetechnicalassistance(ReardonandBerdegué2002).Thecostsassociatedwithimplementingtraceabilitysystemsincludeinvestmentsincapitalandinfrastructure,recordkeeping,andimprovementsinharvestingandprocessing.Unlikesmall-scaleproducers,large-scaleproducersandindustryassociationsarebetterequippedtoupgradetheiroperationsincompliancewithtraceabilitystandards;theaddedcostofrecordkeepingissmallcomparedwiththepotentialfinancialdamagesofaproductrecall(Spencer2010).Thequestionsthatremain,then,arewhopaysforthecostofimplementingfoodtraceabilitysystems,particularly39 inthecaseofsmallholders,andhowsustainablethosesystemscanbeinthelongrun.Withrespecttobusinessprocesses,animportantchallengeinvolvesthepoorintegrationoforganizationsinthevaluechain.Proprietarytrackingsystemsallowtracingonestepforwardorback,buttheyrarelyallowtraceabilitythroughthefulllifecycleofaproduct.Organizationsinavaluechainmaybereluctanttoshareproprietarycommercialdataaboutaproduct,withtheexceptionofrequirementsforrecalls.Studiesfromtheindustrialsector,wheretraceabilitysystemsandtechniquesoriginated,emphasizethatthemaindifficultieslieinthedesignofaninternaltraceabilitysystemforagiven,complexproductionprocess(Moe1998;Wall1994).AstudyontraceabilityintheUnitedStates,undertakenbytheInternationalInstituteofFoodTechnologies(IFT),foundthatchallengesarerelatedtobothexternalandinternaltraceability.Externaltraceabilityrequiresaccuraterecordingandstorageofinformationonproductsandingredientscomingintoafacilityandinformationonproductsleavingafacility.Thisrequirementfrequentlyprovesproblematic,becauseindustrypartnersinafoodsupplychainmaynotconsistentlyrecordandstorethelotnumberoftheincomingproductorcase.Forinternaltraceability,dataoningredientsandproductsthatmayundergotransformationwithinafacilitymustbetracked.Insomecases,theremaybeconfusionintheassignmentofnewlotnumbersforproductsthatdonotmatchtheincominglotnumberforproductsthatenterafacilityandundergotransformation.Industrypracticesondatacapture,recording,storage,andsharingalsovarywidely.Paperworkisofteninconsistentorincomplete,individualproductsorlotsmaynotbelabeledwithuniqueidentifiers,andstandardizeddefinitionsfordataelementsmaybelacking(IFT2009).Forsmall-scaleproducers,groupsystemsdevelopmentandcertificationmayeasesomeoftheconstraintsinimplementingtraceabilitysystems.TheGlobalG.A.P.standard(www.globalgap.org),forexample,allowsgroupcertificationforsmallholderstofacilitatetheiraccesstomarkets.Small-scalefarmersandproducersmayalsobenefitfromcapacitystrengtheninginassessingandselectingappropriatetechnologiesfortraceability;buildingnetworksandpartnershipswithpublic,private,ornonprofitorganizationsthatcanhelpfinanceandbuildtraceabilitysystems;andtraceabilityschemesfacilitatedthroughsmallholdercooperativesorthepublicorprivatesector.Finally,traceabilitytechnologiesimplementedspecificallyforhigh-valuecropsmayalsoexpandsmallholders’abilitytoreachkeymarkets.40 