- 2.89 MB
- 103页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'高校土木综合楼设计第1章绪论1.1结构绪论该计算书主要包括六个部分:毕业设计任务书、框架结构计算部分、横向水平荷载作用下的框架结构的内力和侧移计算、竖向荷载作用下框架结构的内力计算、截面尺寸设计。设计主体是六层框架结构,选择一榀框架计算,框架结构的计算部分包括:梁板柱尺寸的初步确定、重力荷载标准值的计算。横向框架侧移刚度的计算、水平地震力作用下的内力计算与侧移计算和水平风荷载作用下的侧移验算,竖向荷载作用下的框架内力计算,主要包括恒荷载和活荷载作用下的内力计算,内力组合主要是水平地震作用、恒荷载作用、活荷载作用、雪荷载作用、风荷载作用之间的组合,截面设计包括梁的截面设计和柱的截面设计,梁的截面设计包括正截面验算和斜截面验算,柱的截面设计包括轴压比的验算和正截面验算和斜截面验算和结点设计。板的设计采用的是双向板。基础设计包括荷载计算,基础承载力计算,冲剪验算,基础配筋计算。楼梯设计包括梯段设计、平台梁设计、平台板设计、楼梯的配筋计算。1.2基本概况经上级主管部门批准,拟按一般标准建造一栋六层框架结构某高校土木综合楼设计。该工程为钢筋混凝土框架结构,横向框架不少于三跨,总建筑面积不小于5000m2。设计使用年限为50年,结构安全等级为二级,环境类别为一类。抗震设防烈度为7度,设计基本地震加速度值为0.1g,第一组。建筑室内外高差600mm,室外标高即为现有自然地面标高。考虑风荷载设计。1.3结构选型本设计为某高校土木综合楼设计,六层,为现浇混凝土框架、剪力墙结构。抗震设防烈度为7级,结构高度小于55m。1.4结构布置布置的主要工作是合理的确定梁、柱的位置及跨度。本结构形状简单、规则,均匀对称,主要形状为矩形。高宽比小于4。统一柱网和标高。内廊式布置,跨度为3。主梁跨度8.4和7.2。次梁跨度为8.4/3和7.2/3。本建筑设计方案采用框架结构,梁、板、柱、楼面均采用现浇形式。1.5设计题目已知条件题目:某某高校土木综合楼设计根据建筑方案图,本结构为六层钢筋混凝土框架,建筑面积约5686m2其他条件:1.气象资料-103-
高校土木综合楼设计(1)基本风压:ω0=0.40kN/m2(2)基雪压值:s0=0.50kN/m21.水文地质资料场地条件:场地平整,图层分布为:自然地表以下1m内为杂填土,重度γ=17kN/m3;杂填土下为3m厚可塑性粘土,重度为γ=18kN/m3,液性指数IL=0.62,含水率ω=23.1%,天然孔隙比e=0.8,ES=10MPa,ck=20kpa,φk=12度;再下为砾石土层,重度为γ=20kN/m3,液性指数IL=0.50,含水率ω=15.2%,天然孔隙比e=0.8,ES=20MPa,ck=15kpa,φk=18度。未修正前粘土承载力特征值为180kN/m2,砾石土层承载力特征值为300kN/m2。场地土类别为II类,地基基础设计等级为丙级。2.抗震设防烈度:7度3.荷载资料(1)根据建筑荷载规范,确定楼面活荷载为2.0kN/m2(2)不上人屋面:活载标准值为0.7kN/m2(3)屋面构造:防水层、水泥砂浆找平层、现浇钢筋混凝土屋面板、石灰平顶(4)楼面构造:10mm厚1:2水泥砂浆面层压实抹光、20mm厚1:3水泥砂浆层现浇钢筋混凝土楼面板、15mm厚石灰平顶。4.工程地质条件基础埋深范围内无地下水。5.主体结构工程和装饰工程采用现浇混凝土框架结构,肋梁楼盖。混凝土强度等级为C25,钢筋采用HPB300级(箍筋、楼板钢筋)和HRB400级钢筋(梁、柱纵向受力钢筋)。内外墙均采用小型混凝土空心砌块,厚度200mm,重量参见最新《结构荷载设计规范》。需根据建筑设计和结构承重、抗震方面的要求及场地地质条件,合理地进行结构选型和结构整体布置,统一构件编号及各种结构构件的定位尺寸,绘制出结构布置图。-103-
高校土木综合楼设计第2章建筑结构布置和荷载计算2.1确定计算简图取工程横向框架⑥号轴线为一品框架计算单元,框架的计算简图假定底层住下端固定于基础,按工程地质资料提供的数据,场地土类别为Ⅲ类,初步确定工程基础采用柱下独立基础,挖去所有杂土,基础置于第二层可塑性黏土层上,基地标高为-2.100m(初步假定基础高度为0.6m),柱子的高度底层为h1=3.6+2.1-0.6=5.1m,二~六层柱高为3.6m。主节点刚接横梁的计算跨度取柱中心间距离,三跨分别为l=7200、3000、7200。计算简图见图2-12.2梁柱截面尺寸(1)框架柱:边柱A、D轴线柱定为600mm×600mm,中柱B、C轴线柱定为500mm×500mm,其余的如梯柱等为400mm×400mm。(2)梁:横向框架梁AB跨、CD跨:300mm×650mm,BC跨300mm×600mm,纵向连系梁:300mm×500m图2-1计算简图2.3材料强度等级混凝土:均为C25级钢筋:纵向受力筋均为HRB400,板筋及箍筋采用HPB3002.4荷载计算以⑥轴线横向框架为计算分析对象。-103-
