• 2.75 MB
  • 76页

《饮用水》(第一、二章)翻译项目报告.pdf

  • 76页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'翻译专业学位硕±论文一《推巧水》r第、二章;I?种巧U振春I谢江维指导巧师:杨志孕勘教巧专业名巧:巧译硕女一硏究方向:英语笔译1;;论文提交时间:2016年4月t论文巧巧时闻:2016年5月、.■'.论文编号:2016411■?-—■■IlI|—■—■?■■■,'J■?-. SichuanInternationalStudiesUniversityATranslationProjectReportonDrinkingWater(ChapterOneandTwo)byXieJiangweiAthesissubmittedtotheGraduateSchoolinpartialfulfillmentoftherequirementforthedegreeofMasterofTranslationandInterpretinginEnglishTranslationUnderthesupervisionofAssociateProfessorYangZhitingChongqing,P.R.ChinaMay2016 《饮用水》(第一、二章)翻译报告摘要本文是一篇翻译项目报告。翻译项目的原文为乌拉迪斯拉乌·龚沙如克(VladyslavV.Goncharuk)编著的《饮用水》(DrinkingWater)中的第一章“水在人类生活中的角色”(RoleofWaterinHumanLife)和第二章第一节“水的特性”(UniquePropertiesofWater)。第一章主要内容是说明水在人类生活中的重要性,以及水质的好坏对人类健康的影响。第二章第一节探讨了水的物理化学属性。本翻译项目的开展,使普通读者对水这一物质有了新的认知,为水处理领域研究者和工作者提供了新的发展理念和处理方法。在本翻译报告中,笔者以朱利安·豪斯(JulianeHouse)的翻译质量评估模式为理论指导,阐述了翻译质量评估模式在本次翻译中的应用,从语场、语旨、语式和语篇体裁四方面对原文和译文举例进行对比分析。翻译材料中大量的物理化学术语、化学公式以及水分子结构图是本次翻译的难点,在翻译过程中用到的翻译方法主要有直译法和意译法,翻译技巧有转换法和分译法。最后,笔者总结了在翻译过程中所得到的启发、教训和仍待解决的问题。关键词:翻译质量评估模式;饮用水;科普文本;翻译难点;翻译技巧i AReportontheTranslationofDrinkingWater(Chapter1&2)AbstractThisisatranslationreportofDrinkingWater.Thesourcetextcomesfromchapterone(RoleofWaterinHumanLife)andthefirstsectionofchaptertwo(UniquePropertiesofWater)ofDrinkingWaterbyVladyslavV.Goncharuk.Chapteroneemphasizesonthesignificanceofdrinkingwaterinhumanlivesanditsfavorableandunfavorableinfluencesonhumanbeings.Thefirstsectionofchaptertwoaimsatthephysicalandchemicalpropertiesofwater.Thetranslationofthesourcetextbringsabrandnewviewofwaterforaveragereadersandoffersthelatestideasandtechniquesforresearchersandworkersinthefieldofwatertreatment.ThetranslatorwasguidedbythetheoryoftranslationqualityassessmentmodelbyJulianeHouseinthisreport.ShecomparedthesourceandtargettextsinaccordancewithHouse’stranslationqualityassessmentmodelinfield,tenor,mode,andgenreandshowedtheapplicationofthismodelindetail.Therewereplentyofchemicalandphysicaltermsandformulaandmolecularstructurediagramsofwaterinthesourcetextwhichturnsouttobethetranslationdifficulties.Methodsappliedwereliteraltranslationandfreetranslation,andtranslationskillsusedwereconversionanddivision.Inthelastchapter,lessonsthatcanbelearnedfromthetranslationpracticeandproblemstobesolvedwerementioned.Keywords:translationqualityassessment(TQA)model;drinkingwater;popularsciencetext;translationdifficulties;translationskillsii AcknowledgementsFirst,Iwouldliketoextendmysinceregratitudetomysupervisor,ProfessorYangZhiting,bothforhisintellectualguidanceandforhisconstantencouragementinthecourseofwritingthistranslationprojectreport.Withpatienceandprudence,hepointedoutdefectsinthedraftsofthisreportandinspiredmeinestablishingthetheoreticalframeworkwhichbroadensmyhorizoninEnglishlearning.Therefore,Iamreallygratefulandluckyforbeingoneofhisstudents.IamalsodeeplyindebtedtoDoctorRenYiwei,ChongqingInstituteofGreenandIntelligentTechnology,ChineseAcademyofScience,whokindlyofferedmethetranslationmaterialsandwhosecriticalthinkinggreatlyassistedmeinwritingthewholereport.Lastbutnotleast,bigthanksgotomydearfamiliesandfriendswhohavesharedwithmemyworries,frustrations,andhappinessineventuallyfinishingthisreport.Withouttheirsupportandencouragement,Icouldnotfulfillmymissioninwritingthisthesis.iii TABLEOFCONTENTS摘要...............................................................................................................................iAbstract........................................................................................................................iiAcknowledgements..................................................................................................iiiChapterOneIntroduction..........................................................................................11.1BackgroundoftheProject...............................................................................11.2SignificanceoftheProject...............................................................................21.3StructureoftheProject....................................................................................3ChapterTwoAnIntroductiontotheSourceText......................................................52.1AnIntroductiontotheAuthor..........................................................................52.2MainContentoftheSourceText.....................................................................52.3LinguisticFeaturesoftheSourceText............................................................6ChapterThreeTheoreticalGuidanceandItsApplication..........................................83.1AnIntroductiontoJulianeHouse....................................................................83.2AnIntroductiontoTranslationQualityAssessmentModel.............................83.3ApplicationofTranslationQualityAssessmentModel...................................93.3.1Field.......................................................................................................93.3.2Tenor....................................................................................................103.3.3Mode....................................................................................................103.3.4Genre....................................................................................................113.4TranslationAssessmentofDrinkingWater....................................................11ChapterFourTranslationDifficultiesandSolutions...............................................144.1TranslationDifficulties..................................................................................144.1.1PhysicalandChemicalTerms..............................................................144.1.2CompoundSentences...........................................................................154.2Solutions........................................................................................................154.2.1Conversion...........................................................................................154.2.1.1ChangeofPartofSpeech..............................................................154.2.1.2ChangeofVoice.............................................................................16iv 4.2.3Division................................................................................................17ChapterFiveConclusion..........................................................................................195.1LessonsLearnedfromtheTranslationPractice.............................................195.2Limitations.....................................................................................................20References...................................................................................................................21AppendixISourceText...........................................................................................22AppendixIITranslation...........................................................................................49v ChapterOneIntroduction1.1BackgroundoftheReportWaterisessentialforhumanhealth,butrecentresearchesshowthatitisalsoimportantforformingalevelofhumanintellectualdevelopment.Recentattentiontowaterandwatersupplieshasgeneratedtremendousinterestinitspropertiesandinspiredmanynewmythsconnectedwithwater.Agreatmanymodernpublicationsinmassmedia,especiallyscientificjournals,haveentertainedreaderswithstoriesoffantasticpropertiesandcapabilitiesofwaterthatarenotprovedbyscience.Nevertheless,findingsinnewlyreleasedresearchonwaterpropertieshasaffordedanopportunitytoexplainsomeearlierincomprehensibleandextraordinarywatercharacteristics.“TheWorldHealthOrganizationrecommendsmonitoring95componentsindrinkingwater,while150yearsagotherewereonly9parameters!USAstandardslist102indicators.”(Goncharuk,2014,p.7).InChina,thereareonly35componentswhichhavetobeinspectedinaccordancewiththeDrinkingWaterSanitaryStandard(GB5749-85)in1985.In2007,arevisedversionofthestandardcalledDrinkingWaterSanitaryStandard(GB5749-2006)waspublished,andthereare106parametersonthelist.FreshwaterislimitedontheEarth.Fortunately,scientistshavefindwaystodealwiththissituation.Thus,thewaytogainfreshwaterasakindofdrinkingwaterbyusingdesalinationwasintroducedinthetext.Reverseosmosisisbyfarthemostpopularwaytosolvethisproblem.Thisbook,publishedin2014,containsnearly120thousandlettersandcoversanumberofchartsandtablesaswellasmuchofficialdatafromgovernmentandinternationalorganizations,suchasUN,WHO,OECD.Ittakesabroadandeclecticviewofthewaterthatallhumanitydependsupon,probingitsroleinhumanlifeand1 inthehistoryofourplanet,aswellassharingthelatestscientificpurificationtechniquesandstandardsofhighqualitydrinkingwater.Obviously,ithasguidingsignificanceforenvironmentalprotection,thedevelopmentofhumanbeingsandpubliceducation.1.2SignificanceoftheReportInthepreface,theauthorsaid,“Myprofoundbeliefthatwaterisessentialnotjustforhumanhealthbutforformingalevelofhumanintellectualdevelopmentdefinesthemainideaofthebook:thequalityandcharacteristicsofdrinkingwaterfrompointofviewofchemicalphysicalandbiologicalfundamentalscientificstates.Iendeavoredtopresentthisinformationinamannerwhichisunderstandableforthegeneralreader.”(Goncharuk,2014,p.viii)Thatistosay,thequalityofdrinkingwaterishighlyassociatedwithourintellectualdevelopment,andweshouldknowabouthowtodistinguishdrinkingwaterofhighandlowstandardsasgeneralreaders.Ordinarypeople,environmentalists,techniciansforsewagepurification,andscholarsspecializedinenvironmental,drinkingwateranddesalinationfieldswillbebenefitedfromthetranslationofthisbook.Generallyspeaking,fewofusknowthatcontaminationinourenvironmentwhichaffectwaterqualityarechemicalpollutants,bactericidalandviralpollutants,radioactivesubstancesofnaturalandanthropogenicorigin,mutageniccompoundsoforganicandinorganicorigin,andmycoticpollutants.However,thesepollutantsshouldbeknownbypeopleasgeneralknowledgesoastoriseourattentiontodrinkingwater.Butwiththeintroductionofthetechnologiesmentionedinthebook,peoplewillhaveabriefunderstandingofthesolutionstotheproblemsthatoccurredinourenvironment.Manypurificationtechnologiesfor2 drinkingwaterwereintroduced,suchastreatmentwithozone,hydrogenperoxide,photooxidativedisinfectionandcombinationofthesemethods.Besides,thepropertiesofwaterwerealsopublished,whichgaveusabetterunderstandingofthewaterweusedeveryday.Thequalityofdrinkingwaterhasacloserelationshipwithhumanhealth.AccordingtoGoncharuk,“Manyyearsofmedical-biologicalresearchdemonstratedthatthelongtermuseofsuchdrinkingwater(withchlorine)resultsinanemergenceofneurotoxins,cardiovascularandoncologicaldiseasesofliver,kidneys,andthehematopoieticsystemofhuman,andproducesmutageniceffects”(Goncharuk,2014,p.10).TheapplicationofTQAmodeltopopularsciencetextsislessfrequentlyfoundthantoliteraturetextinthepast,becausepopularsciencetextsareunder-emphasized.However,withtherapidgrowthofeconomyandtechnology,peopletendtopaymoreattentiontohealthandscience.ThebookDrinkingWateraimsatintroducingsomegeneralknowledgeofwateranditsimportancetothepublicandhelpimproveourlivingstandards.Thus,thesignificanceofthetranslationforpopularsciencetextistoenhancethepublicunderstandingofscienceknowledge,enablethemtoformthescientificthinkingwhichisconducivetolife,productionandsocialpracticeactivities,andimprovetheabilityofthinkingandsolvingproblems.1.3StructureoftheReportThisreportconsistsoffivechaptersandtheyareasfollows:Chapteroneisaboutthegeneralintroductionoftheproject,includingthebackground,significanceandbasicstructureofthereport.Chaptertwooffersinformationabouttheauthorandsourcetext.Thesourcetextisanalyzedatthesametime.Thefollowingchapterdealswithtranslationtheoryanditsapplication.ThetheoryoftranslationqualityassessmentofJulianHouseandtheassessmentofthe3 