Golan,Krisoff,andKuchler(2004)havearguedthatmandatorytraceabilityrequirementsthatallowforvariationsintraceabilityortargetspecifictraceabilitygapsmaybemoreefficientthansystemwiderequirements.Theymaybebettersuitedtovaryinglevelsofbreadth,depth,andprecisionoftraceabilityindifferentfirms.Developedcountries’experienceswithtraceabilitymayinsomecasesbeusefulforbuildingsimilarcapacityinothercountries.Japanesefarms,unlikethoseinmostdevelopedcountries,aresmallbutadvancedwithrespecttotraceability,asituationthatcouldlenditselfwelltosharingexperienceswithsmall-scalefarmersindevelopingcountries(Setboonsarng,Sakai,andVancura2009).ItcouldprovideinsightsintothemosteffectivewaystoimplementtraceabilitysystemsandtheinternalandexternalcapacitiesandresourcesneededforsmallholderstoupgradesuccessfullyandcomplywithsafetyandtraceabilityrequirementsIncentivestoinvestintraceabilitysystemsalsoactaskeyenablersfortheirdevelopmentanduse.Investmentsareoftendrivenbyregulationandaccesstomarkets,thelong-termcostsassociatedwithpublicproductrecalls,theproliferationofcertificationsystemsandstandards(Heyder,Hollmann-Hespos,andTheuvsen2009),andpressurefrominfluentialexternalstakeholderssuchasretailers,consumers,lenders,andNGOs.Yetinvestmentsintraceabilitysystemsofferviablebenefitsandincentivesforactorsinthesupplychain,includingswiftandpreciserecallsofunsafefood;premiumpricingforsafe,sustainable,andtraceablefood;costsavingsandbusinessprocessefficiencies;andgreaterconsumerconfidence,amongothers(Figure12.5).Itisworthexploringsomeoftheseincentivesindetail,becausetheyofferpotentialinsightsforpreventingtheadoptionofsystemsthatexcludesmallholders.Amongsmallholders,clearlythebenefitsofestablishingorinvestingintraceabilitysystemsshouldbebalancedinrelationtotheassociatedcosts,withconsiderationsforthelong-termsustainabilityofthoseinvestments.FIGURE12.5:IncentivesforInvestmentinTraceabilitySystems41 Source:TinaGeorgeKarippacheril.PreventingRecallsofUnsafeFoodFoodtraceabilitysystemsmakeitpossibletotakeaproactiveapproachtofoodsafetyandpreventthereputationalandeconomicdamage—toproducers,products,firms,andnations—inflictedbyproductrecalls.Forexample,thecomplexrecallofcontaminatedpeanutproductsintheUnitedStatesisestimatedtohavebeenoneofthemostexpensiveinthatcountry(Figure12.6).Awell-knowncaseofthepotentialdamageofarecallonayoungindustryinadevelopingcountryoccurredwithraspberriesinGuatemala.FollowingreportsofaCyclosporaoutbreak,andintheabsenceoftraceabilitycapabilities,theUnitedStatesFoodandDrugAdministrationissuedanimportalert,denyingallGuatemalanraspberriesentryintotheUnitedStates.Thenumberofraspberrygrowersdeclineddramaticallyfrom85in1996to3in2001.Producersaroundtheworldnotedthedevastatingeffectsoftheensuingtraderestrictionsontheentireindustryandtheroletraceabilitysystemscouldhaveplayedinreassuringthepublicandcontainingtheproblemtoafewgrowers(Calvin,Flores,andFoster2003).GainingPremiumPricesforSafe,TraceableFood42 Asnoted,traceabilitysystemsandtechnologiesarealsousedtocertifyeographicalorigin,certifysustainableproductionprocesses,monitorthechainofcustody,facilitateidentitypreservationandproductmarketing,andmanagesupplychains.Someoftheseapplicationsenableproducerstoearnpricepremiumsforsustainable,certifiable,andidentifiablespecialtyfoodproducts.TheAlmacafemodel,discussedear-lier,enablessmallholderstocommanda200percentpremiumforspecialtycoffeefromuniqueregionsinColombia—strongmotivationforfarmerstoadopttraceabilitytechnologies.InHonduras,theECOMAgroindustrialCorporation,whosecustomersarewillingtopayhighpricesforhigh-quality,traceableproducts,supportsfarmersthroughtechnicalassistanceandtraining.Withinitialtechnicalsupport,womenbelongingtoasheabuttercooperativeinBurkinaFasolearnedtouseGPStodocumentthesourceofthesheafruittheyprocessedandgaincertificationunderBio-EcocertandBio-NOP,whichguaranteethataproductis100percentnaturalandhasbeenmanufacturedunderconditionsthatrespecthumanandenvironmentalhealth.Certificationenabledthemtoentermorelucrativeexportmarkets—despitethefacttheythataresmall-scale,predominantlyilliterateproducers.