高校土木综合楼设计1.屋面横梁竖向线荷载标准值(1)恒载(图2.2a)图2.2a荷载计算简图(a)恒载作用下结构计算简图;(b)活载作用下结构计算简图屋面恒载标准值:50厚架空隔热板0.05×25=0.625kN/m2两毡三油防水层0.4kN/m220厚1:3水泥砂浆找平层0.02×20=0.4kN/m2120(100)厚混凝土现浇板0.12×25=3kN/m2(AB、CD跨板厚取120;BC跨取100)(0.10×25=2.5kN/m2)15厚石灰粉平顶0.015×16=0.24kN/m2屋面恒载标准值:4.665kN/m2(4.165kN/m2)梁自重:边跨AB、CD跨0.3×0.65×25=4.88kN/m梁侧粉刷2×(0.65-0.12)×0.02×17=0.36kN/m5.24kN/m中跨BC跨0.3×0.6×25=4.5kN/m梁侧粉刷2×(0.6-0.1)×0.02×17=0.34kN/m4.84kN/m作用在顶层框架梁上的线恒荷载标准值为:梁自重:g6AB1=g6CD1=5.24kN/m,g6BC1=4.84kN/m板传来的荷载g6AB2=g6CD2=4.665×8.4=39.18kN/mg6BC2=4.165×8.4=34.99kN/m(2)活载(图2-2b)作用在顶层框架梁上的线活荷载标准值为:q6AB=q6CD=0.7×8.4=5.88kN/mq6BC=0.7×3=2.1kN/m-103-
高校土木综合楼设计1.楼面横梁竖向线荷载标准值(1)恒载25厚水泥砂浆面层0.025×20=0.5kN/m2120(100)厚混凝土现浇板0.12×25=3kN/m2(0.10×25=2.5kN/m2)15厚板底粉刷0.015×16=0.24kN/m2楼面恒载标准值3.74kN/m2(3.24kN/m2)边跨(AB、CD跨)框架梁自重5.24kN/m中跨(BC跨)框架梁自重4.84kN/m作用在楼面层框架梁上的线荷载标准值为:梁自重gAB1=gCD1=5.24kN/mgBC1=4.84kN/m板传来荷载gAB2=gCD2=3.74×8.4=31.42kN/mgBC2=3.24×8.4=27.22kN/m(2)活载楼面活载qAB=qCD=2×8.4=16.8kN/mqBC=2×3=6kN/m22.屋面框架节点集中荷载标准值(图2-3)图2-3恒载顶层集中力(1)恒载边跨连系梁自重0.3×0.5×8.4×25=31.5kN粉刷2×(0.5-0.12)×0.02×8.4×17=2.17kN1m高女儿墙1×8.4×3.6=30.24kN粉刷1×2×0.02×8.4×17=5.71kN连系梁传来屋面(含次梁)自重0.5×8.4×0.5×8.4×4.665=70.53kN顶层边节点集中荷载:G6A=G6D=140.15kN中跨连系梁自重0.3×0.5×8.4×25=31.50kN粉刷[(0.5-0.12)+(0.5-0.10)]×0.02×8.4×17=2.23kN连系梁传来屋面(含次梁)自重0.5×8.4×0.5×8.4×4.665=70.54kN0.5×(8.4+8.4-3)×3/2×4.165=43.21kN顶层中节点集中荷载:G6B=G6C=147.37kN(2)活载-103-
高校土木综合楼设计Q6A=Q6D=0.5×8.4×0.5×8.4×0.7=12.348kNQ6B=Q6C=0.5×8.4×0.5×8.4×0.7+0.5×(8.4+8.4-3)×3/2×0.7=19.59kN1.楼面框架节点集中荷载标准值(图2-4)图2-4恒载中间层节点集中力(1)恒载(未考虑填充墙重量)边柱连系梁自重+粉刷31.5+2.17=33.67kN连系梁传来楼面自重0.5×8.4×0.5×7.2×3.74=56.54kN90.21kN中间层边节点集中荷载GA=GD=90.21kN框架柱自重:GA1=GA1=0.6×0.6×3.6×25=32.4kN中柱连系梁自重31.50kN粉刷2.23kN连系梁传来楼面自重0.5×8.4×0.5×7.2×3.74=56.64kN0.5×(8.4+8.4-3)×3/2×3.24=33.53kN123.8kN中间层中节点集中荷载GB=GC=123.8kN柱传来集中荷载GB1=GC1=0.5×0.5×3.6×25=22.5kN(1)活载QA=QD=0.5×8.4×0.5×8.4×2=35.28kNQB=QC=0.5×8.4×0.5×8.4×2+0.5×(8.4+8.4-3)×3/2×2=55.98kN2.风荷载已知基本风压=0.4kN/m2,本工程为市区综合楼,地面粗燥度为C类,那荷载规范ωk=z风载体型系数:迎风面为0.8,背风面为-0.5;因结构高度H=23.4m<30m(从室外地面算起),取风震系数z=1.0,计算结果如下表2-1所示,风荷载图见图2-5风荷载计算表2-1-103-