sourcetextandtargettexthavebeenintroduced.Inthefourthchapter,difficultiesintheprocessoftranslatingthesourcetextwerelistedand,accordingly,methodstosolvethemwerealsointroduced.Thefinalchapterisasummaryofthisreport.Thetranslatorsharesherfeelingsintranslatingthetwochaptersandpointsouttheproblemstobesolvedinthereport.4 ChapterTwoAnIntroductiontotheSourceText2.1AnIntroductiontotheAuthorVladyslavV.GoncharukisaSeniorResearcherattheInstituteofColloidandWaterChemistry,NationalAcademyofSciencesofUkraine(NASU),Ukraine.In2000,hejoinedtheoreticalchemistrygroupofProfessorHansÅgren.HereceivedhisPh.D.degreeinbiotechnologyfromtheRoyalInstituteofTechnology(KTH),Stockholm,Sweden,andanotherPh.D.degreeinthefieldofphysicalchemistryfromtheInstituteofPhysicalChemistry,NationalAcademyofSciencesofUkraine.In2012,hegothisHabilitationdegreeinchemistryattheInstituteofSurfaceChemistry,Kiev,Ukraine.HewasaPostdoctoralFellowattheUniversityofBergen,Bergen,Norway,Marie-CuriePostdoctoralFellowattheNationalHellenicResearchFoundation,Athens,Greece,andJSPSpostdoctoralfellowatKyushuUniversity,Fukuoka,Japan.Hismainresearchinterestsarethedevelopmentandimplementationoflinearscalingmethodsandmethodsforthecalculationoflinearandnonlinearopticalpropertiesofnanoscalemolecularstructures.2.2MainContentoftheSourceTextThevolumeopenswithachapterontheroleofdrinkingwaterinhumanlife,whichdiscussestheplanet’swaterresources,thequalityofdrinkingwater,waterandhealth,theadventofwaterqualitystandards,“Green”chemistryandmore.Thechapterconcludesbydiscussingtherelationshipofthebiosphereandhumancivilization.Chaptertwoexplorestheuniquepropertiesofwateranditsroleinthescenarioofdevelopmentonearth.Alsocoveredisthecurrentunderstandingoftheimportance5 oftheisotopiccompositionofwater,inparticulartheratioofprotiumtodeuterium,whichisfundamentaltolife.2.3LinguisticFeaturesoftheSourceTextThetranslationofpracticalwritingisnon-literarytranslation.Itsmainpurposeistodeliverinformationanditpaysattentiontotheinformationtransfereffect.Itsmostobviouscharacteristicisstrongpracticabilityandapplication,anditgreatlydifferentfromliterarytranslationwhichputemphasisonaestheticandliteraryappreciation.Therefore,thenon-literarytranslationshouldbebasedontheinformationprovidedbythesourcetext,determinethepurposeandfunctionthatcouldbeachievedoftranslation,andaccuratelyreflecttheobjectivefactsfromtheoriginaltext.Onthisbasis,translationmethodsadoptedshouldbeflexibletoenhancethereadabilityofthetranslation,suchasliteralandfreetranslation.Theinformativetext,justlikethebefore-mentionedDrinkingWater,ismainlytoexchangeinformation,reflecttheobjectivefacts,andpassthereferentialandconceptualcontentoftheoriginaltext.Thelanguagefeaturesshouldbeconcise,simpleandclearsoastoachievethetextfunctionoftransferandthereader"sunderstandingandexplicationisappliedintotranslationwhennecessary.Popularsciencearticlesaimatdeliveringtheexistingscientificknowledge,scientificmethod,andscientificthoughtsandspirit,throughthewayofthetext,tothereaders,helpingthemtounderstandthemainideaofthetext.Popularsciencearticlesoftenhavemacronarrativestyle,thatis,onthebasisofmacroscientificdevelopmentofthecontext,informingthereaderthemainstreamviewamongscientists.Withrespecttoitscontent,indetail,itgenerallyreferstotheexplanationofscientificknowledge,theintroductionoftheemergingscience,theinterpretationtocertainrules,theinstructionsofnewtechnologyandnewmaterials.Ithasthecharacteristicsandpropertiesofbothexpositionandprose.Withrespecttoitswriting,ithasstylisticstructure,mainlyusingthemethodofexpositiontoshowthepopularscienceknowledgewithvividorplainlanguage.6 7 ChapterThreeTheoreticalGuidanceforTranslation3.1AnIntroductiontoJulianeHouseJulianeHouse(born1942)isaGermanLinguistandTranslationScholar.HousereceivedadegreeinEnglishandSpanishTranslationandInternationalLawfromtheUniversityofHeidelberg,Germany.Latersheworkedasatranslatorandresearcher.ShegotherBEd,MAandPhDinLinguisticsandAppliedLinguisticsfromtheUniversityofToronto,Canada.SheisaseniormemberoftheGermanScienceFoundation’sResearchCentreonMultilingualismattheUniversityofHamburg,whereshehasdirectedseveralprojectsontranslationandinterpreting.Herresearchinterestsincludetranslationtheoryandpractice,contrastivepragmatics,discourseanalysis,politenesstheory,Englishasalinguafranca,interculturalcommunicationandglobalbusinesscommunication.3.2AnIntroductiontoTranslationQualityAssessmentModelthInthelate20century,theresearchoftranslationtheoriesmakeoutstandingachievements.Inthe1990s,onthebasisoftextanalysiswhichdevelopedbyNord,discourseanalysisgotarapidrisesuddenlyintranslationresearch.Sometranslationresearchersgraduallypayattentiontothediscourseanalysisandregisteranalysis,thuswideningthebreadthanddepthoftranslationstudies.Amongthem,JulianeHouseputforwardthetranslationqualityassessment(TQA)modelanditsrevisedvisionwithabrandnewperspective,basedonthetheoryofsystemicfunctionallinguistics,textanalysis,etc.,formingasetofsystematictranslationqualityassessmentmodel.FromAModelofTranslationQualityAssessmentin1977andAModelofTranslationQualityAssessment:ARevisitedVersionin1997,Housesketchesanewly8 revisedmodeloftranslationqualityassessment,inwhichthevariousstrandsandperspectivesdiscussedbeforearetakenaccountofand,asfaraspossible,integrated.AsfortheoperationofHouse’smodel,generallyspeaking,itincludesfourmainstepstogetaframeaboutthetextualfunction.Thefirststepistoanalyzetheoriginaltextregardingtoregisterandgenre,ofwhichareanalyzedonthreelevels:lexicallevel,syntacticlevelandtextuallevel.Thesecondstepistoanalyzethetranslatedtextinthesamewayandgetanotherframe.Next,thetwoframesoftextualfunctionoftheoriginaltextandthetranslatedtextarecomparedandtheerrorsandmismatchesareillustratedatthesametime.Finally,itcomestothelaststepthattheresultsofassessmentcomeout.TheapplicationofHouse’sTQAmodelcanbefoundinthefollowingfields:economy(globalization),corpusstudies,cognitivetranslation-relatedresearch,andcontrastivepragmatics.Animportantareainstudiesofglobalizeddiscourseisconcernedwiththeuseofmoderntechnology.ComputermediatedcommunicationandInternetdomainsasinfluentialnewcommunicatesofpracticehavethusbecomeincreasinglypopularresearchfoci.ManystudiesinthisparadigmlookattheinfluxofEnglishwordsintoblogsortelevisioncommercialsinotherlanguages.Translationcorporaareanimportantsourcefortranslationqualityassessmentastheyprovideareliablemethodologicaltoolforclarifyinghypothesizedequivalencesandforestablishingreliablepatternsoftranslationregularities.Cognitivetranslation-relatedresearchdiscussessomerecentdevelopmentsinresearchontheprocessoftranslation:thinkingaloudstudies,retrospectiveprocessstudies,variouspsycho-linguisticandbehavioralexperiments,aswellasneuro-linguisticandneuro-psychologicstudiesofthetranslationprocess.3.3ApplicationofTranslationQualityAssessmentModel3.3.1Field9 Fieldofdiscourseconcernsnotonly“whatwearetalkingabout”—thesubjectmatterthattheactualchatgroupfocuseson,butalsoconcerns“whatwearedoing”,or“whatisgoingon”,withinwhichthatlanguageisplayingapart.Watersuppliesinmanyunderdevelopedcountriesremainanurgentissue,especiallythoseinAfricaandLatinAmerica.Attentiontowaterandwatersupplieshasresultedintheexplorationinitsproperties.Intheexcerptedsourcetext,thekeypointliesintherelationshipbetweenwaterandhumanhealth.Highqualitydrinkingwaterhelpsourbodiesfunctionwell,onthecontrary,lowqualitywaterbringsicknesstoourbodies.Tosomeextent,itreflectsthewriter’sconcernandworriesabouthumanbeingsandhopesthathecanarousepublicattentiontodrinkingwater.3.3.2TenorTenorcarriestheinformationon“whoaretakingpart”(Halliday1978:189).InHalliday’sunderstanding,tenorofdiscourseresultsfromthespeechcommunicationandreflectstherelationship,contactandattachmentamongmembers(ibid:33).Thesocialrelationsbetweenthemembersareusuallyreflectedinthesocialstatusofpowerandsolidarity.Thesourcetextimpliesthateveryonelivingontheplanetisinvolvedintheconsumptionofwater.Wealldrinkwatereveryday,tobemorespecific,peoplecannotlivewithoutwater.However,environmentalists,scholars,researchersondrinkingwaterandpeoplewhoareinterestedinpopularsciencearecloselyrelatedintheresearchanddevelopmentofwater.3.3.3ModeInlinguisticterms,“mode”referstoeitheramediumofcommunication(spoken/written)orarhetoricalchannel(Halliday1978:222)thatonedecidestouse.Theyformaspecialrelationshipinthattheformerpredeterminesthelatterandthelatterisanindicatoroftheformer.Thusmodeofdiscourseanswersthequestion“how”thecommunicationiscarriedoutandmakesthethirdsituationaldeterminantofthediscourse.Halliday’ssemioticstructureofthesituationstressesthatitisonly10 throughmodethatfieldandtenorbecomeoperational.Thepurposeofthesourcetext,asfarasIamconcerned,istoconveytheauthor’sideathatwaterisessentialnotjustforhumanhealthbutforformingalevelofhumanintellectualdevelopment.Thus,thethemeofthesourcetextisdirectlyexpressed,thewordschosenwereplainandexplicit,whichmadethesourcetexteasytounderstandbythemajorityoftheordinarypeople.Forexample,“Ithasbeenexaminedthatwateristhebufferoftheplanetanditsimmunesystem.Ithasbeenrevealedarelationshipbetweenthequalityofdrinkingwaterandthelevelofintellectualdevelopmentofaperson,andhis/herhealth.”(Goncharuk,2014,p.1).Therearenosubjectivefeelingsbeentoldlikeliteratureworks,butonlyobjectivetruth-tellingsentences.3.3.4GenreGenrecharacterizesthedeepertextualstructuresandpatternsandthereforeisusedasalinkbetweenregisterandtheindividualtextualfunction.Thisisatextofpopularscience,whichstronglybearsinformativefunctions.Textofthistypeaimstoreflectthefactswhichhasbeenidentifiedbyscientistsanddeliverthereferentialandconceptualcontentofthesourcetextwithplainwords.3.4TranslationAssessmentofDrinkingWaterTofigureoutthequalityofthetranslatedversion,thetranslatorcomparedthesourcetextwiththetargettextsentencebysentenceonbothlexicalandsyntacticlevels.Mismatcheswerefoundduringtheprocessofcomparisonandsomeofthemwerelistedinthisreport.Onlexicallevel,mismatchesare:(1)Ithasbeenexaminedthatwateristhebufferoftheplanetanditsimmunesystem.研究表明,水是地球的保护膜和免疫系统。(2)Currentproblemsrelatedtothequalityofdrinkingwaterworldwidehavebeenhighlighted.11 当前,全球饮用水质相关问题愈演愈烈。Theabove-mentionedtwoexamplesdemonstratemismatchesonlexicallevelofthetargettext.Inexampleone,“buffer”,acushion-likedevicethatreducesshockduetocontact,wastranslatedinto“保护膜”.Thewateronourplanethasthefunctionlikeabufferwhichcanprotectspeciesontheearthfromextinction.Itistheapplicationoffreetranslation.Themeaningof“buffer”wasparaphrasedbythetranslatortoachievecohesioninChinese.Thewords“highlighted”inexampletwoisalsoamismatchonlexicallevel.Thepassivevoice“……havebeenhighlighted”wastranslatedintoanactivevoice“⋯⋯愈演愈烈”inChinese.Thetranslationofthiswordhaschangedthevoiceoftheoriginaltext.Mismatchesonsyntacticlevelareshowninthefollowingexamples:(1)Thecompositionofwastewaterisconstantlychangingduetothesynthesisofnewchemicalsubstances,oftenpossessingtoxic,carcinogenicandmutagenicproperties.由于新化合物的出现,废水成分不断变化,通常具备有毒、致癌和诱变的特性。(2)Therearevariousapproachesintendedtodesalinatewater.Inpractice,desalinizationtechnologiessuchasdistillation,membrane,andelectrochemicalmethodsareused.海水淡化技术多种多样,人们在实际操作中用到的海水淡化技术有蒸馏法、膜技术处理法和电化学法。