(SeeModule8fordetails.)BuildingConsumerConfidenceTraceabilitynotonlyensuresfoodqualitybutbuildscon-sumers’trustbymakingthesupplychainmoretransparent(Bertolini,Bevilacqua,andMassini2006).Consumerconfidencebuildsdemandforproducts.Studiessuggestthatconsumersindevelopedcountriesmaybewillingtopaymoreforsafeandtraceablefood.AstudyinKorea(Choeetal.2008)foundthatconsumerswerewillingtopayapremiumfortraceablefoodandtopurchaseitingreaterquantities.Aconsumerpreferencesstudyoftraceability,transparency,andassurancesforredmeatintheUnitedStatessuggeststhatconsumersarewillingtopayfortraceabilityandthatthemarkettherefortraceablefoodmaybeprofitable(DickinsonandBailey2002).Althoughtraceabilitysystemstendtobeunidirectional,consumersindomesticmarketsinthedevelopingworldmayalsobenefitfromtheircountries’adoptionoftraceabilitytechniquesandsystems.43 Figure12*6PcailutCorporationofAmencaRecallf一'lI"p""i-in:ic*crtam.化?cr?.,JStor*?FijunyS.Mshop.sh々p.i&h々o..l〇rStor??Star?.i|、 ̄fiC3;-I"I"-H,--…—-.-::-:...LI广^feu^T种.厂;,i,g^■a.』igrf打命帮I帮^|—二下就紙;喝願瑞。^-.':3心.—?二^^§^.,巧觸B0^ra*^35!f巧l^"£-純觀顧h应_X—…,J]171UI■i..."hi"—?JNu"m?hom*?-.Cate*^.KrrstsUuram…………-=LJ*Source:Adapted打omU.SFoodandDrugAdministration44 Appendix2:TargetText第12节:全球市场,全球挑战:信息通讯技术增强小农户自主权、改善食品安全,提高食品溯源性(综述)定义“溯源”“溯源”是工业工程学中发展而来的概念,最初被视作保障生产和产品质量的手段(Wall1994)。供应链管理领域的经济学文献将“溯源”界定为一个必要的信息系统,此系统能提供一个产品或一个生产过程从原料到成品销售终端的历史记录。(WilsonandClark1998,Jack,Pardoe,andRitchie1998,TimonandO’Reilly1998)。溯源(产品溯源)系统能根据不同条件对产品进行区分。食品溯源系统能使供应链实体与监管机构及时发现食品安全或质量问题的来源,并及时采取补救措施。食品领域的溯源重点越来越多地集中在食品安全问题上(SmythandPhilips2002),而农业食品和非食品领*域,如:林业和纺织业(特别是棉纺业)则针对产品标识、产品区分以及历史监控制定了相关溯源要求。国际上,食品溯源的具体标准已正式列入欧盟、日本和美国的法律;私营企业和协会也制定了相关标准。在农业政策的概念背景下,“溯源”是指从供应链到产品识别和历史监控的全面追踪,*4而不只是根据特定标准在供应链单个或多个环节上进行产品隔离。食品法典委员会(TheCodexAlimentariusCommission)(CAC2006)将溯源做如下定义:通过生产、加工及流通等特定环节来追踪食品动态的能力⋯⋯溯源/产品溯源手段应能对食物链的任一环节(从生产到流通)进行标识,其覆盖范围从食品来源(逆向)到食品流向1食品法典委员会,由联合国粮农组织(FAO)与世界卫生组织(WHO)于1963年共同建立。食品法典(拉丁语的“食品手册”)是指有关食品、食品生产及食品安全的国际认证标准、实施守则、指导方针以及正式提议的集合。*产品标识是在产品或包装上标示的信息和内容,其内容应符合《中华人民共和国产品质量法》《产品标识标注管理规定》和其它的相关要求,译者注。*产品隔离,当产品出现缺陷时,立即隔离,控制缺陷产品不流入下道工序,译者注。45 (正向),从而达到食品检测与认证体系的要求。这一定义主要被国际标准化组织(ISO)的ISO/DIS22005标准采纳。但溯源的应用范围其实更广,它不仅是实现食品安全的手段,而且也能为其他领域实现多种目标诉求,例如在林业中实现监管链溯源、可持续经营认证、地理标志以动物卫生监督。欧盟通用食品通用法(EUGeneralFoodLaw)178/2002号法规第18条将“溯源”定义为:“在所有生产、加工及流通环节中追踪食品、饲料、食源性动物以及一切用于加工以上23产品的物质的能力。”与一些国际及商业性溯源标准相比,欧盟并不要求“内部溯源”(即不要求总原料投入与总产出完全一致)。(CampdenBRI,2009)虽然许多国家对转基因食品都采用非转基因认证制度,但只有欧盟要求对此类食品进行溯源。关于转基因生物(GMOs)及制品,欧盟(Directive2001/181EC)将对转基因生物的“溯源”定义为:能通过生产及分销环节全程追溯市面各销售环节上的转基因生物(GMOs)及其制品,以便实现质量控制及产品召回。重要的是,有效的“溯源”可提供一个能防范于未然的“安全网络”。国际食品法典委员会(2006)提到,溯源手段同样可以协助标识供应链任一特定阶段的产品:食品来源(逆向溯源)及食品去向(正向溯源)。仅了解食品在供应链中的流向并不能改善食品安全问题,只有将溯源系统与安全和质量管理系统相结合,保障食品安全的相关措施才会更为有效。(CAC2006)溯源手段能通过提供潜在食品安全问题中所涉及的供应商及消费者的信息,实现目标产品召回。同样,采用食品安全管理系统可为持续有效的食品溯源提供支持。例如,良好农***业及管理规范和危害分析与关键环节控制点(HACCP)之类的前提方案都涉及了为保证3“内部溯源”定义见下一章“食品溯源系统的目的”一节*良好农业规范,良好农业规范作为一种适用方法和体系,通过经济的、环境的和社会的可持续发展措施,来保障食品安全和食品质量,译者注。*危害分析与关键控制点,指能够识别、评估和控制那些对食品安全有明显危害的系统,是一种保证食品安全的预防管理系统,对整个生产过程,包括从原料采购到加工、储存和运输,乃至批发和零售的全过程进行危害确认、危害评估和危害控制,译者注。