高校土木综合楼设计层次zZ(m)(kN/m2)A(m2)Pi(kN)61.01.322.20.870.4026.5412.0051.01.318.60.810.4030.2412.3741.01.315.00.740.4030.2411.6331.01.311.40.740.4030.2411.6321.01.37.80.740.4030.2411.6311.01.34.20.620.4032.7610.57图2-5横向框架上的风荷载6.地震作用(1)建筑物总重力荷载代表制值Gi的计算1)集中于屋盖处的质点重力荷载代表值G6:50%雪载0.5×0.65×17.4×50.4=285.1kN屋面恒载4.665×50.4×7.2×2+4.165×50.4×3=4015.41kN横梁(5.24×7.2×2+4.84×3)×7=629.83kN纵梁(31.5+2.17)×6×2+(31.5+2.23)×6×2=808.8kN女儿墙1×3.6×(50.4+17.4)×2=488.16kN柱重0.6×0.6×25×1.8×18+0.5×0.5×25×1.8×10=404.1kN横墙3.6×[7.2×1.8×16+(3×1.8-1.5×2.1/2)×2]=760.26kN纵墙(8.4×1.8-3×2.1/2)×11×3.6+8.4×1.8×3.6×12=1114.72kN(忽略内纵墙的门窗按墙重量算)钢窗3.6×26×2.1×1/2×0.4=39.31kNG6=8542.42kN2)集中于三、四、五、六层处的质点重力荷载代表值G5~G2:50%楼面活载0.5×2.0×17.4×50.4=876.96kN楼面恒载3.74×50.4×7.2×2+3.24×50.4×3=3204.23kN-103-
高校土木综合楼设计横梁629.83kN纵梁808.8kN柱重296.1×2=592.2kN横墙760.26×2=1520.52kN纵墙1114.72×2=2229.44kN窗36.04×2=72.08kNG5=G4=G3=G2=9306.35kN1)集中于二层处的质点重力荷载标准值G1:50%楼面荷载876.96kN楼面恒载3204.23kN横梁629.83kN纵梁808.8kN柱重0.6×0.6×25×(2.6+1.8)×11+0.5×0.5×25×(2.6+1.8)×12=778.80kN横墙760.26+760.26×2.6/1.8=1858.4kN纵墙1114.72+1114.72×2.6/1.8=2724.87kN钢窗36.04×2=72.08kNG1=10953.97kN(1)地震作用1)框架柱的抗侧移刚度:在计算梁、柱线刚度时,应考虑楼盖对框架梁的影响,在现浇楼盖中,中框架梁的抗弯惯性矩取I=2I0;边框架梁取I=1.5I0;I0为框架梁按矩形截面计算的截面惯性矩。横梁、柱线刚度见表2-2。横梁、柱线刚度表2-2杆件截面尺寸EC(kN/mm2)I0(mm4)I(mm4)L(mm)i=EcI/L(kN·mm)相对刚度B(mm)H(mm)边框架梁30065028.06.9×10910.35×10972004.025×1091边框架梁30060028.05.4×1098.1×10930007.56×1091.87中框架梁30065028.06.9×10913.8×10972005.3×1091.32中框架梁30060028.05.4×10910.8×109300010.8×1092.68底层框架柱150050028.05.2×1095.2×10951002.8×1090.69中层框架柱150050028.05.2×1095.2×10936004.1×1091.01底层框架柱260060028.010.8×10910.8×10951005.9×1091.46中层框架柱260060028.010.8×10910.8×10936008.4×1092.08-103-
高校土木综合楼设计每层框架柱总的抗侧移刚度见表2-3框架柱横向侧移刚度D值表2-3项目K=∑ic/2iz(一般层)K=∑ic/2iz(底层)аC=K/(2+K)(一般层)аC=(0.5+K)/(2+K)(底层)D=аC·iz(12/h2)(kN·mm)根数层柱类型及截面二至六层边框架边柱(400×600)0.480.1914.774边框架中柱(400×500)1.370.431.114中框架边柱(400×600)0.630.2418.6610中框架中柱(400×500)3.960.6625.0610底层边框架边柱(400×600)0.680.4411.94边框架中柱(400×500)1.960.6216.474中框架边柱(400×600)0.90.4512.2410中框架中柱(400×500)5.80.8110.4610注:ic为梁的线刚度,iz为柱的线刚度底层:∑D=4×(11.9+16.47)+10×(12.24+10.46)=340.48kN/mm二~四层:∑D=4×(14.77+31.11)+10×(18