Thetranslationsabovefailtopreservetheformofthesourcetextandtheydemonstratemismatchesonsyntacticlevel.Inexampleone,theadverbialofreason“duetothesynthesisofnewchemicalsubstances”intheoriginaltextwasputatthebeginningofthesentenceinthetargettext.Obviously,thesentencestructurewaschangeddramaticallyinthetargettext.Inexampletwo,thepassivevoice“……areused”wasconvertedintoactivevoice“用到的⋯⋯”.Thesubjectinthesourcetextwasomitted,whichpresenta12 characteristicofthepopularsciencetext.However,inChinese,wepreferasentenceinactivevoiceandthesubject“人们”wasaddedbythetranslator.Thus,thetranslatedfailstopreservetheformoftheoriginaltextanditisasyntacticmismatch.13 ChapterFourTranslationDifficultiesandSolutions4.1TranslationDifficultiesDifficultiesfortranslatingthepassagelieintheunderstandingofterms,longsentences,andphysicalandchemicalformulas.Itisquiteconvenienttosurftheinternetandfindoutthemeaningofterms.Forlongsentences,sometranslationstrategiesIhavelearnedcandomeagreatfavor,suchassentencedivision,wordsconversion,sequentialtranslation,etc.4.1.1PhysicalandChemicalTermsJustaswhatimpliesinthesubtitle,thisbookwaswrittenfromthepointviewofphysics,chemistryandbiology.Althoughtheauthortrieshisbesttomakeaveragereaderstounderstandhim,sometermsarebarriersintheprocessofreadingandtranslation.Herearesomeexamplesofchemicalterms.Someorganiccompoundsinourenvironmentnamedphenols,surfaceactivesubstances,chlorine-containingcompoundsandxenobioticsareunfamiliarwithus,butwecanfindtheircorrespondingmeaninginChinesethroughelectronicdictionaries,paperdictionaries,Google,Baidu,andsoon.Inthisway,wecansolvethisproblemsuccessfully,andwhentermslikecalcium,magnesium,sodium,andpotassiumappeared,itwouldnotbeanobstacleinunderstandingthetext.Next,thetranslationaboutphysicaltermswillbediscussed.Thephysicalpropertiesaboutwaterlieinitsdissolvingability,density,surfacetension,heatcapacity,latentheatoffusionandvaporization,refractiveindex,transparency,soundtransmission,compressibility,andboilingandmeltingpoints.Themostdifficultpartisthecomprehensionofformula.Forexample,,14 ,.Asforbiologicalterms,onlyafewofthemwerementionedinthefirsttwochapters.4.1.2CompoundSentencesInEnglishgrammar,acompoundsentenceisasentencethatcontainsatleasttwoindependentclauses.Compoundsentencescanbeformedinthreebasicways:(1)usingacoordinatingconjunction(and,but,for,nor,or,so,yet)tojointhemainclauses;(2)usingasemicolon,eitherwithorwithoutaconjunctiveadverb;(3)onoccasion,usingacolon.Examplegoeslikethis:Anill-advisedeconomy,thepursuitofprofitswithoutaccountingforecologicalproblems,andtheharshcompetitivestruggleofmonopolieshasresultedinthemajorityofsurfaceandundergrounddrinkingwatersupplysourcesbeingdepletedandheavilypolluted.Inthissentence,“thepursuitofprofitswithoutaccountingforecologicalproblems”istheparenthesistoexplaintheconceptof“anill-advisedeconomy”.The“and”behindthecommaisacoordinatingconjunctiontojointhemainsentence.4.2Solutions4.2.1ConversionGiventhedifferencesinlanguagestructuresbetweenEnglishandChinese,conversionisfrequentlyadoptedintheprocessoftranslationbythetranslator.4.2.1.1ChangeofPartofSpeechVeryoften,atranslatorneedstoconvertonepartofspeechintoanotherinthecourseoftranslationsoastomakethetranslationinaccordancewiththelanguage15 structureinthetargettext.(1)However,thissourceoffreshwaterisalmostunobtainableforhumanuse.然而,这部分淡水资源几乎无法供人类取用。Fromtheexampleabove,itisclearthattheadjective“unobtainable”wasconvertedintoaverb“无法取用”inChinese.Thechangeofpartofspeechheremakesthetranslationreadableandnaturaltoreaders.(2)Anill-advisedeconomy,thepursuitofprofitswithoutaccountingforecologicalproblems,andtheharshcompetitivestruggleofmonopolieshasresultedinthemajorityofsurfaceandundergrounddrinkingwatersupplysourcesbeingdepletedandheavilypolluted.经济体制不完善,(人们)不顾生态问题一味追求利益,以及垄断组织之间的激烈竞争导致地表和地下饮用水水源大面积枯竭和严重污染。Inthislongsentence,theword“pursuit”,anoun,wastranslatedintoaverb“追求”.Theconversionofanountoaverbcaneasilybefoundduringtheprocessofassessment,whichshowsthewritingconventioninChinese.4.2.1.2ChangeofVoiceEnglishandChinesearedifferstremendouslyfromeachother.ThepassivevoiceismorecommonlyusedinEnglish,especiallyinthewritingofscienceandtechnology.Thus,manysentencesinEnglishhavetobeturnedintoactivesentencesinChinese.Besides,thetranslatedversionisrequiredtobesmoothandnatural.Forexample:(1)Ithasbeenfoundthatimpuritiesofhydrogenperoxideproducearatherstrongcatalyticeffectonozonedecomposition.研究发现,过氧化氢中的杂质会产生一种能分解臭氧的强效催化剂。(2)Theuniquepropertiesofwateraredeterminedbyitsisotopecompositionand,firstofall,bytheratioofprotiumanddeuterium.水的特性首先由其同位素氕和氘的比率决定。16 Here,passivevoiceisusedinEnglishtomaketheauthor’sstatementsoundmoreobjectiveandexplicit.ButtheChinesefavorstheactivevoicemoreoften.Therefore,“Ithasbeenfound”wasconvertedintoanon-subjectphrase“研究发现”and“aredetermined”wastranslatedinto“由⋯⋯决定”.4.2.2DivisionJustasitsnameimplies,divisionofsentencesistotranslateonesentenceintotwoormoresentences,includingdivisionofsimplesentence,compoundsentence,subordinatesentence,andothercomplexsentence.Hereisoneexample:(1)Specialattentionshouldbepaidtothefactthatoverthelast2-3decades,anuncontrolledsharpincreaseofchemicalcompoundsintheenvironmenttookplace.我们应该认清一个事实:在过去二三十年中,环境中化学物质急剧增长,一发不可收拾。InEnglish,thehypotaxisplaysanimportantroleinitslanguagestructure.However,theparataxisisthefeatureofChinesewriting.ThemeaningconveyedinonesentenceinEnglishrequiresfewsentencesinChinese.Ontheotherhand,apartofanEnglishsentence,aphraseoraword,canbetranslatedintoasentence.Therefore,theskillofdivisionwasfrequentlyusedintranslation.Theword“uncontrolled”wastranslatedintoasentence“一发不可收拾”,itisobviouslytheapplicationofdivisionofwords.Anotherexample:(2)Reverseosmosisisusedforwatertreatmentandpurificationofdrinkingeaterfromheavymetals,nitrates,nitrites,surfactants,phenols,hardness,organicandmicrobiologicalcontaminants,andorganochlorinecompounds.反渗透技术用于污水处理和饮用水净化,该技术可净化受污染的饮用水,包括重金属、硝酸盐、亚硝酸盐、表面活性剂、酚类、固体物、有机污染物、无机污染物和有机氯化合污染物。17 Inthisexample,asentenceinEnglishwastranslatedintotwosentencesinChinesetofullyexplainthefunctionofreverseosmosis.Theapplicationofdivisionstrengthensthereadabilityofthetranslatedversion.18 ChapterFiveConclusion5.1LessonslearnfromTranslationPracticeGiventhehugelingualandculturaldifferencesbetweenChineseandEnglish,thetranslatorwillinevitablyencountermanyproblemsinhertranslationpractice,suchasthelongtranslationtext,inauthenticexpressions,EuropeanizationofChinese,inaccuratetermsandsoon.Intheprocessoftranslatingthepopularscience,thetranslatorsummarizessomepracticalexperience,thefollowingaresometipsaboutthetranslationactivities:Firstofall,thepreparationworkgoesfirst.Thepreparationworkiscrucialregardlessofwhattypeoftextis.Thefirststepistocollectdata.Beforetranslation,thetranslatorshouldreadalargenumberofparalleltext,analyzethefunctionoftheoriginaltext,figureoutthecharacteristicsofthetextandthoroughlyanalyzeoftheoriginaltext.Thisisthekeyofthepreparationworkbeforetranslation.ReadtheselectedparalleltextcarefullyandrepeatedlyandlearntheauthenticChineseexpressionsfromthetext.Intheprocessoftexttranslation,oneshouldnottranslateitwordbyword,avoidblindimitation,don’tcatchthemeaningofwordsliterallyfromthecontext,takethecontextintoconsideration,trytounderstandtheauthoroftheoriginaltextthoroughly,adjustwordsorder,convertpartofspeechandpayattentiontoaddition,omissionandvoiceadjustment,inordertoachievethebesttranslation.Nextstepistofindassistanttranslationmethods.Thetranslatornotonlysavetimebutalsoachievehighefficiencyinthecourseoftranslationwiththehelpoftheseauxiliarymethods,suchasthefreedictionary.com,Googleresearch,CNKI,Wikipedia.com,lingoes,dict.youdao.com,OxfordAdvancedEnglish-ChineseDictionaryandLongmanDictionaryOfContemporaryEnglish.Inaddition,itcomestotranslationstrategies.TheEnglish-Chinesetranslationprogramgotstartedafterfinishingallthepreparationwork.Thepopularsciencetext19 hasthefeatureofthecombinationoflongandshortsentencesandvarietyinsentences.Thus,thetranslatorshouldtrytouseshortsentencesinChineseintheprocessoftranslation,inordertomakethetranslatedtexteasiertounderstand,popularizingthepopularscienceknowledge.Throughoutthewholetext,thetranslatorfoundthattheauthorusesalotofcomplexsentences,includingtheattributiveclause,objectclauseandsomenounclauses,theseclausesareoflongsentences,makingithardertotranslate.5.2LimitationsAqualifiedtranslatorshouldnotonlymastertheknowledgeofChineseandwesternculture,butalsopossessextraskills,suchassolidbilingualtransformationability,constantlylearningandenterprisingspirit,improvinglearningattitude,criticalthinking,goodcommunicationskills,stronganalyticskills,agoodunderstandingoftranslationtheories,astrongsenseofaudience,andsoon.Therefore,itisessentialforeveryprofessionaltranslatortoimprovealltheabove-mentionedabilitiestoachievegreaterattainments.Duetothelackofexperienceandlimitedacademicability,thetranslatorfoundthatalthoughshemaderevisionseveraltimes,therearesomeproblemsinthetranslatedtext,suchasinauthenticexpressions,andtheauthorwillappreciatereaders’commentsandhopeshecandobetter.Inthefuture,thetranslatorwillcontinuetomaintaintherigorousattitudetowardsstudy,paymoreattentiontotranslationpractice,broadenherhorizon,andenhancespecializedquality.Ifirmlybelievethatinthenearfuture,Icanbeanexcellenttranslator.20 ReferencesAntonelli(etal.)(Eds.)(2015).Thewaterweeat.Switzerland:Springer.Halliday,M.A.K.(1978).Languageasasocialsemiotic:Thesocialinterpretationandmeaning.London:EdwardArnold.House,J.(2014).Translationqualityassessment:pastandpresent.London:Routledge.Mohammed,Dore.(2015).Globaldrinkingwatermanagementandconservation.Switzerland:Springer.Munday,J.(2001).Introducingtranslationstudies:theoriesandapplication.London:Routledge.Newmark,P.(1988).Atextbookoftranslation.UnitedKingdom:LondonPrenticeHallInternationalLtd.OECD.(2012b).Wateroutlookto2050:TheOECDcallsforearlyandstrategicaction.InGlobalwaterforum,Marseilles2011.[On-line].13April,2016.Available:http://www.globalwaterforum.Reiss,K.(1971/2000).Translationcriticism:potentialsandlimitations.Manchester:St.Jerome.WorldHealthOrganization.(2011).Guidelinesfordrinking-waterquality.Malta:WHOPress.Younos,Tamim(etal.).(2014).Portablewater:emergingglobalproblemsandsolutions.Switzerland:Springer.北京公众健康饮用水研究所.(2013).中国居民饮水指南.北京:中国质检出版社,中国标准出版社.李长栓.(2004).非文学翻译理论与实践.北京:中国对外翻译出版公司.刘宓庆.(2005).新编当代翻译理论.北京:中国对外翻译出版公司.刘宓庆.(2006).中西翻译思想比较研究.北京:中国对外翻译出版公司.卫生部卫生标准委员会.(2010).GB5749-2006生活饮用水卫生标准应用指南.北京:中国标准出版社.夏廷德.(2006).翻译补偿研究.武汉:湖北教育出版社.许渊冲.(2006).翻译的艺术.北京:五洲传播出版社.张南峰.(2004).中西译学批评.北京:清华大学出版社.21 Appendix1:SourceTextChapter1RoleofWaterinHumanLifeAbstractThechallenginganalysisofthesustainabledevelopmentofcivilizationinthetwenty-firstcenturyhasbeendelivered.Theissuesofthewaterinfluenceonglobalecologicalandclimateprocesseshavebeendiscussed.Ithasbeenexaminedthatwateristhebufferoftheplanetanditsimmunesystem.Ithasbeenrevealedarelationshipbetweenthequalityofdrinkingwaterandthelevelofintellectualdevelopmentofaperson,andhis/herhealth.Thewaystomaintainstabledevelopmentofwaterecosystemshavebeenidentified.Currentproblemsrelatedtothequalityofdrinkingwaterworldwidehavebeenhighlighted.Theproblemsofgettingphysiologicallyandgeneticallysafedrinkingwater,andalsopeculiaritiesanddisinfectionproblemsofdrinkingandbottledwaterhavebeencovered.Inthecontextofparticularmagnitudeofthedrinkingwaterqualityadetailedanalysisofthesourcesconditionsofdrinkingwatersupplieshasbeenaffected.KeywordsEcosystem;Sourcesofdrinkingwatersupply;Qualityofdrinkingwater;Physiologicallysafedrinkingwater;Bottledwater;Toxicants;Micromycetes;Disinfection1.1WaterResourcesofthePlanetandTheirQualityThebulkoftheplanet’swaterisconcentratedintheseasandoceansandconstitutesaround31,350millionkm.Thisissaltwater,withanaveragemineralizationof35.0g/l,whichmakesitunsuitablenotonlyfordrinking,butalsoforagricultureneeds.FreshwaterislocalizedmainlyontheNorthandSouthpoles,andinthemountainsintheformofglaciers.Thisresourceconstitutes330–50millionkm.However,thissourceoffreshwaterisalmostunobtainableforhumanuse.3Theearth’sriversandlakescontainabout0.4millionkmoffreshwaterthatisaccessibleformankind.Subterraneanregionsoftheplanethavesubstantialstocksofwater,mainlysalineandsaltones.Atadepthof800mandupto1,600mthewaterresourceconstitutesaround4million22 3km.Thus,ourplanethasonly3%offreshwaterofitstotalamount,withitsbulkinthepackiceoftheArcticandAntarctic.Theresourcesoffreshwateraccessibletohumanconstituteonly30.06%,or0.8millionkm.Atpresent,morethan40countriesoftheworldexperienceanabsolutewaterdeficiency(e.g.theNearEast,Africa,Indochina,andAustralia).AfifthofthepopulationinEuropeandtheAmericasdrinkcontaminatedwater,whichdoesnotmeetinternationalstandardscriterion.AccordingtoWorldHealthOrganization(WHO)officialdata,around80%ofhumandiseasesaroundtheglobearerelatedtotheconsumptionoflow-qualitydrinkingwater[1].ThefirstattemptstoestablishprioritiesforconservationandfunctioningresilientnaturalresourcesweredefinedinthedocumentsoftheUnitedNations(UN)ConferenceinRio-de-Janeiro(June1992)andtheWorldSummitonSustainableDevelopmentinJohannesburg“JohannesburgAgreementonSustainableDevelopment”(August2002)[2].