*前提方案,前提方案指在整个食品链中为保持卫生环境所必需的基本条件和活动,以适合生产、处理和提供安全终产品和人类消费的安全食品,译者注。2《食品安全》,Europa(欧盟官方网站),http://europa.eu/pol/food/index_en.htm,2010年7月.46 溯源规范所需的记录保持的相关条件。动物标识、疾病防控、土壤养分管理、生产安全及出口认证等领域都涉及能完善溯源系统效力的规范。总的来说,食品溯源能:·完善关于食品安全及动物健康危害的管理·保证产品真实性,为消费者提供可靠信息·加强供应侧管理,提高产品质量虽然食品溯源给消费者、政府当局以及经营者带来的利益已获得广泛认可,但对发展中国家的小农户,特别是对生产园艺产品和其它新鲜食品的农户而言,溯源规范所带来的将会是壁垒。小型农业生产者通常条件匮乏,特别是通过复杂技术追踪与监控环境和供应链变量的条件,因此难以达到不断严格的标准,无法进入安全食品与可溯源食品的市场。而信息通讯技术的广泛普及在一定程度上能消除这方面的壁垒。移动设备的推广、通讯技术的进步和纳米技术更高的可负担性让小规模农业生产者也有机会能使用溯源系统并*与全球市场接轨。通过运用移动电话、无线射频识别系统(RFID)、无线传感器网络和全球定位系统(GPS),可对环境变量及定位变量进行监控并导入数据库进行分析,为保障食品安全及满足溯源标准提供了可能性。在食品安全与小型农户接轨全球市场的话题背景下,本单元探究了投资溯源系统的激励机制,以及溯源系统帮助小农户在价值链中升值的前景,其中包括与标准、技术方案和创新实践相关的详细内容。食品安全:全球范围的挑战食源性疾病爆发和事件,包括自然性、意外性以及人为性食品污染,被世界卫生组织(WHO)列为21世纪全球最大的公共卫生威胁之一(WHO2007b)。据世界卫生组织估计,220万死于腹泻性疾病的病例中,大多数是由受污染食物和水源导致(WHO(2007a)。虽然由细菌、病毒、寄生微生物、杀虫剂、污染物(包括毒素)所导致的食源性疾病以及其他食品安全问题给全球所带来的负担鲜为人知,但其严重程度也不容小觑(Kuchenmulleretal.2009)。食品安全问题会让人类付出人文、经济以及政治代价。在肉制品及奶制品中增加人类病原体、抗性细菌以及动物病原体数量的畜牧业生产、在新鲜水果和蔬菜上使用肥料、化肥、农药和污水的非安全农业生产、时间与温度因素对国际贸易产品,如海产品、肉制品以及生鲜产品渐进的影响、由细菌、酵母、霉菌、病毒、寄生物以及真菌毒素导致的加工食品食品*无线射频识别系统(RFID),又称射频识别系统,是一种通讯技术,可通过无线电讯号识别特定目标并读写相关数据。无线射频系统通常安装在被识别对象上,储存被识别对象的相关信息,译者注。(ZhangChenghai,2012,p.49)47 污染、会给消费者带来伤害的外来物,如玻璃、金属、石头、昆虫以及啮齿目动物以及生物恐怖主义的威胁等,都将加重人类所付出的代价(SafeFoodInternational2005)。数十年来,世界卫生组织、医学期刊以及其他记录系统所记录的案例都揭示了该问题的严重性(表12.1)。据美国疾病控制中心(CDC)估计,美国每年有480万例食源性疾病发生,其中包括12.8万例入院治疗病例及3000例死亡病例。生产、加工和运输及处理是食品污染的三大主要途径。出于对全球食品安全的考量,由世界卫生组织执行委员会于2002年1月签署的《世界卫生组织全球食品安全战略》(WHOGlobalStrategyforFoodSafety)列出了一项食品安全防范措施,加强对食源性疾病爆发和食品污染事件的监督及快速反应机制(WHO2002)。这一措施实质上是保护食品供应免受自然和意外的威胁,并为解决食品恐怖主义威胁提供了一个构架(WHO2008)。表12.1食品安全事件爆发案例(1979-2008年)年度案例2008·29.4万名儿童受掺杂三聚氰胺奶粉影响,其中超过5万名儿童入院,6名儿童死亡。(中国)2004-2005·受黄曲霉毒素污染的玉米导致超过150人死亡。(肯尼亚)2001·全球由牛海绵状脑病(疯牛病)(BSE)致病因子诱发的各型克雅氏病(vCJD)(人类疯牛病)病例达到117例。大量动物研究显示,来自在动物畜养饲料链中使用受牛海绵状脑病污染的肉骨粉的国家或来自循环利用动物的国家中的献血者,理论上会有患克雅氏病的风险。牛海绵状脑病的爆发被媒体广为报道,这作为发达世界中食品安全和质量问题严重下滑的案例,给消费者留下了深刻的印象。·大量动物源性食品受到O157:H7型大肠杆菌污染,导致江苏省和安徽省2万人食物中毒,177人死亡。(中国)2000s·受污染橄榄油(西班牙)·牛奶中含葡萄球菌(Staphylococcus)(日本)·菠菜和胡萝卜汁中含大肠杆菌(E.coli)(美国)·即食肉类中含李斯特菌(Listeria)(加拿大)·花生酱中含沙门氏菌(Salmonella)(美国)48 2000·世界卫生组织指出,在欧洲、亚洲和北美的食源性动物中的抗菌耐药性沙门氏菌会引起痢疾、败血症、肠球菌(Enterococci)感染或致死,这给免疫功能受损的患者治疗带来了极大的难度。1990s·汉堡中含大肠杆菌(美国)·牛海绵状脑病(英国)·覆盆子中含环孢子虫(Cyclospora)(美国/加拿大)·禽流感(东南亚)·动物饲料中含二恶英(Dioxin)(比利时)1999·宁夏回族自治区肉制品中含鼠伤寒沙门氏菌(SalmonellaTyphimurium),超过1000人感染。(中国)1998·日本厚生省(MinistryofHealth)数据显示,由副溶血弧菌(VibrioParahaemolytics)导致的食物中毒事件急剧增加,从1996年的292件(5241例)增至1998年的850件(12346例)。其中一次大爆发发生在1996年,由水煮蟹导致691例食物中毒;1998年,在宴席上发生1167例食物中毒(日本)。孟加拉国、印度、泰国和美国同样有记录在案的食物中毒事件发生。1980s·牛肉荷尔蒙案(欧盟)·鸡蛋和鸡肉中含沙门氏菌(英国)·苹果中含丁酰肼(Alar)(美国)·生毛蚶中含甲型肝炎病毒(HepatitisA),导致上海30万人患甲型肝炎(中国)1971-82·国际安全食品组织(SafeFoodInternational),是一个全球性的消费者组织,通报了因意外或人为造假所导致的食源性疾病案例:在1971年至1972年的冬天,用于庄稼种植的小麦种子经甲基水银(Methylmercury)处理后,意外被发放到伊拉克农村地区。据估计,食用过受污染的面包达5万人,其中6530人入院治疗,459人死亡。1981年至1982年,在西班牙,受污染的菜籽油造成2000余人死亡,超过两万人受到致残性伤害,其中还包括许多永久性致残。资料来源:由蒂娜·乔治·卡里帕切利(TinaGeorgeKarippacheril)和卢斯·迪亚兹·里奥(LuzDiazRios)编译,个别案例数据来源于(a)Ingelfinger2008、(b)WHO2001、(c)WHO2000、(d)WHO1999,和(e)SafeFoodInternational(2005)。49 食品溯源系统的构成促进食品和农业供应链溯源系统的普及和发展的因素不仅是食源性疾病,还包括全球化、消费者需求和食品恐怖主义威胁。食品是一种复杂的产品(Golan,Krissof,andKuchler2004),且现代食品生产、加工及分销系统会将来自不同源头、农场、地区和国家的食物参杂整合在一起(Cannavann.d)。适用于溯源标准的食品包括:生鲜产品,如芒果、鳄梨、芦笋;散装食品,如牛奶、大豆、精品咖啡、橄榄油;鱼类和海鲜;以及食源性畜禽(肉制品和奶制品)。同时,本单元还提到了信息通讯技术(ICTs)在动物标识中所扮演的角色,即其是在肉制品和奶制品行业建立畜禽溯源系统的先决条件。