.66+25.06=620.72kN/mm1)框架自振周期的计算:自振周期为:其中а0为考虑结构非承重砖墙影响的折减系数,对于框架取0.6;Δ为框架定点假想水平位移,计算见表2-4框架定点假想水平位移Δ计算表表2-4层Gi(kN)∑Gi(kN)∑D(kN/mm)δ=∑Gi/∑D(层间相对位移)总位移Δ(mm)685438543620.7213.67385.1359306.317849.3620.7228.75371.3749306.327155.6620.7243.75342.6239306.336461.9620.7258.74299.4729306.345768.2620.7273.73240.3311095456722.2340.48167167-103-
高校土木综合楼设计楼层地震作用和地震剪力标准值计算表表2-5层Hi(m)Gi(kN)GiHiFi=Fn+ΔFn(顶层)Fi=(GiHi/∑GiHi)FEK(1-δn)层间剪力Vi(kN)623.28543197343.3761.13761.13519.59306.3181472.6455.191216.32415.99306.3147970.2371.151587.47312.39306.3114467.5287.121874.5928.79306.380964.8203.082077.6715.11095455865.4140.132217.8地震作用计算1)本工程设防烈度为7度,Ⅲ类场地土,第一组,查《建筑抗震设计规范》,特征周期Tg=0.35аma×=0.08а1=(Tg/T1)0.9аma×=(0.45/0.73)0.9×0.08=0.046结构等效总重力荷载:Geq=0.85×∑Gi=0.85×56722.2=48213.87kNT1>1.4Tg故需考虑框架顶部附加集中力作用δn=0.08T1+0.07=0.08×0.632+0.07=0.12框架横向水平地震作用标准值为:结构底部:FEK=а1Geq=0.046×48213.87=2217.8kNΔFn=δn·FEK=0.12×2217.8=266.14kN∑GiHi=778083.8kN各楼层的地震作用和地震剪力标准值见上表,图示见下图2-6图2-6横向框架上的地震作用-103-
高校土木综合楼设计第3章横向框架内力计算3.1恒载作用下的框架内力1.弯矩分配系数首先计算出本工程横向框架的杆端弯矩分配系数,由于该框架为对称结构,去框架的一般进行简化计算,如下图3-1图3-1横向框架承担的荷载及不平衡的弯矩(a)恒载;(b)恒载产生的不平衡弯矩节点A1:SA1A0=4iA1A0=4×1.46=5.84SA1B1=4iA1B1=4×1.32=5.28SA1A2=4iA1A2=4×2.08=8.32-103-
高校土木综合楼设计节点B1:SB1D1=iB1D1=2×2.68=5.36节点A2:节点B2:节点A3B3A4B4A5B5与A2B2相同节点A6:节点B6:-103-
高校土木综合楼设计2.杆件固端弯矩(顺时针方向为正计算)下图3-2图3-2杆端节点弯矩正方向(1)横梁固端弯矩1)顶层横梁:自重作用:板传来的恒载作用:2)二~六层横梁:自重作用:-103-
高校土木综合楼设计板传来的恒载作用:(2)纵梁引起的柱端附加弯矩(边框架纵梁偏向外侧,中框架纵梁偏向内侧)顶层外纵梁MA6=-MD6=140.15×0.15=21.02kN·m(逆时针为正)楼层外纵梁MA1=-MD1=90.21×0.15=13.53kN·m顶层中纵梁MB6=-MC6=-147.37×0.1=-14.74kN·m楼层中纵梁MB1=-MC1=-121.05×0.1=-12.38kN·m3.节点不平衡弯矩(逆时针方向为正)节点A6的不平衡弯矩:MA6B6+MA6纵梁=-22.64-157.69+21.02=-159.31kN·m节点A1的不平衡弯矩:MA1B1+MA1纵梁=-22.64-126.47+13.53=-135.58kN·m节点B6的不平衡弯矩:MB6A6+MB6D6+MB6纵梁=22.64-3.63+157.69-16.4-14.73=145.57kN·m节点B1的不平衡弯矩MB1A1+MB1D1+MB1纵梁=22.64-3.63+126.47-12.67-12.38=120.34kN·m具体见图3-14.内力计算根据对称原则,,只计算AB、BC跨。在进行弯矩分配时,应将节点不平衡弯矩反号后再进行杆件弯矩分配。节点弯矩使相交于该节点杆件的近端产生弯矩,同时也使个杆件的远端产生弯矩,近端产生的弯矩通过节点弯矩分配确定,远端产生的弯矩由传递系数C(近端弯矩与远端弯矩的比值)确定。传递系数与杆件远端的约束形式有关。恒载弯矩分配过程见图3-3,恒载作用下弯矩见图3-4,梁剪力、柱轴力见图3-5。-103-
高校土木综合楼设计节点分配顺序:(A6.B5.A4.B3.A2.B1)(B6..A5.B4.A3.B1)图3-3恒载弯矩分配过程-103-