“Everyinhabitantoftheplanethastherighttocleandrinkingwater,”istheformuladeclaredbytheUN[3,4].Thisisahumanestatementwhichisunfortunatelynotsupportedbyanyspecificactions.Anill-advisedeconomy,thepursuitofprofitswithoutaccountingforecologicalproblems,andtheharshcompetitivestruggleofmonopolieshasresultedinthemajorityofsurfaceandundergrounddrinkingwatersupplysourcesbeingdepletedandheavilypolluted.Asaresult,pollutedwaterpenetratesrivers,seas,andoceans.Afourfoldincreaseoftheworldpopulationwithintwentiethcenturyalone—from1.5to6billionpeoplehasdramaticallyexacerbatedthisdeficiencyoffreshwater,whichisusednotonlyfordrinkingpurposes,butalsoforindustrialactivity.Allofthiscombinedhasresultedintheworseningoftheglobalecologicalsituation.Artesiangroundwaterisasourceofdrinkingwaterthatisreliablyprotectedfromhumanimpacts.Wecurrentlyknowofmorethan150differenttypesoffreshwaterandsalinedrinkingwatertreatment.Themostabundantimpuritiesinundergroundwateraretwo-valenceironandmanganese,fluorineions,nitrates,ammonia,hydrogensulfide,hardness,andanincreasedsaltcontent.Normally,theseimpuritiessubstantiallyexceedmaximumallowableconcentrationsfordrinkingwater.Theirpresenceiscausedbynaturalfactorsofageologicalnature.Atthesametime,onehastorememberthathighqualitywaterforhumanhealthshouldcontainawidespectrumof23 micro-impurities,vitallyimportant,biologicallyactiveelements,andnaturalorganiccompounds.Itisthesecompoundsdissolvinginwaterthatprovidesitstaste,smell,transparencyandphysiologicalproperties.Surfacelevelfreshwaterarethesecondmostcommonsourceofthedrinkingwatersupply.However,theglobalnatureofhumanactivitiesinthetwentiethcenturyintermsofindustrialdevelopment,progressinagriculture,transportation,urbanutilities,theformationofmegalopolises,andthegrowthofcitiesandsettlementsresultedinthewide-scalepollutionandcontaminationofsurfacewater.Thecompositionofwastewaterisconstantlychangingduetothesynthesisofnewchemicalsubstances,oftenpossessingtoxic,carcinogenicandmutagenicproperties.Thiscreatedbiologicallydifficulttoremove,whicheffectivelyrulesoutthepossibilityofnaturalandinherentself-purificationofwaterbodies.Onecanidentifythefollowingmosthazardoustypesofpollutantsenteringtheenvironmentwhicheventuallyaffectthewatersupply:Chemicalpollutants−Inorganiccompounds◦Heavymetalions◦Salts◦Toxic,biologicallyactivesubstances−Organiccompounds◦Oilproducts◦Phenols◦Pesticides◦Surfaceactivesubstances◦Chlorine-containingcompounds◦Xenobiotics•Bactericidalandviralpollutants;•Radioactivesubstancesofnaturalandanthropogenicorigin−Isotopesofelements;•Mutageniccompoundsoforganicandinorganicorigin;•Mycoticpollutants.24 Seasandoceansmayservealsoasthesourceofdrinkingwatersupply.Itisknownthattheaveragesaltcontentinwaterconstitutesabout35g/l.Itisnaturalthatsuchwatercannotbeusedfordrinking.Therearevariousapproachesintendedtodesalinatewater.Inpractice,desalinizationtechnologiessuchasdistillation,membrane,andelectrochemicalmethodsareused.AdvantagesanddrawbacksofwaterdesalinationbyreverseosmosisfordrinkingwaterpurposesDesalinationofsea(ocean)waterisoneofthefastestgrowingsectorsoftheeconomy.Theintroductionofreverseosmosistechnologyhashadabigimpactontherapiddevelopmentofdesalination.Reverseosmosisisusedforwatertreatmentandpurificationofdrinkingwaterfromheavymetals,nitrates,nitrites,surfactants,phenols,hardness,organicandmicrobiologicalcontaminants,andorganochlorinecompounds.Atpresent,thisismethodinoneofthemostpopularmethodsofpurifyingdrinkingwater,includingartesianwellwaterfortheindustrialproductionofbottleddrinkingwater.Thereverseosmosismethodofwaterpurificationproduceswaterwhichcontainsvirtuallynocontaminants.Thismethodhasmoreeconomicaloperationandmaintenancethananyothertechnology.Theeffectivenessofusingreverseosmosistechnologyforthedesalinationofseawateristhreetimesmoreeffectiveintermsofenergyconsumptionandthedegreeofpurificationthantheothermethods.Atthesametime,theobviousdisadvantageofreverseosmosisisthelackofselectivityofthemembranestoremovecontaminants.Thismeansthatnotonlytoxicimpuritiesandmicroorganismsareremoved,butalsobeneficialmineralsandmicroelements.Willthiswaterfulfillphysiologicalrequirements?Ofcoursenot!Afterall,purityofdrinkingwaterisnottheonlycriteriaofwaterquality.Alsoimportantistheextenttowhichdrinkingwateristhesourceofelementsnecessaryfornormalbodyfunctioning.Waterobtainedbythereverseosmosismethodcannotbecalleddrinkingwater;onegetssomewhatdistilledwater.25 Fig.1.1EffectofcalciumandmagnesiuminthedrinkingwaterontheincidenceofhypertonicdiseaseTheresultsofstudiesonbiotestingdemineralized(distilled)watershowthatitaffectsboththephysiologicalandintracellularprocessesinthebody(seeChap.6,Sect.6.5).TherequiredpresenceintheoptimaldrinkingwatercontentofcalciumandmagnesiumisconfirmedinFig.1.1.Regionssuppliedbywaterwithalowconcentrationofcalciumandmagnesiumexhibitasignificant(30–40%)increaseoftheincidenceofhypertonicdisease(seeFig.1.1).Itisnecessarytodoadjustmentstothesaltcompositioninwaterobtainedbyreverseosmosis[6].Thisisachievedbytheintroductionofsaltsrequiredfornormalhumanactivity:calcium,magnesium,sodium,andpotassium.Takingintoaccountthisfact,factoriesusingthereverseosmosismethodneedtoprovidespecialmineralizers,inordertorestoretheoptimalmineralcontentofwater.Thus,anartificialformationofwaterfordrinkingpurposesiscreated.Thisisnotthebestoption,butisvitallynecessarywherethereisnoothersourceoffreshwater.Theproofofthefailureofworld’sapproachtoassessingthequalityofdrinkingwaterandnewscientifically-basedapproachestoassessingitsqualityLifeonearthisonlypossibleasaresultofthepresenceofwater.Theemergenceanddevelopmentofbiologicaldiversityonourplanetisduetothepresenceofwater,whichhasuniquephysicalandchemicalproperties.Althoughalmostahundredyearsitisknownthatwater—notasimplecompoundwhereapartofprotiumtherearealsoheavyisotopepatternshowevernoonehaseverthoughtaboutwhytheyexistandwhattheirrole.26 Theuniquepropertiesofwateraredeterminedbyitsisotopecompositionand,firstofall,bytheratioofprotiumanddeuterium.Thenaturalconcentrationofdeuteriumintheworld’soceans,insaltandfreshwatervarieswithintheinterval90–180ppm.Thestableoptima;concentrationofdeuteriuminwaterconstitutes150ppm.Itiswithinthisconcentrationintervalthatourordinarywaterpossessesmaximumbiologicalactivitybothinseaandinfreshwaterbodies.Adecreaseoranincreaseofthedeuteriumconcentrationinwaterresultsinaradicalchangeofitsphysicochemicalandbiologicalproperties[7–9].Wateriscurrentlyviewedfromfundamentallynewpositions.Thecomprehensivestudyofwaterhasyieldedquitenewresults[10].Ithasbeenfoundthatifthedeuteriumconcentrationinwaterisadjustedallideasaboutitsfundamentalpropertiesacceptedtodayarechangeddrastically.Boththemeltingpointandthefreezingpoint,andotherwaterpropertiesaresubstantiallychangeddependingontherelationoftheisotopecompositionofhydrogen.Ifdeuteriumiscompletelyremovedfromwater,thenitwillnotexistonourplanetinitsliquidstate.Consequently,waterstructure,justasallphysicochemicalparameters,isdeterminedbythepresenceofdeuterium.Theresultsregardingtheinfluenceofdeuteriumonwaterpropertiesbecamethebasisforthediscoveryofafundamentallynewmethodformonitoringwaterquality.Herequestionsarise.Whatisdrinkingwater?Howcanthequalityofdrinkingwaterbeassessed?Whataretheoptimalparametersthatwatershouldpossessinordertobecompletelysafeaccordingtobiologicalandphysiologicalpointsofview?Thedevelopmentandthesettingofregulationsandstandardsfordrinkingwaterqualityindifferentcountriessincethelatenineteenthandearlytwentiethcenturieshavechangedfromsimplyregulatingthemacrocomponentsofnaturalwatertomoreinsightfulknowledgeabouttheimpactofanthropogeniccontaminantsandtoxicmicro-componentsofwateronhumanorganisms[11].Inconnectionwiththeworseningoftheecologicalstateofsurfaceandundergroundsources,theissueofwaterqualitycontrol,usedbypeoplefordrinkingpurposes,becamemoreacute[12,13].Asaresultofthelowqualityofdrinkingwater,realthreatstothesanitary-epidemiologicalsituationinvariousregionsoftheplanetcropout.Anincreaseofthequalityofthematterbeingcontrolledinnationalstandardsofvariouscountriesoftheworlddoesnotsolvetheissueofobtainingsafedrinkingwateratcentralized27 water-treatmentstations,either.Allthiscallsforevermoreexpensiveequipmentandthecomplicationoftechnologicalprocesses.Specialattentionshouldbepaidtothefactthatoverthelast2–3decades,anuncontrolledsharpincreaseofchemicalcompoundsintheenvironmenttookplace[11].Whiletheenvironmentexperiencesthesecatastrophicchanges,thequalitycontrolofdozensofsubstancesintapwaterdoesnotguaranteethatitreallyisdrinkableandsafeforhumanhealth.Ahighlevelofatechnogenicloadonwaterbodies,theuseofimperfecttechnologiesofwatertreatmentandsecondarycontaminationofthewaterindistributionnetworksresultsintheingresstothedrinkingwaterofasubstantialamountofinorganicandorganicpollutants,whosejointeffectonthehumanorganismcausestheeffectofsynergismknowninchemistryandbiology,threateninghumanhealth.Inthesituationthereisnopossibilitytoprovidethepopulationofanycountryandcontinentwithqualitydrinkingwaterthatissafeforhumanhealth.Inaddition,drinkingwaterobtainedfromsurfacesourcesisunsafeduetothepresenceinitofmicrotoxins.Asaresultofourresearch,wefoundthepresenceinsurfacewateranddistributionsystemsofmicromycetsofvariousclassesincludingverytoxicones,whicharenotdisinfectedbycurrenttechniquesusedatcentralizedwatertreatmentstations,evenwhenchlorinatedwithhighdoses.Hence,classicapproachestotheassessmentofdrinkingwaterareuseless.Thenotionof“normalizingmaximumallowableconcentrationsindrinkingwaterofdifferenttoxicants”purportedlysafeforhumanhealth,is,asamatteroffact,immoral.1.2QualityofDrinkingWater:ProblemsandSolutionTheharmonicdevelopmentofHomosapiensconcurrentlywiththeplanet’sbiospherecallsfortheimmediatepreventionofenvironmentalpollution.Ourgenerationhaswitnessedqualitativechangesofnaturalanddrinkingwater.Forthefirsttimeinthehistoryofmankind,thenecessityofintroducingqualitystandardsfordrinkingwaterhasappeared.Thesestandardsovertimewereimproved,andnewoneswereintroduced.Substancesbothofnaturalandanthropogenicoriginwerehazardousforhumanhealthandwerestrictlycontrolled.Generalhumanandworldwideapproachestodrinkingwaterqualityevaluationwereestablished.ThefirstcountriesintheworldthatdevelopedstatestandardsfordrinkingwaterqualityweretheUSAandtheUSSR.Owingtoahighlevelofbacterialpollutionofsurfacewater,drinkingwaterweredisinfected28 