食品可通过以下系统进行分类:(1)非转基因生产与营销(IPPM)系统、(2)分离系统和(3)溯源系统。当产品属性不可见或不可测时,非转基因生产与营销系统就显得尤为*重要,因为它可以给消费者提供产品来源信息,且可获取产品溢价。分离系统可用于防止在处理相似种类的产品时新品种的混入,或在存在潜在食品安全问题的情况下,防止已分离的产品与相似产品混合。而溯源系统,则能将食品污染源头在供应链中标识出来(Smith,Philps2002),从而实现产销监管链透明化,提高信誉,并为解决食品安全问题提供信息(McKean2001)。受污染食品的所有潜在来源与供应都可通过正向、逆向或全程追溯,从而实现非安全食品召回。根据其溯源能力的不同,溯源系统可分为:(1)内部追溯和(2)食品链溯源。“内部追溯”是指在某一组织或地域内进行的数据记录,而“食品链溯源”是指在作为食品来源地的组织与地域之间,通过食品链的数据记录与传送。食品污染可发生在农场、加工及分销过程中、运输途中、零售时、餐饮服务业亦或是家中。从根本上来说,为方便供应链追踪、管理和探测潜在食品安全或质量问题来源,溯源系统包括了食品的唯一标识以及食品在监管链中不断转型的记录。最小的溯源单位因食品种类和行业而异。其数据元包括:最近一次处理产品的实际位置、供应链伙伴类型(例如:生产者、加工者或中间人)、收到产品的进料批号、产品生产和运输的总量、运输至每个地点的产品批号、产品启运或接收的日期/时间、每批产品生产或获取的日期/时间、产品生产的成分及其相应批号以及这些成分的直接来源和接收时间。在溯源过程中,规范生产要求生产批号和生产设备名称在每一件产品上都清晰可见,在发票和提单上也需记录批号、数量和装运地。溯源工作还要求每套设备记录在产品发生地点转移、转型/深加工,或需要数据捕获来追踪产品时的信息,这样的案例叫“关键追踪事*产品溢价,指消费者愿意为某一产品支付高于正常市场定价的额外的货币。50 *件”(CriticalTrackingEvent)。在单一设施或整个供应链中,“关键追踪事件”中的数据捕获,不论简单或复杂,对连接产品都至关重要。溯源数据可以是静态的,也可以是动态的;可以是必选的,也可以是可选的。静态数据不会改变,而动态数据会在监管链中随时间改变(Folinas,Manikas,andManos2006)。“逆向追溯”是指系统可对所得产品的生产和加工过程进行标识;“正向溯源”是指系统可标识作为成分用于其他产品生产产品的所有派生产品。食品溯源系统及其在相关标准、法律和法规下的定义已被广泛概念化。因此,生产者可根据特定目的来决定系统的广度、深度和精度。(Golanetal.2004)(定义及标准见主题讲解12.1)。“广度”是指溯源系统捕获信息的数量,“深度”是指系统正向或逆向追踪一个产品的距离,“精度”是指系统标识食品特征和运动轨迹的精确度。图12.1通过上述概念,阐释了咖啡生产各环节中的利益分布。溯源数据可通过(不限于)以下工具来记录:纸笔、条形码、无线射频识别、无线传感器网络、移动设备和应用、企业资源计划(ERP)应用和互联网应用。产品溯源的相关信息可通过管理信息系统来记录和传输,或者在小公司里采用纸质记录的形式,如发票、订单和提货单。溯源信息也可直接从产品捕获,如生鲜产品、海产品和畜禽。产品及相关数据可通过条形码或无线射频标签进行储存。无线传感器可将温度、损坏和地址等数据传送给产品的无线射频标签。主题讲解12.2提供了关于溯源技术和系统的详细信息。图12.1咖啡:利益分布及溯源深度来源:(Golanetal.2004)注:GE=转基因食品溯源系统在发展中国家的应用*关键追踪事件,指食品供应链上的一个基点,在这一点上,操作员对需采集的最小单位的事件数据进行*标识,通常包括三个基本的数据元:唯一地点/事件身份(ID)、唯一物件身份以及日期/时间,译者注。51 在发展中国家,有近5亿人口居住在小型农场里(Hazelletal.2006)。由于缺乏农场层级资源,农场到市场存在物流瓶颈,并且为满足消费者需求的零散供应物资匹配与整合需要更高的交易成本,因而,他们的市场参与度受到很大的限制。再加上需遵守产品及加工标准,包括由政府和私人供应链领头人制定并实施的严格的溯源条件,在以上这些“传统”限制被放大的基础上,又迎来了“新”的挑战。(Jaffee,Henson,andDiazRios,forthcoming)。溯源系统与质量保证标准的采用所涉及的争议(Schulzeetal.2008)在小型生产者那里变得更为明显。魏因贝里耶(Weinberger)和兰普金(Lumpkin)(2009)表示,他们担心由*于对化学药品使用的规定欠严,加之陡峭的学习曲线限制了种植者和加工者的参与,溯源系统的各类规范以及卫生和植物检疫问题会给发展中国家的食品出口带来很大的阻碍。虽然很多发展中国家在发展和采用食品安全与溯源标准方面表现滞后,但仍有一些国家在监管、技术及管理方面投资的帮助下,已部分达到面向高收入出口市场的要求。虽然从1997年至2003年,列表1中超过半数的国家都属于中低收入国家,但欧盟认为这些国家在生鱼或鱼类制品捕捉、加工、运输和储藏方面同样具有相应的卫生标准。贾非(Jaffee)和汉森(Henson)(2004b)建议某些发展中国家可将改进后的食品质量与安全标准作为其自身在全球市场重新定位的助推剂,同时也是发掘自身的能力和克服自身弱点的关键,这样才能成为新兴商业及监管环境下的赢家。例如肯尼亚在采取更为严格的食品安全和质量标准之后,生产者重新定位运营机制,从1991年至2003年,其新鲜蔬菜出口额从2300万美元增至1.4亿美元(JaffeeandHenson2004b)。产品溯源系统的应用必须考虑到发展中国家各自的能力。如果出口国不能达到进口国对食品检查和认证体制的要求,那么进口国应该考虑为出口国提供援助,特别是当出口国为发展中国家的时候。此类援助可以是系统应用的长期构架、弹性设计以及技术援助(CAC2006)。近年来,许多发展中国家都采用了食品溯源系统,包括鲜果、蔬菜、谷物、含油种子、散装食品、海产食品、鱼类产品和禽畜(表12.2)。除了表12.2中的例子,韩国还采取了溯源农产品的系统,约旦也建立起一个产品溯源的构架,并利用国家数据库来追踪和调查产品与疾病的踪迹(HashemiteKingdomofJordan2004)。表12.2发展中国家溯源系统的应用种类溯源系统国家*学习曲线,指随着产品总量的积累,单位产品的成本会随之下降,译者注。52 生鲜农产品芒果马里共和国鳄梨智利散装食品精品咖啡哥伦比亚青豆泰国橄榄油摩洛哥橄榄油巴勒斯坦海产食品海产食品智利海产食品越南对虾泰国畜禽奶制品印度肉制品博茨瓦纳肉制品中国肉制品韩国肉制品马来西亚肉制品纳米比亚肉制品南非资料来源:TinaGeorgeKarippacheril注:以上是农业食品领域中涉及(不限于)食品安全问题的案例。通过各方协助,小型生产者可建立溯源系统并与全球市场接轨:(1)非营利性组织和发展机构(比如:国际合作发展研究所(IICD)援助马里共和国建立“生鲜食品溯源”项目;国际金融组织(IFC)为巴勒斯坦的榄油溯源提供援助);(2)政府(博茨瓦纳和韩国政府*协助禽畜溯源;泰国和越南政府协助海产食品溯源);(3)私人企业(ShellCatch公司援助智利海产食品追溯)。接下来的部分会给出实例阐释食品溯源系统是如何建立起来的,特别是在低收入经济体中。除了面向发展中国家的援助系统以外,移动技术也为小农户与出口市场接轨提供了新契53 机。移动技术不仅能减轻从市场到小农户间的信息流不对称问题(MutoandYamano2009),而且在实现从小型生产者到市场间的信息逆流以达到溯源标准方面还具有巨大潜力(图12.2)。例如,农户可使用一台移动设备来实现关于种植品种、栽培与采收时间以及农业投入的信息录入。