高校土木综合楼设计-103-
高校土木综合楼设计根据所求出的两端弯矩,再通过平衡条件,即可求出恒载作用下梁剪力、柱轴力,结果见表3-1~3-4。AB跨梁端剪力(kN)表3-1层q(kN/m)(自重作用)g(kN/m)(自重作用)a(m)l(m)gl/2u=(l-a)×q/2MAB(kN·m)MBA(kN·m)∑Mik/lVA=gl/2+u-∑Mik/lVB=-(gl/2+u+∑Mik/l)639.195.241.47.210.86113.65-95.55125.644.18120.36-128.72531.425.241.47.510.8691.12-143.74133.89-1.37103.35-100.61431.425.241.47.510.8691.12-132.67133.680.14101.84-102.12331.425.241.47.510.8691.12-140.14129.47-1.48103.46-100.35231.425.241.47.510.8691.12-130.17142.771.75100.23-103.73131.425.241.47.510.8691.12-134.26129.22-0.7102.68-101.28BC跨梁端剪力(kN)表3-2层q(kN/m)(板传来荷载作用)g(kN/m)(自重作用)l(m)gl/2l×q/4VB=gl/2+l×q/4VC=-(gl/2+l×q/4)634.995.2437.2626.2433.5-33.5527.224.8437.2620.4227.68-27.68427.224.8437.2620.4227.68-27.68327.224.8437.2620.4227.68-27.68227.224.8437.2620.4227.68-27.68127.224.8437.2620.4227.68-27.68AB跨跨中弯矩(kN·m)表3-3层q(kN/m)(板传来作用)g(kN/m)(自重作用)a(m)l(m)gl/2u=(l-a)×q/2MAB(kN·m)∑Mik/lVA=gl/2+u-∑Mik/lM=gl/2×l/4+u×1.05-MAB-VA×L/2639.195.241.47.210.86113.65-95.554.18120.36-198.88531.425.241.47.210.8691.12-143.74-1.37103.35-113.09431.425.241.47.210.8691.12-132.670.14101.84-118.27331.425.241.47.210.8691.12-140.14-1.48103.46-117.09231.425.241.47.210.8691.12-130.171.75100.23-115.43131.425.241.47.210.8691.12-134.26-0.7102.68-120.16-103-
高校土木综合楼设计柱轴力(kN)表3-4层边柱A轴、D轴中柱B轴、C轴横梁端部压力纵梁端部压力柱重柱轴力横梁端部压力纵梁端部压力柱重柱轴力6柱顶120.36140.1532.4260.51162.22147.3722.5309.59柱底292.91332.095柱顶103.3590.2132.4486.47128.29123.822.5584.18柱底518.87606.684柱顶101.8490.2132.4710.92129.8123.822.5860.28柱底743.32882.783柱顶103.4690.2132.4936.99128.18123.822.51134.76柱底969.391157.262柱顶100.2390.2132.41159.83128.41123.822.51409.47柱底1192.231431.971柱顶102.6890.2145.91385.12128.96123.831.881684.73柱底1431.021716.613.2活载作用下的框架内力1.梁固端弯矩(1)顶层(2)二~四层横梁-103-
高校土木综合楼设计2.纵梁偏心引起柱端附加弯矩(边框架纵梁偏向外侧,中框架纵梁偏向内侧)顶层外纵梁MA6=-MD6=12.348×0.15=1.85kN·m(逆时针为正)楼层外纵梁MA1=-MD1=35.28×0.15=5.29kN·m顶层中纵梁MB6=-MC6=-19.53×0.1=-1.95kN·mMB6=-MC6=-7.25×0.1=-0.72kN·m(仅BC作用活载)楼层中纵梁MB1=-MC1=-55.98×0.1=-5.6kN·mMB1=-MC1=-20.7×0.1=-2.07kN·m(仅BC作用活载)3.本工程考虑如下四种最不利组合(1)顶层边跨梁跨中弯矩最大,见图3-6(2)顶层边柱柱顶左侧及柱底右侧受拉最大弯矩,见图3-7(3)顶层边跨梁梁端最大负弯矩,见图3-8(4)活载满跨布置,见图3-94.各节点不平衡弯矩当AB跨布置活载时:-103-