withchlorine.Thiswasoneofthegreatestmistakesofmankind,sincewateralwayscontainsorganiccompounds.Itschlorinationinevitablyresultsintheformationofverytoxic,mutagenicandcarcinogenicorganochlorinecompounds.Forthefirsttimeinthehistoryofmankind,peoplebegantodrinkchlorinatedwaterhazardousforhumanhealth—technogenicwater!Atthebeginningofthetwentiethcentury,thelevelofsurfacewatercontaminationwithchemicalandbacterialcomponentsdidnotachieveacriticalstate.Therefore,smalldosesofchlorine,usedfordisinfectionofwater,donotleadtotheformationofsubstantialconcentrationsofhazardousorganochlorinecompounds.However,theturbulentdevelopmentofindustry,agriculture,theformationofmegapolises,andadramaticincreaseofthepopulationsizeoftheworld(afourfoldriseoverthetwentiethcentury)resultedinacatastrophiclevelofbacterialandchemicalcontaminationofwatersourcesusedforconditioningdrinkingwater.Itentailedthenecessityofusinglargedosesofchlorineforthedisinfectionofwater.Asaresult,therewasanincreaseintheconcentrationoforganochlorinecompoundsindrinkingwater.Givensuchadangerousfactor,new,moresophisticatedtechnologiesofwatertreatmentbegantobedeveloped.Thesetechnologiesincludepreliminaryfiltrationfromsuspendedparticles,primarychlorination,andchemicalwatertreatmentbycoagulationconcurrentwithaluminum,iron,andflocculantsoforganicandinorganicorigin,thenfiltrationonsandandcarbonfilters.Forsuppressingthedevelopmentofmicroorganismsinpipelines,thewateragainistreatedwithchlorineofsuchaconcentrationthatattheoutletofthefaucetofeveryconsumerthecontentofresidualactivatedchlorinewaswithintherange0.3–0.5mg/dm3.Schematicchlorinedioxide,possessingahigheroxidizingpotential,wasusedinsteadofchlorineinanumberofcountries,accordingtoregulations.Potentialsofsomeoxidantsaregivenbelow:Thecurrenttechnologyhasitsadvantagesanddisadvantages.Advantagesincludethefactthatthedecontaminationprocessoccursmoreeffectively.However,italsomeansthatchlorine29 dioxidemayproduceabroadersetoforganochlorinecompounds.Anespeciallynegativesideoftheabovementionedtechnologiesistheuseofcoagulantscontainingaluminum.Ontheonehand,thisfinalintroductionintotheinitialwaterofmanytypesofcontaminantsisanecessarystageoftreatment.Ontheotherhand,itintroducesanew,verydangerouscontaminationofdrinkingwaterwithresidualaluminumcompounds.Ithasbeencommonknowledgeforalongtimethataluminumionscontainedindrinkingwaterareexceptionallytoxic,andaffecthumanhealth.Severalpublicationsdealwiththisresearch.ThisiswhytheWorldHealthOrganizationfromyeartoyeartoughensitsrequirementsregardingtheconcentrationofresidualaluminumindrinkingwater.Basedonthesetwoimportantprerequisites,namely,thepresenceindrinkingwateroforganochlorinecompoundsandaluminum,Iallowmyselftodiscussdrinkingwaternotastapwater,butastechnogenicwater.Neverbeforehasmankindconsumedwaterfordrinkingpurposeswhichcontainedverytoxicorganochlorinecompoundsandalsoaluminumions,whicharebyproductsofthemodernwatertreatmenttechnology.Contaminationsoftheinitialwaterreachedsuchalevelthatwatertreatmentfacilitiesbuiltincompliancewiththeeffectiveworldstandardsalreadyarenotcapableofpreventingtheingressofsubstancestodrinkingwater.Inthisregardtheirjointeffectbecamearealthreattohumanhealth[14].Allthisresultsinthenecessityofasearchfornewalternativewatertreatmenttechnologies,whoseusewouldmakeitpossibletoobtainsafewater.Here,firstandforemost,oneshouldpayattentiontonatural,ecologicallysafeoxidants,whichcouldbeusedinadvancedtechnologiesforobtaininghighqualitydrinkingwaterfromtheseverelyfouledsources.Earlyinthelastcentury,forthefirsttime,Russianscientistsproposedafundamentallynewapproachinwatertreatmenttechnology—theuseofozoneinsteadofchlorine.TheworldfirstozonizerwasdevelopedinLomonosovMoscowStateUniversityandthefirstozonationstationforwatertreatmentwasbuiltandcommissionedinSt.PetersburgbeforeWorldWarI.Sincethen,manyyearspassedbeforetheworldcommunitystartedtotreatthistechnologywithdueattention.Belowarespecifiedthepotentialoxidantsusedtodayinwatertreatment,whicharethemostpromisingforcreatingnewtechnologies.Theanalysisoftheciteddataisevidenceofthefactthatthemaximumreactivityispossessed30 byahydroxylradical,whichiscapableofoxidizinganyorganiccompoundintocarbondioxideandwater.Itisformedininteractionoftheozonewithwaterorhydrogenperoxidewithwaterbythefollowingmechanism:Inaqueousalkalinesolutionsozone,decomposeswiththeformationofO3-iaccordingtothereactionThentheprocessfollowstheschematicwithseparationoftheanionradicalofatomicoxygenO2-isuperperoxideanionradicalO2-i,andthenmolecularoxygen:Acidconjugatetoanionradical,i.e.radicalHisaweakerdonorofelectronsthan,whileinthesystemThemostactiveparticleistheanionradicalofatomicoxygen.ThereforemanyreactionsofO3-iareactuallyreactionsofO-i.InanaqueoussolutionradicalsO3O2Oarealsoformedinphotolysisorγ-radiolysis.AccordingtoreactivitytheactiveparticlesmaybearrangedinthefollowingseriesIthasbeenfoundthatimpuritiesofhydrogenperoxideproducearatherstrongcatalyticeffectonozonedecomposition.Schematicallyitmaybedisplayedasthefollowing:31 Theresultsofourresearchconfirmedthattheidentifiedprocessesaresubstantiallyacceleratedinthepresenceofcatalysts(bothhomogenousandheterogeneous)andunderultravioletradiation.Itisexactlytheseresultsthatwereusedforcreatingfundamentallynewwatertreatmenttechnologiesforanytypesofpollutantsincombinationwithasetofphysical-chemicalandbiologicalmethods.Theresearchofthekineticsandthemechanismofallprocessestakingplaceinaqueoussystemsprovideduswiththepossibilitytodevelopnotonlynewcomplextechnologies,butnewequipmentforwatertreatment.Thesemethodsmayhelpobtainhighqualitydrinkingwaterfromeffectivelyanysourceofdrinkingwatersupplyasfaraspollutionisconcerned.Theyhaveanexceptionallygreatsignificanceforsolvingtheissueofwaterdisinfectionfromanymicrobiologicalandchemicalsourceofpollution.Weofferthreewaystosolvetheseproblemsintheselectionoftheappropriateparameters—concentration,temperature,pHenvironment,andotherfactors.Thefirstisasimplewatertreatmentwithozoneorhydrogenperoxide.Thesecondisphotooxidativedisinfection:Thethirdisthecombinatedeffectofthreefactorssimultaneously:·Photocatalyticdisinfectionwithozone·Photocatalyticdisinfectionwithhydrogenperoxide:Photocatalyticdisinfectionusingthecombinedeffectsofozoneandhydrogenperoxide:32 •Photocatalyticdisinfectionwithchlorine:Todate,weareunawareofmoreefficientandenvironmentallyfriendlymethodsofwatertreatment.1.3WaterandHumanHealthThewide-scaleuseofchlorineinthetechnologyforcentralizeddrinkingwatersupplystationsisdeterminedbythefollowingthreemainreasons.Theuseofchlorineensures:•Primarydecontaminationofrawwater;•Substantialimprovementofthecoagulationprocesswherebyphyto-andzooplanktonandmanyorganicandinorganicsubstancesareremovedfromwater;•Preventionofthebiologicalfoulingoftreatmentfacilitytanks,filteringmedia,watersystemnetworksandequipment.However,aswasindicatedabove,watertreatmentwithchlorineisaccompaniedbytheformationofawholerangeofhighlytoxichalogen-containingorganiccompoundssuchaschlorinatedmethanes,phenols,aldehydes,ketones,acidsandespeciallyhazardouspolychlorinatedbiphenolsuptodioxins—themosttoxicmatterknownonearth.Manyyearsofmedical-biologicalresearchdemonstratedthatthelongtermuseofsuchdrinkingwaterresultsinanemergenceofneurotoxins,cardiovascularandoncologicaldiseasesofliver,kidneys,andthehematopoieticsystemofhuman,andproducesmutageniceffects.Itisthesecompoundsthatleadtothedevelopmentofimpotence.Therefore,thetechnologyofwaterozonationhasbeenusedincreasinglyinwatertreatmentsystemsallovertheworld.Ozoneasanalternativereagentsimultaneouslyplaysboththeroleofadisinfectantandanoxidant.Inaddition,aswasnotedabove,itpossessesahigheroxidizingpotential,especiallytheproductsofitsinteractionwithwater.Therefore,therateofitsinteractionwithallclassesoforganiccompoundsismuchhigherasisthedepthoftheirdestruction.Itdecolorizeswaterverywell,eliminatesfetidsmellsandodors,removesironandmanganese,suppressesthegrowthofalgae,etc.Atthesametimeoneshouldrememberthattheuseofozone33 inthetechnologyofwatertreatmentispossibleonlyinconjunctionwithotherphysical-chemicalmethods.1.3.1Ecology—theHealthofHumanHavingaddressedalltheaboveproblems,theworld-wideissueofdeterminingthedegreeofriskintheecology–healthsystembecomesahighpriorityone[4].Thehygienicstandardsandregulationsforthelevelsofenvironmentalpollutantseffectivetodayaremostlyofadeclarativenature.Ineachspecificcountry,ineveryregionoftheworld,oneneedstoassesstheprioritiesofpollutantsbytherisklevelstohumanhealth.AssourcesoftheriskIwouldseparatefourfactorsplayingthemostimportantpartinthelifeofhuman:1.Drinkingwater;2.Air;3.Soil;4.Foods.Itisnecessarytocarryoutacomplexmonitoringofallenvironmentalaspects.Whyismonitoringneeded?Firstofall,forfindingprioritypollutantsineachspecificregionthatproducemaximumnegativeimpactonhumanhealth.Certainly,onemayfollowthepathofeliminatingalltypesofpollutions,butthisrequiresfantasticallylargefinancialcosts.Themostexpedientformulaoftheecologicalpolicyineverycountryshouldbethefollowing:mincosts→maxresults,startingfromthatofthehighestpriority,themostdangerouspollutantstohumanhealth.Oneshouldisolatesuchmainprioritiesofrisklevels:•Chemicalpollutants;•Bacterialpollutants;•Radioactiveandisotopicpollutants;•Mutagenicpollutants.Oneshouldnotforgetthatcomplexpollutionoftheenvironmentwithdifferentclassesoftoxicsubstancesveryoftenresultsinsynergismoftheireffects,wheneachtoxicant’sindividualeffectismuchweakerthanablendofdifferenttoxicants.Themostglaringamongtheknownexamplesofthesynergeticeffectisajointpresenceofradioactivematterandasbestos,which34 strengthenthenegativeeffectofeachothersixfold.Asriskindicatorsletuspointsoutthefollowingfivefactorswhosepresencemayhelpunambiguouslyassessthestateoftheenvironment:•Geneticviolations;•Diseaseincidence;•Birthrate;•Deathrate;•Averagelongevity.1.3.2BottledWater:IssueofDisinfectionandPreservationOverthelast2decadesthetechnologyofwaterbottlinganditssalethroughawidenetworkofshopshasbecomeverypopular[14,15].Therearejustafewwhowouldthinkabouttheenormousscientificandtechnicalissuesofpreservingthequalityofsuchwater.Firstofall,thewaterbeingsubjectedtobottlingshouldbeimmaculateintermsofchemical,biologicalandorganolepticindicatorsandinadditionshouldpreserveitsqualitiesinaclosedstate.Wetalkedabouttheissueofwaterdisinfectionabove,buttheissueofitspreservationrequiresamoredetailedconsideration.Carbondioxideisthemostcommonpreservative,whichdilutinginthewater,formscarbonicacid.Thetasteofsuchacidwaterisexperiencedbyeverybodywhodrankaeratedwaterintheirlifetime.Thiswaterisusedforextremesituationsofquenchingone’sthirstratherthanforitssystematicconsumption.Theothereffectivereagentpreservingwaterissilveror,tobemoreaccurate,silverions.Sinceancienttimesthetechnologyofwaterstorageinsilverwarehasbeenknown.Suchwatercanbedrunkwithoutworrysincetheconcentrationofsilverionsismeaningless,butthedisinfectionprocessisratherlengthy.Itcanbeamplifiedathousandtimesusingtheelectrochemicaltechnologyofsilveringwater.However,theexcessivesilverconcentrationisdangerous.Overtimesilverionsareadsorbedonthewallsofthevesselandratherquicklylosetheirdisinfectingproperties.Undertheseconditions,secondarybacterialcontaminationispossible.Unscrupulouscompaniesmayuseaspreservativesspecialchemicalsubstanceswhosefunctionalpropertieshaveeffectssimilartothoseofantibiotics,whichsuppressordestroy35 