小农户所捕获的信息可与信息系统和中央数据库相结合,为供应链合作伙伴以及消费者提供关于农业加工、投入及产出的更加透明的信息。无线传感网络、无线射频识别技术以及移动技术的结合,能为农业提供更加精密的信息捕获途径,最大程度减少移动设备上的手动数据录入。移动技术的普及有助于完善小型生产者之间的网络关系,加强其间的联系并增进相互的交流,从而解决他们与商人、其他农户或者是负责质量保障、营销与销售的市场集团的地理位置相对分散和连接缺失的问题。名为“增强市场小农户自主权”的项目研究发现,在国际贸易者的引领下,小农户能供应高质量和可溯源产品,从而让国际贸易者可因质量优势获利。例如,意大利咖啡烘焙商Illycaffe在投资面向小农户的质量保障培训和市场信息供给后,增加了对巴西小农的上等绿咖啡豆的采购。拥有最优秀的种植者与高于市场价格的定价,这家公司就同时赢得了竞争力和利益(Onumahetal.2007)。图12.2推动从农户到市场信息逆流的移动技术资料来源:TinaGeorgeKarippacheril生鲜食品溯源:质量控制为避免腐败,生鲜食品在供应链中必须快速处理。采收后,生鲜食品由发货人(可能同时也是种植者)和出口商处理和包装,或是通过批发商和中间商出售,或直接出售给消费*Shellcatch公司,一家致力于改变全球海产食品产业格局,并同时保护海洋环境的科技公司,译者注。54 者、零售商和食品服务机构。溯源系统则沿供应链追溯生鲜食品,以识别污染源、监督冷链物流并加强质量保障。智利里约·布兰科的一家鳄梨生产者采用无线射频识别技术实现温度和冷链监督就是一个很好的例子。采收前在水果上打上“paltags”的射频标签(“palta“是智利语中“鳄梨”的意思),采收后将打上标签的水果分类、清理和上蜡,并用托盘运输。同时,托盘也被打上标签以监控运输途中的温度,一旦温度超过标准水平,港口质量监管员就将托盘回置冷藏库。托盘到达加利福尼亚港口后,以手持无线射频读写器读取温度,确认温度是否超过可接受范围,以确保鳄梨上市前的质量和安全(Swedborg2010;“AwardsHonorRFDIInnovators”RFIDUpdate2007)。生鲜食品出口商也可以享受集中冷却和运输服务。南非的“生鲜食品站”(FreshProduceTerminal)采用美国寻宝科技公司(SymbolTechnologies)的250台车载计算机和100台移动计算机,对水果实行从仓库到船舶的追踪(ParikhPatel,andSchwartzman2009)。散装食品溯源:产品真伪散装食品溯源比生鲜食品溯源更具挑战性。谷物、咖啡、橄榄油、大米和牛奶等来自不同农场的散装产品都集中储藏在贮仓和储蓄罐里,因此很难溯源到它们的生产源头(IFT2009)。但在发展中国家,甚至是在其小农户层级,针对散装食品也采用溯源系统。例如,哥伦比亚非营利性组织“国家咖啡种植者联盟”(NationalFederationofCoffeeGrowers),由50万户小农组成,专门挑选并经营来自不同地区的和具有不同特色的哥伦比亚咖啡(“FinalistsUnveiledfortheFourthAnnualRFIDJournalAwards”,RFIDJournal,2010)。联盟要求将咖啡经营的200%的溢价全部转移给其种植者。联盟的附属公司艾尔玛咖啡(Almacafe),负责仓储、品质管理、物流和溯源系统的使用。2007年起,该公司在咖啡从农场到仓库的加工、装袋、烘烤及对外贸易的过程中,对其精品咖啡内部供应链采用无线射频识别标签。虽然最初考虑采用条形码,但由于条形码对可视性和精确性要求高,而咖啡包装袋重量超过40千克,且经常被到处乱扔。因此,无线射频识别标签取代条形码,成为最终选择。每个无线射频识别标签成本为0.25美元(由联盟支付),内嵌在一个耐磨的囊中,并与农户标识号和精品咖啡程序代码一起被派送给农户。当咖啡销售到35家合作机构家的其中一家或运输到15个仓库中的其中一个的时候,传送带两端的两根识别天线会读取标签数据和交货时间,准确度可达99.9%。在全程的每个环节都将读取标签,一旦咖啡质量不达标,就会被拒收,其数据库也将随之更新。2008年,联盟参与了一个试点项目,将溯源模型应55 用到坦桑尼亚的咖啡供应链中。消费者可能会要求对散装食品中的肥料和杀虫剂进行溯源。例如,在泰国,出口商要求农户提供与农场、作物品种、种植、灌溉、施肥、病虫害、杀虫剂和化学药品的使用、采收日期、发生成本、问题和销售价格相关的产品信息(Manarungsan,Naewbanij,andRerngjakrabhet2005)。图12.3展示了从农场到中间商再到加工者,在供应链上的对青豆进行的溯源活动。根据消费者需求,散装食品的监管链和品质保证也使用溯源系统。批发商和市场商人经常将橄榄油这一高价值食品混合出售。这时,溯源系统就可以帮助标识食品来源、制作方法、产品种类和作物的产地。这样一来,消费者就可以更容易的辨认他们所购买的橄榄油的真伪。在北非,Crespo食品公司的美国分销商Transmed食品公司与Savi科技公司联手合作,将全球定位系统、移动设备、电子保险栓和传感器相结合,对来自西班牙和摩洛哥的易腐橄榄油进行全程实时监控(SaviTechnology2009)。另一个例子则是,为提高约旦河西岸地区橄榄油的竞争力,改善其出口前景,国际金融组织发起一个项目,帮助中小型企业落实基础溯源项目来保持产品质量,其中包括管理与油制品来源、压榨、处理、储藏和包装运作相关的数据。表12.3泰国大豆溯源系统农户→将农事活动记录在公司提供的表格上↓中间商→公司技术人员监督农户活动↓加工方→称重↓接收产出大豆(标记了农户姓名、大豆质量、接收日期、大豆种类及产地相关信息)↓托盘运输青豆,准备代码标签↓加工↓↘随机抽查成品→产品质量↓↗农药残留装运↓消费者资料来源:Manarungsan,Naewbanij,andRerngjakrabhet2005.56 海产食品溯源:安全性及可持续性海产食品溯源能提高供应商的品牌价值和增强消费者对这些品牌的信心。为开展产品溯源、监控和控制,关于农场来源、加工工厂、当前位置和温度等的信息会被集中起来,并提供给供应链中的参与者,其中包括批发商、托运人,和零售商等。如出现任何问题,可通过以上信息,实现目标市场产品召回,从而减小对消费者的影响。海产食品的溯源是为了贯彻欧盟(EU)对禁用抗生素残留零容忍的禁令(氯霉素及硝基呋喃)。泰国是世界上最大的对出口国之一,其2002年的出口收入为17.2亿美元,相比自1998年至2001年的年均23亿美元大幅下降(Manarungsan,Naewbanij,andRerngjakrabhet2005)。如此下滑让泰国私人企业和国营企业都加强了针对对虾产品中化学抗生素残留的卫生措施,并采取益生农业技术和实验室测试与诊断,并培育抗病对虾。为便于溯源系统的运行,农户和机构必须进行注册,同时还采用品质管理系统来隔离价值链中的质量和安全问题。泰国农业部渔业厅(theDepartmentofFisheries)与农户一直在努力引进“良好农业规范”(GAP)(一种可持续虾只养殖的行为准则)以及HACCP标准,以改进产品记录和溯源。渔业厅要求农户填写一张“捕虾表”,内容包括:捕捉日期、总重量、农户名字和身份证号。一些中心市场还要求供货商和买方填写此表以完善产品溯源。溯源系统注册让机构成员能使用实验室测试的服务、参与培训,并通过网络实现信息共享。同时,他们还收到1160美元的资金和成套设备,进行自己的用以自行开展诊断测试。MSC水产品认证(MarineStewardshipCouncilCertification)要求捕虾农户在捕虾前5天提前通知渔业厅,以便逆向追溯对虾的源头。(Manarungsan,Naewbanij,andRerngjakrabhet2005)。