高校土木综合楼设计当BC跨布置活载时:当AB跨河BC跨均布置活载时:-103-
高校土木综合楼设计5内力计算:采用“迭代法”计算,迭代计算次序同恒载,如图3-10、图3-13、图3-16、图3-19。活载(a)作用下梁弯矩、剪力、轴力如图3-11、图3-12。活载(b)作用下梁弯矩、剪力、轴力如图3-14、图3-15。活载(c)作用下梁弯矩、剪力、轴力如图3-17、图3-18。活载(d)作用下梁弯矩、剪力、轴力如图3-20、图3-21。-103-
高校土木综合楼设计-103-
高校土木综合楼设计-103-
高校土木综合楼设计-103-
高校土木综合楼设计-103-
高校土木综合楼设计-103-
高校土木综合楼设计-103-
高校土木综合楼设计-103-
高校土木综合楼设计-103-
高校土木综合楼设计根据做求出的两端弯矩,在通过平衡条件,即可求出荷载作用下的梁剪力、柱轴力,结果见表3-5~表3-20活载(a)作用下AB跨梁端剪力表3-5层q(kN/m)a(m)u=(7.5-a)×q/2MAB(kN·m)MBA(kN·m)∑Mik/lVA=u-∑Mik/lVB=-(u+∑Mik/l)65.881.417.05-17.0519.230.316.75-17.35501.40.00-1.113.530.34-0.34-0.34416.881.448.95-57.8355.86-0.2749.22-48.68301.40.00-4.583.6-0.140.140.14216.881.448.95-58.5255.75-0.3849.33-48.57101.40.00-2.542.61-0.01-0.01-0.01活载(a)作用下BC跨梁端剪力表3-6层q(kN/m)l(m)gl/4VB=ql/4VC=-ql/46030005634.54.5-4.54030003634.54.5-4.52030001634.54.5-4.5活载(a)作用下AB跨跨中弯矩(kN·m)表3-7层q(kN/m)(板传来荷载)a(m)l(m)u=(l-a)×q/2MAB(kN·m)∑Mik/lVA=u-∑Mik/lM=u×1.05-MAB-VA×l/265.881.47.217.05-17.050.316.75-25.35501.47.20.00-1.110.34-0.342.33416.881.47.248.95-57.83-0.2749.22-67.96301.47.20.00-4.58-0.140.144.08216.881.47.248.95-58.52-0.3849.33-67.67101.47.20.00-2.540.01-0.012.58-103-
高校土木综合楼设计活载(a)作用下柱轴力表3-8层边柱(A轴)中柱(B轴)横梁纵梁柱轴力(kN)横梁纵梁柱轴力(kN)端部剪力端部剪力端部剪力端部剪力616.7512.3529.117.3519.5936.945-0.3435.2864.044.8455.9897.76449.2235.28148.5448.6855.98202.4230.1435.28183.964.6455.98263.04249.3335.28268.5748.5755.98367.591-0.0135.28303.844.5155.98428.08活载(b)作用下AB跨梁端剪力表3-9层q(kN/m)a(m)u=(7.5-a)×q/2MAB(kN·m)MBA(kN·m)∑Mik/lVA=u-∑Mik/lVB=-(u+∑Mik/l)65.881.417.05-21.8521.54-0.0417.09-17.01516.881.448.95-59.3256.34-0.4149.36-48.54401.40-4.213.28-0.130.130.13316.881.448.95-57.9955.15-0.3949.34-48.56201.40-4.93.37-0.210.210.21116.881.448.95-57.2454.94-0.3249.27-48.63活载(b)作用下BC跨梁端剪力表3-10层q(kN/m)l(m)gl/4VB=ql/4VC=-ql/46030005030004634.54.5-4.53030002634.54.5-4.5103000-103-