microorganisms.Thesesubstancespresentenormoushazardforhumanhealth.Theconsumptionofsuchwaterbydrinkingleadstothesterilizationofthedigestivetractcausingaknowndisease—disbacteriosis.Thechemicalnatureofthecontainersusedisaveryseriousissueintheprocessofwaterbottling.Thereareasufficientlylargenumberofinvestigations,whoseresultsareanevidenceofthetoxicityofpolymercontainers(seeChap.6,Sect.6.3).Thesafestcontainersareglassware,glasscontainers,enameledandceramicware.1.4“Green”ChemistryThecontemporaryworldearlyinthetwentiethcenturyfounditselfonthevergeoftheglobalecologicalcrisis,whichthreatenstheveryexistenceofcivilization.Industrialproductionstillremainshigh-waste.Thatiswhyanewsciencehasappearedandcontinuestodevelopeffectively.Thisisthescienceofecologicaleconomy,whichtriestounitesocial,economic,andecologicalsystems.Ecologicaleconomyshouldtakeintoaccountecologicalcostswhenassessingtheeconomicperformanceofproduction.Amoderneconomyshoulddevelopwhileaccountingfortheecologicalfactor.Itisquiteclear:thecorrectionoftheunfavorablesituationthathastakenshapedoesnotlooktobeaneasyorquicklyresolvedissue.Thisresultsfromtheimpossibilityofallocatingsufficientinvestmentsforthesolutionoftheecologicalissuesfacingmankind.Intheworldsciencethisareaofscienceandtechnicalinvestigationshasbeenreferredtoas“greenchemistry”.Whenwetalkaboutdrinkingwaterqualitywe,firstofall,shouldthinkandcareaboutthequalityofdrinkingwatersupplysources,andthisisalmosttheentirewaterbasinoftheplanet.Thesolutiontotheexistingissueofprotectingthewholeecosystemfromtheproductsofthemankind’slifeactivityliesinthequestforfundamentallynewtechnicalsolutions.Thesesolutionsaimnotonlytoovercometheconsequences,butshouldpreventthecauses,leadingtotheunfavorableecologicalaftermath.Themostwidelyknownwatercontamination,referredtoaswater“color,”iscausedbyblue-greenalgae—cyanobacteria.Animportantadverseinfluenceonthewaterbasinisrelatedtotheirabilitytosynthesizebiologicallyactivesubstancespossessingveryhightoxicity.Theingresstowaterofsuchbiogenicelementsasphosphorus,nitrogen,potassium,sulfurandalsoorganic36 matterfromindustrial,domestic,rainfallandwastewateroftheagriculturalproductioncreatedtheprerequisitesforintensivedevelopmentofalgaeofvarioussystematicgroups,whichresultsintheformationofwater“color”ofvariousdegrees.Thefactsoftheformationoftoxinsbythealgaehavebeenknownforaratherlongtime,asearlyassincethe1960s,whilethesystematicresearchofthecausesofthisphenomenonandfactorsincreasingthetoxicitystartedabout20yearsago.Themostseriousattentionatpresenthasbeendrawntothetoxicantmicrocystine,whoseproducersarecosmopolitecyanobacteria,causingwater“blooming”inwaterbodiesofvirtuallyofallcountriesoftheworld.Intermsofbiologicalactivity,toxinsofcyanobacteriasurpassbymanytimessuchknownsubstancesasstrychnine,curare,arangeoffungitoxins,andpotassiumcyanide.Theyexceedthetoxicityofpotassiumcyanidebyasmuchas50–1,000times.Suchastrongpoisonascurareexceedsthembyleasttentimes.Hence,itisquiteobviousthatsuchwaterpresentsaseriousthreattothelifeoffish,birds,andhumans.Evenswimmingin“blooming”waterpoolsisdangerousforhumanhealth,nottomentiontheuseofthiswaterasasourceofdrinkingwatersupply.AllthesefactsindicatethenecessityofformingtheGlobalWorldProgramfortheProtectionofthePlanet’sWaterBasinagainstPollution.1.5TheBiosphereandCivilization—theIssueofCompatibilityCompletingtheanalysisofthestateoftheartinthebiosphereindirectlythroughoneofitscomponents—thehydrosphere—anditsinteractionwiththedevelopmentofsociety,theformationofaquitenewartificialreconstructionofthebiosphereintothenoosphereandthenintothetechnosphere,onemay,witharatherhighdegreeofconfidencestatethetransferofthecivilizationtoasomespecialstate.Thebiosphereinitsclassicalstatenolongerexists.Wearewitnessingtheapocalypseofthebiosphere,whichstartedinthemiddleofthetwentiethcentury.Transformingtheenvironment—thebiosphere,whosepartishumanhimself—societyunderestimatedthefactthatcreatingthetechnogenicenvironmentbyitsexistenceviolatesthebasiclawsofthebiosphere,thelawsoftheuniverse.Nowadaysweliveinthetransitionperiodofthecoexistenceoftwoworlds—thebiosphereandthenoosphere.Thereisnoreturntothebiosphere.Manasacreatureofthebiosphereorigin37 shouldfindnewwaysforhissurvivalanddevelopment.Thegenepoolofthebiospherehasstartedtointensivelyrearrangeitself—theturbulentprocessofevolutionhasbegun,whichhasgivenbirthtoecologicalchangesonaglobalscale.Massextinctionoftheexistingspeciesandemergenceofnewonesisobservedacrosstheboard.Especiallyintensiveistheevolutionofinfections.Thisisevidencedbyawidelyknownfactoftheadaptationofpathogenicmicrofloratoantibiotics.Thisisanillustrativemanifestationofmutagenesis—theemergenceofanew,earlierabsentquality—resistancetoantibiotics.Complexgenomesarecreatedbynatureduringmillionsofyears,whileinmodernlaboratoriestheyarecreatedwithinayear.Manhasdesignedanewartificialhabitat—thetechnosphere,keptsafefromallbiologicalprocessesofthebiosphere,withoutconnectionwithwhichhesimplycannotexist.Theissuesofnuclearenergyanditsimpactontheenvironmentbearacomplexnature.Sincetheradioactivityphenomenahavebeendiscovered,theirreversibleprocessesofdramaticincreaseofbackgroundradiationallovertheplanethavebeenseen[16].Theintensivedevelopmentofthenuclearindustryledtotheemergenceofaconsiderablenumberofobjectspresentingpotentialradiationdanger:nuclearpowerplantswithreactorsofvarioustypes,chemicalminingplants,andplantsforprocessingnuclearfuel.Theradionuclidecompositionofpollutantsemittedtotheenvironmentduringtheoperation,andalsoinemergencysituationssubstantiallydiffer,whichmakestheuseofasingleflowchartofpurificationimpossibleinallmentionedcases.Amongthenumerousaspectsofprotectingthewaterbasinfromtechnogenicpollutants,oneofthemostimportantaspectsisachievingtheeffectivepurificationofvarioustypesofpollutants,includingradioactivepollutants.Achievementofthistaskishamperedbythegeneralworseningoftheecologicalsituation,accompaniedbytheappearanceinthewaterofaneverlargeramountofvarioustoxicantsoforganicandinorganicnature.Togetherwiththenecessityofdevelopmentandtheemploymentofmorecomplexandsophisticatedtechnologiestoachievepurificationlevelstomeettheexistingstandards,thisbegsthequestionoftheapplicablerangeofthestandardsthemselves.Heretheeverincreasingrestraint,whichcurrentlymanifestsitself,despitethesufficienttheoreticalandpracticalsubstantiation,atthemomentofadoption,isdeterminedbyinsufficientaccountingofthepossibilityforaggravationoftheadverseinfluenceoftoxicantsonliveorganismintheirsynergeticeffect.Thesynergeticeffectofpollutantsofvarioustypesand38 radionuclidesseemstobeoneofthemostdangerousforhumanhealth.Theadverseeffectofradioactiveelementsoftheenvironmentisofacomplexnature.Despitethefactthatitiswellstudied,theissueoftheprocessingandburialofradioactivewastes,whichtodaylike“anuclearGene”areeitherontheseabottomorintheminesunderearthandarewaitingfortheirtime,isstilloutstanding.Thereisonemoreaspectofthisissuewhichhasnotbeensufficientlystudiedyet.Imeantheissueoftheimpactofnonradioactiveisotopesonthedevelopmentofbiologicalobjectsand,firstofall,hydrogenisotopes,inparticular,deuterium.Theimpactoftheisotopiccompositionofsubstancesonkineticcharacteristicsofnumerousreactionshasbeenknownforalongtime.Itturnsoutthatdeuteriumstronglyaffectsthechemicalparametersofchemicalandbiologicalprocessessinceitformsastrongerconnectionwithoxygeninawatermolecule,unlikelighthydrogen—protium.Itisalsoknownthatanincreasedconcentrationofdeuteriumindrinkingwaterresultsinaccelerationoftheorganismagingprocess.Deuteriummanifeststoxicpropertieswithrespecttolivingorganisms[17].Nowadaysoneofthemostseriousissuesisincreasedlevelsofbackgroundradioactivityandanincreaseoftheconcentrationofheavyisotopeswithrespecttotheirlightprototypes.Firstofall,itconcernsvitallyimportantelementssuchashydrogen,oxygenandcarbon,whichareabasisofproteinlifeinourbiosphereandaffectthemechanismofbiologicalevolution.Thus,ecologyasasciencestudied,strictlyspeaking,thestateofthebiosphere,wherehumanisitsindispensablepart.However,today,whenitisquiteobviousthatthebiosphereisbeingtransformed,inanincreasingdegree,tothenoospheretransformingintothetechnosphere,onecannothelptakingintoconsiderationthattheworldhasreallychanged.Itisnecessarytohaveaclearnotionofaplaceofhumaninaquicklychangingworld.Chapter2Life-FormingRoleofWaterintheLatestDiscoveriesandHypothesesAbstractTheanalyticalreviewaboutlife-formingroleofwaterinconjunctionwithitsuniquepropertieswhicharepredicateduponwaterstructurepeculiaritieshasbeenperformed.The39 waterrolehasbeeninvestigatedfromtheperspectiveofdifferentarchebiosisscenariosontheEarth.Specialattentionhasbeenpaidtotheisotopicwatercompositionanddeuteriuminfluenceonwaterstructure,itspropertiesanddestructionofdeoxyribonucleicacid.Theisotopiccompositionandpropertiesofheavy,lightandubiquitouswaterhavebeenexamined.KeywordsWaterproperties;Waterstructure;Isotopicwatercomposition;Deuterium;Protium;Heavywater;Lightwater;Deoxyribonucleicacid2.1UniquePropertiesofWaterThroughouttheentirehistoryofourplanet’sexistence,waterhasaffectedallaspectsoftheglobe.Itisthismainbuildingmaterial,andtheenvironmentwhichcontainsit,thatensuresthepropagationandevolutionoflifeonEarth.Formanycenturies,scientistshavestudiedthischemicalsubstance,composedofthesimpleformula,H2O,andknownasoneofthesmallestandlightestmolecules.Despiteitssimplicityandsize,watersomehowplaysthemainroleinallbiologicalprocessesandisconsidered“thematrixoflife”.Thelargeheatcapacity,highheatconductionandenormousamountofwaterinorganismscontributestoheatregulationandpreventslocaltemperaturefluctuations,therebyenablingustomoreeasilycontrolourbodytemperature.Thehighlatentheatofevaporationensuresresistancetodehydrationandhighcoolinginevaporation.Water,duetothepolarityofitsmolecules,itshighdielectricconstantanditssmallsizedmolecules,isagoodsolventprimarilyforpolarioniccompoundsandsalts.Ithasuniquepropertiesofhydrationwithrespecttobiologicalmacromolecules(especiallytoproteinsandnucleicacids),whichdeterminetheirthree-dimensionalstructuresand,consequently,functionsinthesolution.Thishydrationcausesgelstoform,whichcanbereversiblysubjectedtothesol–geltransitionlyingbehindmanycellularmechanisms.Waterisionizedandsecuresalightflowofprotonexchangeandistherebyconducivetothevarietyofionicinteractionsinbiology.“Waterisincrediblymulti-faceted,nootherliquidhasthisproperty”,saysF.Gaiger,aleadingwaterexpertfromDortmundUniversity.Hebelievesthat“…theworldofliquidshasbeendividedintotwoparts.Ontheonehand—water,ontheother—allothersubstances”.Tothisdaythereareanumberoffundamentalquestionswithnoconclusive40 answers.Whydoesthissubstancebehave,inmanyrespects,atypically?Whydoeswaterinitscrystallinestate,i.e.intheformofice,havesomany“faces”—15[1]?Fig.2.1FormationofhydrogenBondingThecomplicatedbehaviorofthissubstanceisdeterminedbythestructureofitsmolecules(Fig.2.1).Inthewatermolecule,twoatomsofhydrogenandanatomofoxygenarearrangedatanangleof104.3°toeachother.Owingtotheirelectricpolarity,bothwatermoleculesmaycreateaspeciallinkbetweenthemselves;positivepartialchargesonhydrogenatomsandnegativechargesonoxygenatomsattracteachother,forminghydrogenbridges.Thislinkis20timesweakerthantheonewhichconnectsatomsofhydrogenandoxygeninsideamolecule,butitexceedstheforceofthenormalattractionbetweenthemolecules,theVanderWaalsforce,by60times.Thepresenceofthehydrogenbondinthewaterisnecessary,butitisaninsufficientconditionforexplainingitsmainproperties.Whilethehydrogenbondisanecessarycomponentofthewatermolecule,italonedoesnotrepresentthemainpropertiesofwater.Thiscanonlybedonewhenthestructureofwaterisviewedasasinglesystem[2].LiquidWaterIntermsofstatistics,particlesofwaterinaliquidstateformthreeandahalfhydrogenbridgeswiththeirneighbors.Thesebridgescollapseandlineupagainataperiodicityofabillionthofafractionofamillisecond.In1916,newnotionsaboutthestructureofaliquidwereproposed.ThefirstX-raystructuralinvestigationsofwaterwerecarriedoutin1922byDutchscientistsW.KeeseandJ.deSmedt.Theyprovedthatliquidwaterischaracterizedbytheorderedarrangementofwatermolecules,i.e.,waterhasacertainregularstructure.Thewaterstructureinalivingorganisminmanywaysresemblesthecrystallinestructureofice(Fig.2.2).41 