越南国家科技创新局(VietnameseStateAgencyforTechnologicalInnovation)与越南海产食品出口商和生产商协会(VetnameseAssociationofSeafoodExportersandProducers),以及私人企业(IBMandFXAGroup)相互合作,采用基于无线射频识别技术的海产食品溯源系统(“VietnameseAgencySeeksSeafoodTraceability,”RFID,2009)。禽畜溯源:疾病控制和产品安全与其他食品产业不同,畜禽产业在使用动物标识与溯源系统来控制疾病和保障肉制品及奶制品安全方面有着悠久的历史。畜禽溯源系统方面的经验教训可运用到其他领域的食品安全上。2004年,纳米比亚是较早采用这一系统的国家之一,时间可追溯到2004年。博茨瓦纳保有世界上最大的禽畜标识系统之一,直至2008年,共标记了300万头奶牛。博茨瓦纳的畜禽标识和逆向溯源系统,通过无线射频识别技术为全国的畜禽打上唯一标识并借此打入57 了利润丰厚的欧盟市场打开了,因为欧盟对牛肉从出生到屠宰都要求溯源。一颗含被动式无*线射频识别标签微芯片(内无电池和活动零件)的丸剂会被送入动物的瘤胃中,且此芯片覆有坚硬的陶瓷涂层,不会与胃酶或胃酸发生反应。遍布300个地点的射频识别定点读取器可扫描禽畜群中的每一头动物的丸剂,获取标识号、最新注册信息以及禽畜群中疾病的治疗情况,再将这些信息传送到46个片区办公室中的数据库。除了溯源系统之外,标签系统也可以实现重量和采食量的监控、产量的管理、饲养历史的追溯和供饲养动物的筛选(Burger2003)。动物标识和溯源系统的应用范围广泛,如追踪动物移动、监控健康情况、控制疾病以及管理营养和产出。禽畜的无线射频标签系统中存储着关于动物位置、性别、饲者姓名、畜禽来源和移动日期等的唯一信息。手持读取器则用于注册疫苗接种信息和日期,并将数据传送到中央数据库里。马来西亚农业部兽医厅(MalaysiaMinistryofAgriculture"sVeterinaryDepartment)引进了一套政府运营的系统,用来控制8万头牛的疾病暴发。该系统旨在通过达到国际进口和国内清真市场的标准来提高马来西亚禽畜产业的竞争力(“MalaysiaBeginsRFID-enabledLivestockTrackingProgram,”RFIDNews,2009)。在中国四川崇阳,有一个无线射频试点项目,追踪1000头猪只的流感情况,为消费者提供从猪只出生到屠宰的全程追溯(“ChinaFixesRFIDTagsonPigstoTrackEpidemics,”ICTUpdate2003)。在南非,小卡鲁合作社(KleinKarooCooperative)标记了10万只鸵鸟,以遵守欧盟对肉产品出口的溯源标准(“ProjectKleinKarooCooperativeinSouthAfrica,”ICTUpdate2003)。韩国是另一个较早采用动物标识科技和技术的国家,从1978年至1994年采用普通动物耳标;1995年采用条形码;从2004年至今采用无线射频标签。2008年,出于对牛海绵状脑病的担忧,韩国引进了对牛肉的全套溯源系统,对食品安全问题及时标识以保证全面溯源。同时,韩国也使用DNA标记来追溯动物尸体成分。由国际动物遗传学会(InternationalSocietyforAnimalGenetics)推荐的标记主要用于产品验证(Bowlingetal.2008)。图12.4展示了2001年苏格兰边境区对牛的全面溯源系统。该系统利用无线射频耳标提供唯一标识,通过便携式数据收发记录器将数据传输至农场计算机。如果农户没有配备个人电脑,则数据会传到一台中央计算机。在乳品业中,无线射频识别技术能对牛只及其食性、健康问题、饲养历史进行唯一标*被动式无线射频识别标签,由识读器发出的查询信号出发后进入通信状态的标签(ZhangChenghai,2012,pp.49-50),译者注。58 识和监控,优化产出管理。无限射屏识别技术与饲料分送机相结合,能为单一个体制定合适的营养需求量。无线射频识别芯片将动物进食性、饮食需求和其他数据传送至农场的传感器中,并储存于中央数据库,由农场管理人员和监督人员进行分析,以监控动物健康和摄入的营养组合。印度在泰米尔纳德邦(TamilNadu)和马哈拉施特拉邦(Maharashtra)的乳品业中引入了牛只标签。马哈拉施特拉邦的BGChitale乳业公司给7000头奶牛和水牛打上了标签,并计划扩展至5万头动物(“MilkTastesBetterwithRFID,”RFIDNews,2010)。溯源系统的使用可以提高畜禽和肉类食品在全球范围内的出口竞争力、改善肉类食品质量并优化监管链溯源。牛肉产品将被置放于冷藏车或冷冻货柜中,以传感器保险栓和标识标签封口。对货运的追溯是为了确保货物不在同一个地方停留过久。在供应链的关键点上,如牛肉离开港口卸货后,移动读写器将读取卸货前的温度记录,标签数据将储存在供应链数据库中。图12.4苏格兰边境牛只耳标溯源系统资料来源:Pettitt2001,世界动物卫生组织(OIE)《科学技术评论》注:EID=电子身份;RFID=无线射频识别设备59 纳米比亚自2004年开始对牛肉产品进行溯源,是新兴市场里最早采用先进技术保障产品质量和溯源能力的国家之一(Collins2004)。该国与Savi科技公司公私合作的一个试点项目将无线射频识别和传感器保险栓应用到从纳米比亚运至英国的冷藏与冷冻牛肉的集装箱上。此项目是“安全智能贸易航线”(SmartandSecureTradelanes)计划拓展到非洲港口的一部分。2009年3月,纳米比亚新颁布了动物标识法规,要求畜禽生产者在牛只身上同时使用可视耳标和无线射频识别标签;每一头牛都必须在“纳米比亚畜禽标识与溯源系统”(NamibiaLivestockIdentificationandTraceabilitySystem)中注册。同时,为防止食品污染,纳米比亚还建立了动物疾病屏障:纳米比亚北部的牛只禁止出口,必须地区内部消化,以此让南部的牛能免于疾病感染,并能出口至欧洲。纳米比亚甚至以溢价在南非收购非转基因(non-GM)玉米,以确保出口至欧洲的牛肉为非转基因产品。基础动物标识和溯源技术的应用范围不仅涉及食品安全及其保障。在东非这个以游牧活动著称的地区,人和畜禽都在广阔而崎岖的地形上游牧,因而这里的牛只偷盗行为就威胁到了人类的安全。“米夫高计划”(MifugoProject)(“Mifugo”是斯瓦希里语中“畜禽”的意思)由埃塞俄比亚、肯尼亚、苏丹、坦桑尼亚和乌干达共同批准,旨在防止、打击和消灭东非地区的牛只偷盗行为(Siroretal.2009)。在唯一标识、追踪和失窃动物寻回面,传统的牛群标识方法与高科技的方法并不冲突。使用移动电话,通过互联网、短信服务(SMS)和无线通讯就能查询畜禽标签,从而对动物进行追踪和监控。主要挑战及动力要保障食品安全和实现其他目的,在实施溯源技术的过程中必定会面临挑战。大致而言,其挑战主要在于数据收集、处理、技术解决方案、商业模式、成本和学习方面。在主题讲解中会深入讨论其中一些挑战。在传统社会中,溯源是内在的,因为生产和消费都发生在同一个地方,但要满足跨地广泛的全球市场下的溯源条件,对缺乏资源的小农户来说是一项挑战。例如,如需实施溯源系统,并通过保障食品安全的“危害分析和关键环节控制点”系统履行记录保持协议,就要求在全供应链中进行全面教育与合作(UnneverhrandJensen1999)。要了解溯源在生鲜食品、园艺产品、散装食品、海产食品和畜禽食品领域的应用,小农户就必须掌握相当程度的信息和技术。虽然溯源能力对发展中国家的国内市场有一定的积极作用,但溯源系统大体上是单向性的——它们追踪的是从发展中国家出口到发达国家食品的监管链。