高校土木综合楼设计活载(b)作用下AB跨跨中弯矩(kN·m)表3-11层q(kN/m)(板传来荷载)a(m)l(m)u=(l-a)×q/2MAB(kN·m)∑Mik/lVA=u-∑Mik/lM=u×1.05-MAB-VA×l/265.881.47.217.05-21.85-0.0417.09-21.77516.881.47.248.95-59.32-0.4149.36-66.98401.47.20-4.21-0.130.133.74316.881.47.248.95-57.99-0.3949.34-68.27201.47.20-4.9-0.210.214.14116.881.47.248.95-57.24-0.3249.27-68.73活载(b)作用下柱轴力表3-12层边柱(A轴)中柱(B轴)横梁纵梁柱轴力(kN)横梁纵梁柱轴力(kN)端部剪力端部剪力端部剪力端部剪力617.0912.3529.4417.0119.5936.6549.3635.28114.0848.5455.98141.1240.1335.28149.494.3755.98201.47349.3435.28234.1148.5655.98306.0120.2135.28269.64.2955.98366.28149.2735.28354.1548.6355.98470.89活载(c)作用下AB跨梁端剪力表3-13层q(kN/m)a(m)u=(7.5-a)×q/2MAB(kN·m)MBA(kN·m)∑Mik/lVA=u-∑Mik/lVB=-(u+∑Mik/l)65.881.417.05-21.5121.650.0217.03-17.07516.881.448.95-59.5756.18-0.4749.42-48.48401.40-4.23.44-0.110.110.11316.881.448.95-57.9755.06-0.449.35-48.55201.40-4.913.37-0.210.210.21116.881.448.95-57.2354.94-0.3249.27-48.63-103-
高校土木综合楼设计活载(c)作用下BC跨梁端剪力表3-14层q(kN/m)l(m)gl/4VB=ql/4VC=-ql/462.131.581.58-1.585030004634.54.5-4.53030002634.54.5-4.5103000活载(c)作用下AB跨跨中弯矩(kN·m)表3-15层q(kN/m)(板传来荷载)a(m)l(m)u=(l-a)×q/2MAB(kN·m)∑Mik/lVA=u-∑Mik/lM=u×1.05-MAB-VA×l/265.881.47.217.05-21.510.0217.03-21.9516.881.47.248.95-59.57-0.4749.42-66.94401.47.20-4.2-0.110.113.8316.881.47.248.95-57.97-0.449.35-68.3201.47.20-4.91-0.210.214.15116.881.47.248.95-57.23-0.3249.27-68.75活载(c)作用下柱轴力表3-16层边柱(A轴)中柱(B轴)横梁纵梁柱轴力(kN)横梁纵梁柱轴力(kN)端部剪力端部剪力端部剪力端部剪力617.0312.3529.2618.6519.5938.24549.4235.28113.9648.4855.98142.740.1135.28149.364.3955.98203.07349.3535.28233.9848.5555.98307.620.2135.28269.474.2955.98367.87149.2735.28354.0248.6355.98472.48-103-
高校土木综合楼设计满跨活载作用下AB跨梁端剪力表3-17层q(kN/m)a(m)u=(7.5-a)×q/2MAB(kN·m)MBA(kN·m)∑Mik/lVA=u-∑Mik/lVB=-(u+∑Mik/l)65.881.417.05-20.6321.620.1416.91-17.19516.881.448.95-62.7758.23-0.6349.58-48.32416.881.448.95-62.9858.66-0.649.55-48.35316.881.448.95-62.9153.26-0.6549.6-48.3216.881.448.95-64.458.55-0.7749.72-48.18116.881.448.95-60.1657.08-0.4349.38-48.52满跨活载作用下BC跨梁端剪力表3-18层q(kN/m)l(m)gl/4VB=ql/4VC=-ql/462.131.581.58-1.585634.54.5-4.54634.54.5-4.53634.54.5-4.52634.54.5-4.51634.54.5-4.5满跨活载作用下AB跨跨中弯矩(kN·m)表3-19层q(kN/m)(板传来荷载)a(m)l(m)u=(l-a)×q/2MAB(kN·m)∑Mik/lVA=u-∑Mik/lM=u×1.05-MAB-VA×l/265.881.47.217.05-20.630.1416.91-22.34516.881.47.248.95-62.77-0.6349.58-64.32416.881.47.248.95-62.98-0.649.55-64316.881.47.248.95-62.91-0.6549.6-64.3216.881.47.248.95-64.11-0.7749.72-63.48116.881.47.248.95-60.16-0.4349.38-66.2-103-