Fig.2.2CrystallinestructureoficeSpecial“adhesiveness”ofamoleculeisareasonwhyH2Oremainsliquidatanextremetemperatureof100°C.Chemicallykindredmaterialsinthissensegothroughheatatthemaximum25°C[1].Everywatermoleculeinthecrystallinestructureoficeisinvolvedintheformationoffourhydrogenbondsdirectedtotheapexesofthetetrahedron(Fig.2.3).Thetetrahedralcentercontainsanoxygenatom,andtwoapexeseachhaveahydrogenatomwhoseelectronsareinvolvedintheformationofacovalentbondwiththeoxygenatom.Tworemainingapexesareoccupiedbypairsofvalenceelectronsfromtheoxygenatom,whichdonottakepartintheformationofintramolecularlinks.Intheinteractionoftheprotonofonemoleculewithalonepairofoxygenelectronsfromtheothermolecule,ahydrogenbondappearsweakerthantheintermolecularlinkbutsufficientlypowerfultoholdtogetherneighboringwatermolecules.Everymoleculemaysimultaneouslyformfourhydrogenbondswithothermoleculesatstrictlydefiniteangles,equaling109°28′.Thesebondsaredirectedtotheapexesofthetetrahedral,whichdoesnotallowthematfreezingtoformadensestructure.ThefirsttheoryonthestructureofwaterwasputforwardbyEnglishresearchersJ.BernalandR.Fowler.Theycreatedaconceptaboutthetetrahedralstructureofwateranddefinedtheroleofhydrogenbondsinwater.Itwasfoundthattherearecovalentandhydrogenbondsinwater.Thecovalentbondsdonotbreakinphasetransitionsofthewater:water–steam–ice.Onlyelectrolysis,aprocessofheatingwateronironandsimilarprocesses,breakwatercovalencebonds.Hydrogenbondsare24timesweakerthancovalencebonds.Inmeltingiceandsnow,hydrogenbondspartiallyremainedinthewater,andinasteamstatetheyareallbroken(Fig.2.4)[2].42 Fig.2.3TetrahedralstructureofwatermoleculesLater,anideawasdeveloped,accordingtowhichliquidwaterwasproposedasapseudocrystal(Fig.2.5);init,individualtetrahedralmoleculesofH2Oaresaidtobelinkedtoeachotherbydirectionalhydrogenbonds,forminghexagonalstructuressuchasintheicestructure.IceIhIntheabbreviationIh,theletterhdenoteshexagonal.Thistypeoficeisdriftinginseasandoceans;itisoneof15typesofthecrystallinestatesofthewaterknowntoday,andthisshapeisencounteredontheEarthmoreoftenthanothers.Themoleculesarearrangedinsuchawaythateachelementhas4neighborstowhichtheyarelinkedbyhydrogenbridges.Asaresult,alatticewithahexagonalbaseisformedbyoxygenatoms[1].X-raycrystallographicresearchcarriedoutbyJ.P.MorganandB.E.Warrenshowedthatastructurelikethatoficeisinherentinwater.Inwater,likeinice,everyatomofoxygenissurroundedbyoxygenatomsasinthetetrahedron.Thedistancebetweenneighboringmoleculesisnotidentical.At25°C,everywatermoleculeintheframeworkhasoneneighboratadistanceof0.277nmandthreeatadistanceof0.294,inaverage0.290nm.Themeandistancebetweenthenearestneighborsofthemoleculeisapproximately5.5%greaterthanbetweentheicemolecules.Theothermoleculesareatdistanceswhichareintermediatebetweenthefirstandsecondneighboringdistances.Thedistance0.41nmisadistancebetweenatomsO–HinanH2Omolecule.Themaindifferencesbetweenthestructureofliquidwaterandthestructureoficeareamorediffusearrangementoftheatomsinthelatticeandadisturbanceoftheremoteorder.Heatfluctuationsresultinthebendingandbreakageofhydrogenbonds.Watermoleculesoftheequilibriumpositionsgetintoneighboringvoidsofthestructureandremainthereforsometime43 sincethesevoidshavethecorrespondingrelativeminimumsofpotentialenergy.Thisleadstoanincreaseinthecoordinationnumberandtotheformationofthelatticedefects,whosepresencedetermineanomalouspropertiesofwater.Thecoordinationnumberofmolecules(thenumberofthenearestneighbors)variesfrom4.4at1.5°Cto4.9at83°C.Fig.2.4Schemeofpartialdestructionandformationofhydrogenbondsaticethawing(hoppingtimeis10–12s.)44 Fig.2.5Waterasapseudo-crystalIceХUnderthewaterpressure,magnified600,000times,watermoleculessnagsotightlyagainsteachotherthatthedifferencesbetweenhydrogenbridgesandconventionalchemicalbondscompletelydisappear.IceXpossessesthegreatestdensityamongknowncrystallineformsofH2O(2.51g/cm3).Itspressureremainshardevenatatemperatureof500°C.Inthegaseousstate,watermoleculescutloosefromeachotherandembarkonasolovoyage.Onlyoccasionallydotheirindividualelementsjoineachotheronthefly.Transformingintosteam,waterabsorbsanenormousamountofenergy—2,258J/g(incomparison,withethanolitisonly854J/g).Duringcondensation,thisenergyisliberatedagain.Thatiswhywatervapormaycauseseriousburns.Whenandintowhatdoeswatertransform?Tohaveamoregraphicpicture,thesedataispresentedinthefollowingform:Nearlyalltemperaturescaleshavetodowithwater,includingKelvin’stemperaturescalewhichisbasedonthetriplepointofwater,definedasexactly273.163Kor0.01°C.ItusesthesamegraduationsasinCelsius’sscale.45 Theabovedatagiveagraphicexampleoftheanomalousbehaviorofwater;forexample,“abnormal”temperaturesofwatermeltingandboilingareshown.However,thisisfarfromtheonlyexampleofwaterabnormality.Thereasonforabnormalpropertiesofwateristhehydrogenbondingandpeculiaritiesofwaterstructure.Thepresentclustermodelofwater(fordetails,seeChap.3)explainsmanyofitsabnormalproperties.Thus,ahydrogenbridge(link)isalinkingelement,anormal,so-called,covalencelinkbetweenonemoleculeandanormallinkforthemoleculeoftheweakVanderWaalsattractionforce.Inawaterdropthemyriadsofparticlesformaninfinitenetworkoftetrahedrons,whilehydrogenbridgesareorganizedintoanorderedsystem.Indoingso,theyareflexibleandcompliant,whichensuresvariationofthewater.Theextremelightnessoficeisrelatedtothefactthathydrogenbridgesweavewatermoleculesinacrystalintovolumetricnetworksinsuchawaythatmuchspaceremainsbetweenparticles.Duringthemeltingphase,theregularnetworkispartiallybrokenandturnsintoliquid,whichincreasesthedensityofthewater.Theaforementionedphenomenoncanbeexplainedbydiscussinghydrogenbonds(bridges).ThediversityofmacroscopicsolidformsofH2Oisreflectedatthemolecularlevel.ThevariantsoftheH2Ocrystalsdemonstratecomplexityandsophisticationwhichcannotbecomparedwithanyothermolecule.Ashasalreadybeennoted,15typesofcrystalsareknown.ChristopherZalzmanfromOxfordUniversityannouncedthelasttwodiscoveriesinMarch2006.Inpaper[3],thesummarizedinformationaboutpropertiesofall15typesofwaterispresented.ThomasLepting,fromtheInstituteofGeneralInorganicandTheoreticalChemistryattheInnsbruckUniversity,hasbeenresearchingicesince1980.“Evenundernormalpressuretherearetwoformsofice”,hestates.Thesearetheso-calledhexagonalandcubicice,IhandIc,respectively.OnEarthhexagonaliceisalmostexclusivelyfound.Snowflakes,icecoveringlakesandpondsandicecubesinaglasswithadrinkconsistofthisice.Itsparticlesformahexagonalstructure.Thebasicformoftheotherkindoficeisacube.Suchcrystalswhichhaveacubicshapecanbefoundonlyathighaltitudesoftheearth’satmosphere,wheredeathlycoldreigns.However,bothvariantsoficeareunitedbyoneproperty—third-dimensionality.Itisnotsimpletoaccountforpossibletypesofcrystallinevarietiesofice.Waterisalsocapableofformingglassyandamorphousforms.Scientistsbelievethat99.9%oficeinspaceisintheamorphousform.Itcoversdustparticlesininterstellarspaceandisincorporatedbycomet46 composition.Thedifferencebetweencrystallineandamorphousiceliesintheirinternalstructures.Inacrystal,watermoleculesarearrangedinaregularwayinalldirectionswithidenticalinterspaces.Intheamorphousstatetheyarechaotic,justasintheliquidstate—asiftheliquidhadsolidifiedinstantaneously.Themostwellknownrepresentativeofsuchformofmattercanbefoundonanordinarywindowpane.Accordingtoonescientificinterpretation,icehasbecomethebasisoflifeontheEarth.Itsflexiblestructuremakesitpossibletofreesuchelementsasnitrogen,oxygenandcarbon.Uponinteractingwitheachother,thesesubstancesformsimplebiomolecules.OnEarth,universalvitrifiedicemaybeobtainedifoverhundredthofafractionofasecondoneisabletodecreasethetemperaturebyhundredsofdegreesCelsiusorinahigh-pressurepress.ApieceoficeobtainedintheInnsbruckLaboratoryunderthepressure9.0GPaatasharpcooldownisinfactamorphousice—HAD(high-densityamorphousice).Externally,itdoesnotdifferatallfromordinaryice,butifitisthrownintoaglassofwater,itwillsinkbecauseitisheavierthanwater.Whenheated,HADistransformedintoonemorevariantofvitrifiedice,which,duetoitslowdensity,wasreferredtoasLAD(low-densityamorphousice).remainsatapproximatelythesametemperature(−38°C).Whenthetemperaturedecreases,the“overcooled”waterbehavesinamorebizarremanner.Scientistsimplythatatatemperatureof−50to+100°Candapressureof200MPathesecondHowever,whenthescientistsheatedHADinthepress,havingincreasedthetemperaturefrom196to+105°C,thesampleshrank.Thiscontradictsthegenerallyacceptedideathatsubstancessubjectedtoanincreasedtemperatureshouldexpand.Thescientiststhereforestatedthattheyhaddiscoveredthethirdvariantofvitrifiedice—veryhigh-densityamorphousice(VHAD).Thestateofthewaterwhenthereisnodifferencebetweenliquidandgasisachievedatthepointwiththetemperature374°Candpressure22.1MPa.Scientistsbelievethatatlowtemperaturessuchapointshouldalsoexist.Underexperimentalconditions,onemanagestolowerthewatertemperatureto−38°C,andinthiscaseitdoesnotfreeze.Suchphenomenonisseemedtobeunrealhoweveritdoesexist.LightcloudsatanaltitudeofseveralkilometersabovetheEarth’ssurfaceformdrops,andliquidcriticalpointshouldbefound(M.Chaplin,see[3]stickstoanotherviewpoint).Belowthismark,incompliancewiththetheory,therearetwovarietiesof47 liquidwaterwithdifferentdensities;atahigherdensity,thesevariantsarenotdistinguished.Itisassumedthattwoformsofice,HADandLAD,correspondnamelytotheseliquidformsaftertheirfastfreezingprocesses.However,theresultisthatwithinonetemperaturerangeinwhich,despitealltricksofexperimentalists,waterdropsalwaysfreeze.Shouldseveralformsofliquidwaterexist[1]?Thisisoneofmanyquestionsforwhichtherestillnoconclusiveanswer.Fig.2.6Relationshipbetweenthespecificvolumeofice,waterandtemperature48 Appendix2:TargetText第一章水在人类生命中的作用摘要:人们已得出一份关于21世纪文明可持续发展的分析报告。报告中讨论了水对全球生态和气候的影响。经证实,水是地球的保护膜和免疫系统。报告还揭示了饮水质量与人类智力和健康发展之间的关系。此外,报告还给出了保持水域系统稳定发展的办法。目前,全球饮用水质问题受到高度重视。这些问题包括如何获取既有益生理又有益基因的安全饮用水,以及饮用水和瓶装水的特质及消毒问题。在关于饮用水质特殊问题的描述中,还包括一份详细的饮用水资源状况分析报告。关键词生态系统;饮用水供应资源;饮用水质量;生理安全饮用水;瓶装水;有毒物质;微真菌;消毒1.1地球上的水资源及水质地球上的咸水资源集中在海洋,约13.5亿立方千米。每升咸水平均含盐35克,因此,咸水既不适合饮用,也不适用于农业。淡水资源主要分布于南北两极,以冰川和冰山的形式存在,约3-5千万立方千米。然而,这部分淡水资源几乎无法供人类取用。地表的河流和湖泊中,可用淡水资源约为40万立方千米。地下水储量十分丰富,但大多含盐。在地底800米到1600米的范围内,地下水储量约400万立方千米。因此,地球上的淡水资源仅为总水量的3%(4200万立方千米),大部分是北极和南极的冰川。而人类可用淡水资源仅为总水量的0.06%,约80万立方千米。目前,全球40多个国家供水严重不足,比如近东、非洲、印度支那、澳大利亚。欧美国家中,五分之一的人饮用不达国际标准的饮用水。从世界卫生组织(WHO)官方数据来看,世界上约80%的人类疾病都和饮用低质饮用水有关。1992年6月,联合国会议在里约热内卢召开,会议第一次尝试建立和运行弹性自然资49 源重点保护系统,并以文件的形式确定下来。2002年8月,可持续发展世界峰会在约翰内斯堡举行,会议通过了《约翰内斯堡可持续发展协定》。联合国宣称:“全球的每位公民都有饮用净水的权利”。然而,这一具有人道主义色彩的宣言,却并未付诸行动。经济政策不周全,一味追求利益,不考虑生态问题,以及垄断组织之间的激烈竞争都可能导致地表、地下饮用水水源大面积枯竭和严重污染。后果就是污染水浸入河流和海洋之中。仅在20世纪,世界人口就增长了四倍,从15亿增长到60亿,人口急剧增长,加剧了淡水资源不足的问题,不仅是饮用水,还包括工业用水。所有这些问题导致全球生态状况恶化。自流地下水是一种未受人类活动影响的饮用水资源。目前,我们掌握了超过150种淡水和盐水处理方法。地下水中的杂质主要有:二价铁(绿矾)、锰、氟离子、硝酸盐、氨、硫化氢、硬物、高含盐物。通常,这些杂质的存在极大地超出了饮用水的最高浓度。这些杂质由地质中的天然因素形成。但同时,我们也应明白,对健康有益且水质高的饮用水中,应包含大量微生物杂质,特别是生物活性元素和天然有机复合物。这些复合物溶解在水中,决定了水的味道、透明度和物理特性。地表淡水是第二个最常见的饮用水供应来源。然而,受上世纪全球人类活动的影响,如工业发展、农业、运输业、城市公共事业的进步、特大城市的形成以及城市和居民定居点的发展,导致了大面积地表水污染。新合成的化学物质使污水成分不断变化,通常还会形成有毒、致癌和诱变的特性。从生物学的角度来讲,这些有害特性难以移除,极大地阻碍了水体本身自我净化功能。人类能够辨别出环境中主要的有害物质,这些物质最终会影响水的供应,如:化学污染物-无机化合物◦重金属离子◦盐◦有毒的活性生物-有机化合物◦石油产品◦酚◦杀虫剂◦表面活性物质50 ◦氯化合物◦有害异物·消毒和病毒污染物·自然或人为放射性物质-同位素·有机或无机诱变化合物·霉菌污染物海洋水也可以是饮用水供应源。众所周知,每升海水的平均含盐量为35克,这样的水自然是不适合饮用的。但海水淡化的方法有很多。在实践中使用的海水淡化技术有蒸馏法、膜技术处理法和电化学法。反渗透海水淡化法的优势和不足:海水淡化业是经济增长最快的行业之一。反渗透技术的引进对海水淡化的快速发展产生过巨大影响。反渗透技术用以处理和净化饮用水中的重金属、亚硝酸盐、表面活性剂、酚类化合物、硬物、有机污染物、微生物污染物和有机氯化物。反渗透技术是目前净化饮用水最常用的方法之一,适用范围包括工业中生产瓶装饮用水的自流井井水。事实上,经反渗透技术处理的饮用水不含污染物。比起其他饮用水净化技术,这种方法运行节能,维护费用低。就能源消耗和净化程度来说,反渗透海水淡化技术的效果是其他淡化技术的三倍。与此同时,反渗透海水淡化技术有一个明显的不足:在过滤污染物时,反渗透膜无法对过滤物进行选择。也就是说,在过滤杂质和微生物的同时,有益矿物质和微量元素也被过滤了。