对不能达到溯源条件的发展中国家的农户来说,就要承担被边缘化的风险。贾非(Jaffee)和马萨库尔(Masakure)60 (2005)发现,在肯尼亚的出口市场里,对溯源要求高的商品都依赖于出口商自己的农场,而对溯源要求低的商品则来自于其他小规模生产者。有证据表明,全球正向更为严格的食品安全与溯源标准看齐,这也使得发展中国家国内市场对食品安全与溯源的要求更加严格。例如,在拉丁美洲,虽然在公共组织或私人技术支的持下,出现过成功实施溯源技术的案例,但超市的兴起及其采购质量与安全标准和相关记录储存的要求,依旧给小农户的参与带来了负面影响(ReardonandBerdegue2002)。采用溯源系统的成本包括:资金投入和基础设施建设、记录储存和食品采收与加工方面的改进。与小型生产者不同的是,大型生产者和行业协会通常拥有更完善的配备来改善其运作模式从而满足溯源系统标准;与产品召回可能产生的经济损失相比,采用记录保持的附加成本并不算高(Spencer2002)。那么,剩下的问题就是,谁来承担采用食品溯源系统的费用——特别是对小型农户而言;以及从长远的角度看,这些系统又能持续发展多久?价值链上的组织整合是业务流程中最大的一个挑战。在专有追溯系统下,可实行正向或逆向追溯,但很难对产品整个生命周期进行全程追溯。除非需要产品召回,否则价值链中的组织都不愿意分享产品的商业专有数据。溯源系统和技术起源于工业领域。而来自工业领域的研究强调,采用溯源系统最主要的困难在于,为给定复杂生产过程设计一个内部溯源系统(Moe1998;Wall1994)。美国一项由国际食品科技协会(IFT)负责的关于溯源系统的研究发现,这些挑战对于内部追溯和外部追溯来说同时存在。外部追溯要求对进入某设施的产品及原料和离开该设施的产品进行精确的信息记录和储存。但这一要求常常会引发问题,因为食品供应链行业合作伙伴并不会随时都记录和保存输入产品与集装箱批号。而内部追溯则要求对可能在设施内发生转变的成分和产品进行追踪。有时,产品进入设施后发生转变,这会导致因产品新批号与输入批号不匹配而产生混乱。数据捕获、记录、储存和共享的行业惯例也有所不同,文书作业也通常会自相矛盾且不完整,因此每个产品或批号的标识就不具有唯一性,缺乏对数据元的标准化定义(IFT2009)。对小型生产者来说,集团式开发和认证可缓解实施溯源系统方面的某些限制。例如,在全球良好农业规范标准(GlobalG.A.PStandard)(www.globalgap.org)下,小农户可借助集团式认证进入市场。正确评估和选择合适的溯源技术;与公共、私人或非营利性组织建立合作关系和网络,资助溯源系统建设;建立由小农户合作社,或国营或私人企业援助的溯源方案,都可以提升小型农户和生产者的能力,使其从中受益。最后,溯源技术的实施,特别是对高价值作物而言,也可提高小农户进入核心市场的能力。61 戈兰(Golan)、克里索夫(Krisoff),和卡其勒(Kuchler)(2004)认为,如允许溯源过程中的变量或具体溯源缺口存在,强制性的溯源要求会比系统层面的要求更为有效。这也更适用于不同的公司之间不同广度、深度和精度的溯源。发达国家在溯源方面的经验,在某些情况下可对其他谋求建立相似溯源能力的国家起到借鉴作用。与其他发达国家不同的是,日本的农场非常小,但却拥有先进的溯源能力,这足以让日本向发展中国家的小农户传授经验(Setboonsarng,Sakai,andVancura2009)。日本可以在就实施溯源系统和实践内外部溯源能力最有效的途径,以及小农户成功转型和遵守食品安全及溯源要求所需的资源,分享自身深入的理解。投资溯源系统的动机也是开发和使用溯源系统的主要推动力。影响投资的因素通常是:市场准入及规则、产品公开召回的长期成本、认证系统和标准的普及(Heyder,Hollmann-Hespos,andTheuvsen2009)以及机构外利益相关者的影响和压力,如零售商、消费者、贷方和非政府组织(NGOs)等。另外,投资溯源系统还是可以为供应链中的参与者带来有形效益和动力,其中包括问题食品的快速有效召回、安全、可持续及可溯源食品带来的溢价、成本的降低、效率的提高、尤其是消费者信心的提升(图12.5)。其中一些推动力是值得进一步探究的,因为它们提出了避免了在采用溯源系统时将小农户排除在外的见解。对小农户而言,从长远角度来看,考虑到溯源系统投资的可持续性和附加成本,建立或投资溯源系统所获利益是需要进行权衡的。图12.5溯源系统的投资激励资料来源:TinaGeorgeKarippacheril预防不安全食品召回62 有了食品溯源系统,采取积极方式主动解决食品安全问题,防止生产者、产品、公司和国家的声誉和经济发展由于产品召回遭到破坏的做法成为可能。例如,预计美国对受污染花生产品进行的全方位召回,据估算是其史上成本最高的一次召回行动(图12.6)。产品召回可能会对发展中国家的新兴产业造成潜在的伤害,对此危地马拉的树莓产业有一个众人皆知的例子。该国爆发环孢子虫疫情后,美国食品和药物管理局(UnitedStatesFoodandDrugAdministration)发布了一个进口警告,禁止所有危地马拉产树莓进入美国。从1996年至2001年,树莓种植者从85户剧减到3户。全球的生产者立即意识到这样接踵而至的贸易限制对整个产业毁灭性的影响,以及溯源系统在稳定公众情绪与将问题控制在极少种植者范围内的重要性(Calvin,Flores,andFoster2003)。安全、可溯源食品的溢价定价如上所述,溯源系统和技术还可用于产地证明、可持续生产加工证明、监管链监督、非转基因生产与营销以及供应链管理。其中某些应用方式能让生产者以溢价出售可持续、可认证和可识别的精品食品。前文提到的艾尔玛咖啡(Almacafe)模式,让小农户能把产自哥伦比亚独特地域的精品咖啡以200%的溢价出售——这对农户采用溯源科技起到了很大的推动作用。在洪都拉斯,ECOM农工公司(ECOMAgroindustrialCorporation)为农户提供技术支持和培训,而该公司的消费者都愿意为高质量和可溯源产品出更高的价格。在初期技术协助下,布基纳法索一家牛油树脂合作社的妇女们学会了如何利用GPS来记录加工果实的来源地,并获得(欧盟)ECOCERT有机认证(Bio-Ecocert)和(美国)NOP有机认证(Bio-NOP),证明产品为100%纯天然,且在尊重人类和自然的情况下加工。这些认证让他们能够进入利润更为丰厚的出口市场——尽管他们生产规模小,且生产者几乎都是文盲(详见第八单元)。建立消费者信心通过实现供应链透明化,溯源能力不仅能保证食品质量,还能建立消费者的信心(Bertolini,Bevilacqua,andMassini2006)。产品需求来源于消费者信心。研究显示,发达国家的消费者更愿意以更高的价格购买安全和可溯源食品。韩国的一项研究(Choeetal.2008)发现,消费者愿意以溢价购买可溯源食品,也愿意购买更多的该类食品。美国一项关于红肉产品溯源、透明度和质量保障的消费者偏好研究显示,消费者愿意为“溯源”消费,这就意味着可溯源食品市场的利润空间是存在的(DickinsonandBailey2002)。虽然溯源系统偏单63 西12.6美国花生公司产品召回""—-苗:jIm*|商化|a巧巧冉巧.?化巧#巧.SSMnm^.<^刮巧适马 ̄"-..---.^-■■■--.——:-i.....…Iyj户::T7I:斗III ̄?"'?■■…I,■-'巧村-■r''■"-:■--—-L■"里V1!?曲:i恥MK.l!,;、I ̄』駐酷p這tI口巧-二二^^ED帮f^HSi|jp一二日曲:i郑下pizDL二輔巨患巧茶琴巨_—— ̄'jI_jII[^—-巧.1?CC巧.笠w,?化妍|-Q^.f?;?:|…—-1.II-"I"ILl=——-…■贸料来斌■;巧1食品药品管理局64'