这样的水能满足人的生理需求吗?当然不能!毕竟,水的纯净度不是评价饮用水质量的唯一要求。重要的是,人类身体正常运行一定程度得益于饮用水中的一些元素。通过反渗透法获得的水不能叫做饮用水,而应叫做蒸馏水。51 图1.1饮用水中钙和镁对高渗透性疾病的影响生物监测的研究结果显示,软化水(蒸馏水)会影响生理和细胞构成(见第6章第7节)。图1.1说明优质饮用水应包含钙和镁。在低钙、低镁饮用水地区,患高渗透疾病人口比其他地方明显要多(30–40%)(见图1.1)。通过反渗透技术调整水中盐分的构成很有必要。通过摄入人体活动所需的盐带入钙、镁、钠和钾。考虑到这一事实,工厂在使用反渗透法时需要添加特殊矿物质,以形成最佳矿物质水。因此,就形成了人造饮用水。这并不是最好的选择,但是在没有其他淡水的情况下时是极其必要的。世界上评估饮用水质量失败方法的证据和以科学为依据的新方法。地球上出现生命的唯一可能是因为水的存在。水有其独特的物理和化学性质,因为水的存在,生物多样性才得以存在和发展。近百年来,虽然人们都知道水并不是一个简单的复合物,它与氕分离,具有重同位素分离模式,但没人知道它为何存在,扮演何种角色。水的特性首先由其同位素氕和氘的比率决定。在世界的海洋、盐水和淡水湖泊中,氘的自然浓度变化在90-180ppm之间,氘在水中的最佳自然浓度是150ppm。在90-180ppm的浓度区域内,海水和淡水中的水产生最大生物活性。水中的氘的自然浓度上升或下降会导致物理化学和生物特性的巨变。目前,人们以全新的视角看待水的存在。研究发现,如果改变氘在水中的自然浓度,我们今天所熟知的水的所有基本特性都将发生巨大改变。氢的同位素关系决定了水的融点、凝固点和其他特征,这些特性都将发生大幅度变化。如果将氘从水中完全移除,那么水就不会以液态形式存在于地球。因此,水的结构,也就是所有物理化学参数,是由氘的多少决定的。氘对水的特性的影响成为发现监控水质新方法的基础。问题在于,什么是饮用水?如何评估饮用水的水质?从生物和生理角度来说,完全安全52 的饮用水的最佳参数是什么?自19世纪末20世纪初以来,各国饮用水质规定及标准的发展和设定都发生了变化,最初仅规定了自然水中的常量成分,后来还规定了影响人体器官的人为污染物和有毒常量成分。由于地表及地下生态环境的恶化,水质监控问题,人们的饮水问题,变得更加迫切。饮用水水质不合格带来的结果是地球上不同区域出现卫生疫情的威胁。世界各国提高水质要求,但未能解决如何从水集中处理站获取安全饮用水的问题,这就需要更为昂贵的设备和更为复杂的工艺。需要特别注意的是,在过去二、三十年中,环境中出现了一种不可控且急剧增多的化合物。环境正经历着灾难性变化,自来水中的许多物质的质量控制既不能保证自来水可饮用,也不能保证它对人体健康安全。水体高水平的工艺负载、不成熟的水处理技术和水在分散过程中的二次污染导致了饮用水中大量有机和无机污染物的滋生,这些污染物对人体器官的产生影响,导致化学和生物作用,威胁人类健康。在这种情况下,任何国家、任一大陆的人民都不可能喝到健康有益的引用水。此外,由于微霉素的出现,地表水形成的饮用水也不安全。我们的研究结果显示,地表水和水分散系统中的微霉菌,包括有毒微霉菌,即使用高剂量氯消毒,也不能保证当前集中水处理站使用的设备不被感染。因此,饮用水传统评估方法不起作用。事实上,“饮用水浓度的最大允许限度包含了不同毒质,对人体健康有益”这一理念并不合理。1.2饮用水质:问题与解决方案当前,智人(现代人)与地球生态环境的和谐发展要求立即停止污染环境。我们这一代人已经见证了自然水和饮用水的质量变化。人类历史上首次出现引入饮用水质量标准的必要性。随着时间的推移,这些标准得以提升,同时又有新的标准出现。不论是自然的还是人为的,只要是对人体健康存在危害的物质都受到严格控制。世界通行的评估饮用水质的方法得以确立。美国和前苏联最先建立国家级饮用水质标准。由于地表水受细菌污染程度严重,通常使用氯对水消毒。这是人类最严重的错误之一,因为水中通常含有机复合物。氯化的结果将不可避免地导致有毒、诱变、致癌有机氯化物的形成。在人类历史上,这是首次饮用对人体健康有害的氯化水——工艺水。20世纪初,化学物质和细菌侵入对地表水的污染还没达到严重程度。因此,使用小剂53 量的氯对水进行消毒,不会导致大量有害有机氯化合物的形成。然而,随着工农业迅速发展,特大城市的出现,世界人口的大幅增长(20世纪的4倍多),用以生产饮用水的水源中出现数量巨大的细菌和化学污染物。使用大量的氯对水消毒很有必要。结果,饮用水中有机氯化合物浓度上升。鉴于这一危险因素,新的、更为复杂的水处理技术开始得以发展。这些技术包括悬浮粒子的初步过滤和氯化,通过铝、铁、有机和无机絮凝剂凝固并发的化学水处理方法,然后在砂滤器和碳过滤器上过滤。为抑制水管中微生物的生长,再次使用同浓度的氯对3水进行消毒,水流到每一位居民家的水龙头出口时,剩余活性氯的含量在0.3--0.5毫克/dm的范围内。示意图中的二氧化氯,有着更高的氧化潜力,许多国家规定用二氧化氯代替氯。潜在氧化剂有如下几种:化学物质化学符号氧化电位(eV)氯Cl21.36二氧化氯ClO21.57过氧化氢H2O21.78臭氧O32.07原子氧O2.42羟基HO2.80现有技术有利也有弊。优点在于其使水净化过程更有效。然而,这也意味着二氧化氯可能产生更多的有机氯化合物。上述提到的技术有一个明显的缺点,那就是使用含铝的凝聚剂。一方面,水处理的一个必要环节就是将凝聚剂投入含有多种污染物的初始水中。另一方面,它带来了一种非常危险的新污染物——残余铝化合物。长时间以来,众所周知,饮用水中的铝离子含有剧毒,会影响人体健康。一些发表的文章就和这项研究有关。所以,世界卫生组织(WHO)每年都会加强饮用水中残余铝化合物浓度的检测要求。基于这两个重要的先决条件,即饮用水中的有机氯化合物和铝,我不是将饮用水作为自来水讨论,而是作为工艺水进行讨论。人类从未饮用含有剧毒的有机氯化合物和铝离子饮用水,这是现代水处理技术带来的弊端。初始水的污染达到一定等级,即使是符合全球有效标准的水处理设施也不能阻止饮用水54 中出现杂质。由此可见,污染物和水处理设备的联合效应成为人类健康真正的威胁。所有这些产生的结果就是对水处理新技术的需求,也就是可能获取安全饮用水的需求。首先,人们应该关注自然、生态安全的氧化剂,将其用于先进技术中,从严重污染的水源中获得高质量的饮用水。上世纪初,俄国科学家首次提出了一种全新的水处理技术——用臭氧代替氯。早在第一次世界大战前,罗蒙诺索夫莫斯科国立大学就发明了世界上第一个臭氧产生器,第一个用于水处理的臭氧化站在圣彼得堡建成并投入使用。从那以后,国际社会开始对这项技术给予应有的重视。下面是当今水处理中使用的潜在氧化剂,它们最有可能促使水处理新技术的发明。引用数据的分析证实了氢氧自由基产生最大反应,能够将任何有机化合物氧化成二氧化碳和水。它是由臭氧和水或过氧化氢和水通过以下反应形成的:碱性水溶液臭氧测量仪通过上述反应分解接下来的过程就是图示的原子氧阴离子自由基、超氧阴离子自由基和分子氧的分离:共轭酸到阴离子自由基,例如,H自由基是一种比稍弱的电导体,但在本系统中最活跃的粒子是原子氧阴离子自由基。因此,很多反应实际上是的反应。在水溶液中,自由基可被光分解或γ辐射分解。根据上述反应来看,活性粒子可能会以如下排列出现研究发现,过氧化氢中的杂质会产生一种能分解臭氧的强效催化剂。示意图如下:55 我们的研究结果证实,催化剂(同质和异质)和紫外线辐射大大加速了反应过程。这些结果被用来研发全新的水处理技术,连同一组物理化学方法和生物方法,以排除各类污染物。动力学和所有发生在水系统中的进程机理研究不仅为我们开发严密的新技术提供了可能,而且对水处理新设备的研究也提供了可能。这些方法也许能够帮助我们从受污染的水源中获取高质量饮用水。他们为解决微生物污染水和化学污染水的消毒问题有特别重要的意义。选择适当的参数后,我们提供了解决这些问题的三种途径——浓度、温度、ph值的环境和其他因素。第一种是使用臭氧或过氧化氢的简单水处理方法。第二种是利用感光氧化作用对水消毒:第三种是同时考虑三种因素的联合效应:使用臭氧进行光催化消毒使用过氧化氢进行光催化消毒同时使用臭氧和过氧化氢进行光催化消毒:使用氯进行光催化消毒:到目前为止,我们还没有找到更有效、环保的水处理方法。56 1.3水和人类健康氯在集中供水站的广泛使用是由以下三个主要原因决定的。氯的使用保证了:·原水净化主要环节;·凭借浮游动植物,许多有机和无机物质从水中移除,凝固过程得到实质性的提高;·处理设施水槽、过滤介质、水系统网络和设备的生物污染预防;然而,如上所述,水处理中氯的使用导致一系列剧毒含氯素有机化合物的产生,如氯化甲烷、酚类、醛、酮、酸,尤其是多氯双苯酚这一危险物质转化为二氧(杂)芑——地球上已知毒性最大的物质。多年生物医疗研究表明,长期饮用含氯的饮用水会导致肝、肾脏和人体造血系统中神经毒素、心血管和肿瘤疾病的出现,还会产生诱变效应。饮用水中的这些化合物还会导致阳痿。因此,世界各国相继采用臭氧水净化技术处理饮用水。臭氧作为一种替代试剂同时扮演消毒剂和氧化剂的角色。此外,如上所述,它具有较高的氧化电位,特别是其与水发生反应之后的产物。因此,臭氧与各类有机化合物发生反应的机率比它的破坏程度高很多。它能很好地进行水脱色,消除恶臭气味,去除铁和锰,抑制藻类的生长等。同时,人们应当牢记,水处理技术中臭氧的使用可能只是其他物化方法的一种连同使用物。1.3.1生态——人类健康解决了上述所有问题后,如何确定生态系统风险程度这一全球问题迫在眉睫。如今,环境污染物等级的有效卫生标准和规定大多是声明性的。在世界上每一特定的国家和地区,人们都需要就人体健康对重点污染物进行风险级别鉴定。至于危及人类生活的风险源,我认为最关键的有四点:1.饮用水2.空气3.土壤4.食品对环境实施全面监测很有必要。为什么说监测有必要呢?首先,要找到每个地区中危害人体健康的主要污染物。当然,人们可以通过消除所有污染物来解决这一问题,但成本太高。对各国最有利的生态政策形式如下所示:最小成本→最好的结果,从对人类健康威胁最大、最危险的污染物开始排列。57 人们应该避免接触这些危险系数高的物质:·化学污染物·细菌污染物·放射性同位素污染·诱变污染物人们应该记得,环境中各类污染与不同类型的有毒物质经常会产生联合效应,每种有毒物质的个体效应远远弱于各类有毒物质混合在一起的联合效应。最著名的一个例子就是,放射性物质和石棉的联合效应,他们联合起来的负面影响是单个物质的6倍。风险指标指明,以下五个因素的存在有助于明确评估环境状态:·基因障碍·疾病发生率·出生率·死亡率·平均寿命1.3.2瓶装水:消毒和保存问题在过去二十年里,瓶装水技术得到普遍应用,通过各大商店出售,销量可观。很少有人会想到这类水的保存牵涉到许多科技问题。首先,就化学、生物和感官指标而言,瓶装水是纯净水,应该以封闭状态保存。刚刚我们讨论了水消毒的问题,水的保存问题考虑的因素更细致。二氧化碳是最常见的防腐剂,在水里稀释,形成碳酸,就是人们喝汽水时尝到的那种酸。这种水被用在极度干渴时解渴,而不是为了消费。保存水的另一种有效防腐剂是银,或者更确切地说,是银离子。远古时期,将水存储于银器中,这一储水技术便已为众人所知。由于银离子具有杀菌功能,这种水可以放心饮用,但消毒过程相当漫长。使用电化工技术镀银水,银离子的功能可放大一千倍。但是,银浓度过高却很危险。随着时间的推移,银离子被容器壁吸附,很快便失去消毒功能。在这种情况下,可能会发生继发性细菌污染。不道德的公司可能会使用同等功能的抗生素等特殊化学物质作为防腐剂,这类物质会抑制或破坏微生物的生长。这些物质对人体健康危险极大。饮用此类水会导致消化道有益细菌的减少,造成众所周知的疾病——肠道菌落失调症的出现。58 在瓶装水生产过程中,容器的化学性质是个非常严重的问题。大量研究结果表明,聚合物容器有毒(见第六章第三节)。最安全的容器是玻璃器皿、玻璃容器、搪瓷和陶瓷器皿。1.4生态化学在20世纪初,人们发现自己身处全球生态危机边缘,生态问题危及文明的生死存亡。工业生产污染排放高居不下。这就是一门新的科学出现以及迅速发展的原因。这是生态经济科学,它试图将社会、经济和生态系统联系在一起。现代经济应在考虑生态因素的基础上发展。有一点很明确:要纠正这种业已成型的不利局势不是一件容易的事,也不是短时间就能解决的问题。这个结果的出现是因为不能分配足够的投资用以解决人类面临的生态问题。在科学界,这类科学技术研究被称为“生态化学”。当我们讨论饮用水质量时,我们首先想到和关心的是供水来源质量,也就是几乎整个地球水流域的质量。保护整个生态系统免受人类活动的危害,从根本上说,在于新技术的出现。新技术的出现不仅能够解决问题,还能从根源上遏制此后可能出现的生态问题。最常见的水污染物,被称作水中的“有色物体”,是由蓝绿色的海藻——蓝藻细菌引起的。海藻对水域产生的一个重要的不利影响是,它们可生物合成剧毒活性物质。工业、家用、降水和农业废水中的磷、氮、钾、硫等生物元素和其他有机物流入水中,为各类海藻的集中生长提供了先决条件,从而导致水出现不同程度的“颜色”。早在20世纪60年代,海藻形成有毒物的事实就已为众人所知,但直到20年前,人们才系统研究出现这种现象的原因及毒性增强的原因。目前,微囊藻毒素吸引了人们的主要注意力,微囊藻毒素产生蓝藻细菌,几乎造成世界各国水体“开花”。就生物活动而言,蓝藻细菌的毒性比一般有毒物质,如番木鳖碱、箭毒等一系列真菌毒素和氰化钾大得多。蓝藻细菌的毒性是氰化钾的50-1000倍。就算是箭毒这样的剧毒物质,蓝藻细菌的毒性也至少是它的十倍。因此,这样的水对鱼类、鸟类和人类都是巨大的威胁。即使在“开花”的水中游泳,都会危害人体健康,更别说将这种水作为饮用水供水源了。所有这些事实表明,很有必要成立保护水域免受污染的全球项目。59 1.5生物圈和文明的兼容性问题通过间接分析生物圈的一个组成部分——水圈状态、生物圈和社会发展相互作用、人工重建一个较新的生物圈,使其成为人类圈,进而成为技术圈,人类有足够的信心将文明转变至一个新高度。生物圈传统地位不复存在。我们目睹了始于20世纪中期的生物圈启示。人类改变环境(生物圈,人类自身也是生物圈的一部分),低估了创造工艺环境违背了生物圈基本法则和宇宙规律这一事实。如今,我们生活在生物圈和人类圈共存的转变时期。人类回不到过去的生态圈,作为生物圈起源物种的一类,人类应该找到生存和发展的新方式。生物圈基因库大量重组,曲折的进化过程开始了,全球范围的生态变化已然出现。世界上现有物种大量灭绝,又有新物种出现,尤其是传染病的密集出现。致病微生物能够适应抗生素,这一事实已广为人知。这是一个诱变事例的说明,一种新的、此前不存在的物质,对抗生素有耐药性。大自然经过几百万年创造出的复杂的基因组,在现代实验室一年内就能创造出来。人类设计了一种新的人工居住地——人工圈,保护生物圈所有生物的安全,没有人工圈,生物圈无法存活。核能源和它对环境的影响问题相当复杂。自发现放射性现象后,全球对辐射的关注度急剧上升,且局势不可逆转。核工业的迅速发展导致大量物质出现潜在放射危险:建有各类反应堆的核电站、化矿厂、核燃料加工厂。在工厂运行期间,污染物中的反射性元素排放到环境中,但在紧急情况下大有不同,在上述所有案例中,单一的净化方法是不可行的。保护水域不受工艺污染物污染,可从多方面入手,其中最重要的一方面就是实现各类污染物的有效清洁,包括放射性污染物。这个任务的实现受到阻碍,生态环境普遍恶化,水中出现大量有机有毒物和无机有毒物。为使水质达标,研发更为复杂精良的水处理技术很有必要,这就引发了水处理技术适用标准问题。目前已经得到证实,限制条件不断增加,尽管有大量的理论和实践证明,在采用时,有毒物在协同作用下对活的生物体产生不利影响,情况恶化的可能性预估不足,限制条件便由此决定。各类污染物和放射性核素的协同作用似乎是人体健康最危险的因素。环境中放射性元素的不利影响情况复杂。人们已经深入研究过这个问题,放射性废弃物的处理和填埋问题亟待解决,这些废弃物在今天就像是“一个核基因”,无论被埋在在海底或地底矿山,等到时机成熟,便会产生惊人的威力。放射性废弃物处理问题还有一个方面研究不多。我是指生物发展中的非放射性同位素产生的影响,比如氢的同位素氘。人们早已知晓物质的同位素构成对众多反应的动力学特征影响。60 事实证明氘对化学过程和生物过程中的化学参数影响影响较大,因为它与水分子中的氧联系紧密,不像轻氢——氕。人们也知道饮用水中氘的浓度增加会加速身体机能的衰老过程。氘就体现了它对生物体有毒的属性。当下最严重的问题之一是背景辐射等级增加,对于轻原型而言,重同位素的浓度上升。首先应关注导致问题出现的首要元素,如氢、氧和碳,这些是我们的生物圈生命蛋白质形成的基础,影响生物进化机制。因此,严格来说,生态学是一门科学,人类是生态圈不可缺少的一部分。然而现在我们可以明显看到,生物圈正在大幅被转变为人类圈,进而转变为人工圈,我们不禁联想,世界真的变了。我们要清楚一个概念,人类生存的世界在快速改变。第二章最新发现和假设中水对生命形成的作用摘要:关于水对生命形成的作用的分析性观点已经出现,通过水结构特点的分析,发现水有其独特的特性。人们从不同的角度研究地球上的水,特别注意水的同位素组成和氘对水结构、水的属性和脱氧核糖核酸的解构产生的影响。重水、轻水和一般水的同位素组成和特性已经得到确认。关键词:水特性;水结构;水的同位素组成;氘;氕;重水;轻水;脱氧核糖核酸2.1水的特性纵观地球存在的整个历史时期,水影响了全球方方面面。它是主要的建筑材料,环境中的水为地球上生命的繁殖和进化提供了保障。几百年来,科学家研究过这种化学物质,它是由简单的H2O组成,是我们所认识的最小、最轻的分子。尽管它结构简单、体积不大,但在生物进程中扮演着主要角色的作用,被认为是“生命的母体”。大热容、高导热和生物体中的大量水分有助于热量调节、防止当地温度波动,从而使我们能够更容易地控制体温。水蒸发时潜热通量大,耐脱水和高蒸发冷却。61 由于水分子的两极特性、高介电常数和小尺寸,水是一中理想的溶剂,主要用于制成极性离子化合物和盐。水有其独特的水合性质,水中的生物大分子(尤其是蛋白质和核酸)决定了水的三维结构,因此也决定了它在溶解时的功能。水合作用形成凝胶,在细胞机制背后,许多细胞经历着溶胶到凝胶的转变过程。电离水保证质子交换的进行,从而有利于生物学中的各类离子反应。多特蒙德大学研究水问题的著名专家盖格说:“水的功能多得令人难以想象,其他任何液体都没有这一属性”。他认为,“⋯⋯世界上的水被分成两部分,一方面水就是水,另一方面,水是其他物质。”时至今日,还有许多基本问题没有结论性的答案。为什么这种物质在许多方面表现异乎寻常?为什么水在结晶状态下,如以冰的形式存在,有这么多“面”?图2.1氢键结合的形成水的复杂表现由其分子结构决定(图2.1)。水分子中,两个氢原子和一个氧原子以彼此相隔104.3°排列。由于氢氧原子的电极性,水分子可能在彼此间创建一种特殊联系,氢原子带正极电荷,氧原子带负极电荷,二者相吸形成氢桥。这种联系比水分子内氢氧原子接合弱20倍,但它超过分子间正常吸引的60倍,也就是范德华引力。水中氢键的存在是必要的,但它不足以解释水的主要属性。虽然氢键是水分子的必要组成部分,但它的单独存在却不能阐释水的主要属性。只有当水的结构被视为单一系统时,氢键才能解释水的主要属性。统计资料表明,液态水中的水粒子和周围粒子结合形式三个半氢桥。这些氢桥以每毫秒十亿分之一的周期性破裂重组。在1916年,有人提出液态水结构的新观点。1922年,荷兰科学家W.柯西和J.德·斯密特首先使用X射线对水的结构进行分析。他们证明了液态水中的水分子排列有序,如水的结构有一定的规律可循。生物体中水的结构在很多方面和冰的晶体结构相似(图2.2)。62 图2.2冰的晶体结构水在温度为100°C的极端条件下仍保持液态状,原因在于水分子有特殊的“粘性”。同类化学材料承受最高温度为25°C。冰的晶体结构中,每个水分子都和四个氢键的构成有关,四个氢键分别为四面体的四个顶点(图2.3)。四面体中心包含一个氧原子,两个顶点上分别有一个氢原子,氢原子中的电子和氧原子和共价键的形成有关。氧原子中的对价电子占据着剩余的两个顶点,它们和分子内连接的构成没有关系。一个分子的质子与另一个分子中孤立的氧电子发生反应,氢键连接的连接性能比不上分钟,但足以连接周边的水分子。确切连接角度为109°28′,每个分子可能与其他分子同时形成4个氢键。氢键直接到达四面体顶点处,成功阻止水分子冷冻形成致密结构体。英国研究员J·伯纳尔和R·福勒首次提出水结构理论。他们创造了水的四面体结构概念并定义了氢键在水中的角色。共价键不会介入水的相变中:水—蒸汽—冰。只有电解作用才会打破水共价键,电解作用是一种通过铁对水加热的过程,类似的加热过程也属于电解作用。在冰雪融化时,水中存在部分氢键,水在气态状时,氢键完全被瓦解(图2.4)。图2.3水分子的多面体结构此后,一个新观点出现了,假设液态水是伪晶体(图2.5),在这个伪晶体中,单个的四面体水分子通过定向氢键相互联结,在冰体中形成六边形结构。在冰Ih这个缩写中,字母h代指六边形。这种冰漂浮在海面上,是目前所知15种冰晶63 体之一,并且这种结构的冰晶体比其他结构分布范围更广。分子的排列方式为每个分子周围有四个和氢桥相关的分子。因此,六角晶格由氧原子构成。J.P.摩根和B.E.沃伦关于X射线晶体研究表明,像冰Ih这样的结构是水固有的结构。水中或冰体中的每个氧原子被氧原子包围,像一个四面体。邻近分子间的距离有所区别。在温度25°C时,结构中两个邻近分子间的距离为0.277nm,四个邻近分子间的距离为0.294nm,分子间平均距离为0.290nm。最近分子间的平均距离比冰体中分子间距离大5.5%。其他分子间的距离在第一和第二邻近分子距离之间。在H2O分子结构中,氢氧原子间的距离为0.41nm。水的液态结构和固态结构最主要的区别在于晶格中原子排列更分散,以及远程排列顺序的干扰。热波动导致氢键的弯曲和断裂。平衡位置上的水分子进入邻近的孔隙结构中,并在此停留一段时间,原因在于这些空洞有相应的相对最小势能。这将导致配位数增加和晶格缺陷的形成,进而导致水的异常属性的出现。水的配位数(近邻数量)在1.5°C4.4个到83°C4.9个之间变动。图2.4冰融化时氢键部分破坏和构成图(跳频时间10-12秒)64 图2.5作为伪晶体的水X冰在水的压力下,放大了600,000倍,水分子互相阻碍,氢桥和传统化学键之间的3差异完全消失。在已知水的晶体形式中,X冰密度最大(2.51g/cm)。即使在500°C的高温下,其压力仍然强大。在气态下,水分子割断相互联系,开始独自“航行”。它们只是偶尔在空中连接在一起。水在转变为气体时要吸收大量的能量——2,258J/g(相比之下,乙醇只需要854J/g)。水在凝固时,又将这些能量释放出来。这就是为什么水蒸汽会导致严重烫伤的原因。水什么时候转变形态以及转变为何种形态?为了有一张更形象的图片,数据以如下形式呈现:65 不同条件下水的形态温度°C-50—10004100374在200MPa融点和凝此时水的密标准气压下水高于这个临界的压力下,温点。水凝固度最大的沸点。例如点或压力达到度在时,“爆发在珠峰上,由22.1MPa时,-50—100°C力”一次性于气压低,水水的液态和气范围内,流动急剧上升在70°C就开态之间的差异的水分为密11%始沸腾达到平衡。水度不同的两的形式介于二种结构者之间几乎所有的温标都和水有关,包括基于水的三相点而来的开氏温标,准确测试273.163K到0.01°C之间的温度。它和摄氏温度温标使用相同的刻度。上述数据是对水异常行为的图例说明,例如,上图展示了水达到的融点和沸点时的“异常”温度。然而,这远不是证明水异常的唯一例子。水异常特质的原因是氢键和水结构的特性。水的集群机构(详见第3章)解释水异常表现在很多方面。因此,氢桥(链接)是一个链接元素,它是一个常规的共价链接,一个分子和弱范德华吸引力分子之间的正常链接。一滴水中就有无数粒子来自四面体和四面体的无限网络中,氢桥组织有序。在这一过程中,他们具有灵活性和兼容性,确保水的变化。氢桥将晶体中的水分子编排进体积网络中,粒子间空间得以保留,冰的质量极度轻盈。在融化阶段,常规网络部分破裂,冰融化为水,水的密度增加。通过讨论氢键(氢桥)可以解释上述提到的现象。水的宏观固体形式的多样性是在分子水平上反映出来。H2O晶体变化表明其复杂性是其他分子不能比的。如前所述,我们已经知道晶体的15种类型。牛津大学的克里斯托弗·萨尔兹曼于2006年3月宣布上述两个发现。在论文中,他总结了这15种水的特质并公之于众。自1980年以来,因斯布鲁克大学一般无机和理论化学研究所的托马斯·赖普定一直在研究冰。他说:“两种冰存在标准气压下”,它们就是所谓的六方晶和立方晶,分别是h冰和c冰。地球上可以找到六角冰。雪花,覆盖湖泊和池塘的冰和盛放饮料的玻璃杯中的冰块。其粒子形成一个六角形的结构。另一种冰的基66 本形式是一个立方体。这种立方体形状的晶体只存在于高海拔地区的地球大气层中,那里极度寒冷。然而,冰的各种变体由三维特性连接。解释冰的晶体结构的所有可能类型并非易事。水也能形成透明的非晶体形式。科学家认为宇宙中99.9%的冰以非晶体结构存在,包括星际空间的尘埃颗粒,由彗星组合而成。晶体和无定形冰的区别在于他们的内部结构不同。在一个晶体中,各方位水分子按常规方式,分子间空隙相等。在无定型冰块中,分子乱序排列,就像液态一样,像是液体瞬间凝固了一样。这种形式排列的物质最常见的就是玻璃窗。据科学解释,冰是地球上生命的基础。水的结构灵活,氮、氧和碳等元素得以释放。这些元素相互作用,形成简单的生物分子。在地球上,如果超过每秒千分之几的速度反应,人们能够降低几百摄氏度的温度或利用高压获得常规玻化冰。在因斯布鲁克实验室,在9.0GPa压力下急剧降温,得到的冰实际上是无定形冰HAD(高密度无定形冰)。在外形上,它和其他常规冰并无异样,但如果将其丢入一杯水中,无定形冰会下沉,因为它比水重。将无定形冰加热,它会转化为一种变体的玻化冰,由于其密度低,被称为LAD(低密度无定形冰)。然而,当科学家在高压下加热无定形冰HAD,温度从-196°C上升到105°C,无定形冰收缩。我们普遍认为物质遇高温膨胀,但该实验却和大众接受的观点相矛盾。因此,科学家声称他们发现了第三种变体玻化冰——高密度无定形冰(VHAD)。在温度为374°C、压力为22.1MPa时,水的气态和液态两种状态之间并无区别。科学家认为在低温下这种状态也可能存在。在实验状态下,将水温降低至-38°C,这时候水没有结冰。这种现象看似不真实却实际存在。在地表几千米的天空中,薄云形成雨滴,水在同等温度(−38°C)下仍然保持液体状态。当温度下降时,“冷却水”表现得更为怪异。科学家认为,在压力为200MPa、温度在−50°C到+100°C之间时,可以找到第二关键点(M.卓别林,见第三章的坚持另一个观点)。在此标志下,和这一理论相符,不同密度的液体水有两种变体,密度更高时,这些变体并无区别。假设HAD和LAD两种形式的冰在快速凝结过程后和液体形式相对应,除了实验者使用的各种方法,在一定温度范围内,水滴会凝固。几种形式的水都应该存在吗?这是许多至今尚无确切答案的问题之一。67 图2.6冰、水的体积和温度关系表68'