高校土木综合楼设计满跨活载作用下柱轴力表3-20层边柱(A轴)中柱(B轴)横梁纵梁柱轴力(kN)横梁纵梁柱轴力(kN)端部剪力端部剪力端部剪力端部剪力616.9112.3529.2618.7719.5938.36549.5835.28114.1252.8255.98147.16449.5535.28198.9552.8555.98255.99349.635.28283.8352.855.98364.77249.7235.28368.8352.6855.98473.43149.3835.28453.4953.255.98582.433.3风荷载作用下的位移、内力计算1.框架侧移(表3-21)风荷载作用下框架侧移表3-21层次层高hi(m)Pik(kN)Vik(kN)∑D(kN/mm)总侧移Δi(mm)63.6121287.440.143.653.612.3724.3787.440.283.4643.611.633687.440.413.1833.611.6347.6387.440.552.7723.611.6359.2687.440.682.2214.210.5769.8345.41.541.542.层间侧移其中0.85为位移放大系数。3.定点侧移侧移-103-
高校土木综合楼设计相对侧移满足要求4.水平风载作用下框架层间剪力(图3-22)图3-22水平风载作用下框架层间剪力各层柱反弯点位置表3-22层次柱别K6边柱0.63—0100.30.3中柱3.96—0100.450.455边柱0.6310100.370.37中柱3.9610100.50.54边柱0.6310100.40.4中柱3.9610100.50.53边柱0.6310100.450.45中柱3.9610100.500.502边柱0.63101.1700.500.50中柱3.96101.1700.500.501边柱0.90.860—00.650.65中柱5.80.860—00.550.55注:风荷载作用下的反弯点高度按均布水平力考虑-103-
高校土木综合楼设计风荷载作用下框架柱剪力及柱端弯矩表3-23层次h(mm)Vik(kN)∑D柱别DiViyM下M上63.61287.44边柱18.66-2.560.3-2.76-6.45中柱25.06-3.440.45-5.57-6.8153.624.3787.44边柱18.66-5.20.37-6.93-11.93中柱25.06-6.980.5-12.56-12.5643.63687.44边柱18.66-7.680.4-11.06-16.58中柱25.06-10.310.5-18.56-18.5633.647.6387.44边柱18.66-10.160.45-16.46-20.12中柱25.06-13.60.50-24.88-24.8823.659.2687.44边柱18.66-12.650.50-22.77-22.77中柱25.06-17.10.50-30.78-30.7814.269.8345.4边柱12.24-18.830.65-51.4-27.68中柱10.46-160.55-36.96-30.24风荷载作用下梁端、跨中弯矩和剪力表3-24层次柱别M下(kN·m)M上(kN·m)节点左右梁线刚度比边跨梁端弯矩M(kN·m)中跨梁端弯矩M(kN·m)风载作用下梁端剪力边跨梁跨中弯矩(kN·m)左梁右梁VAVB左VB右6边柱-2.76-6.4506.45-1.23-2.03中柱-5.57-6.810.542.394.42-1.23-2.95边柱-6.93-11.93014.69-2.92-4.17中柱-12.56-12.560.546.3611.77-2.92-7.844边柱-11.06-16.58023.51-4.78-6.3中柱-18.56-18.560.5410.9120.2-4.78-13.43边柱-16.46-20.12031.18-6.44-8.05中柱-24.88-24.880.5415.0927.94-6.44-18.62边柱-22.77-22.77039.23-8.14-9.93中柱-30.78-30.780.5419.3835.88-8.14-23.91边柱-51.4-27.68050.45-9.98-14.5中柱-36.96-30.240.5421.439.62-9.98-26.4-103-
高校土木综合楼设计风载作用下柱轴力表3-25层次柱别M下(kN·m)M上(kN·m)风载作用下梁端剪力柱轴力VAVB左VB右NANB6边柱-2.76-6.45-1.23-1.23中柱-5.57-6.81-1.23-2.9-1.675边柱-6.93-11.93-2.92-4.15中柱-12.56-12.56-2.92-7.84-6.594边柱-11.06-16.58-4.78-8.93中柱-18.56-18.56-4.78-13.4-15.213边柱-16.46-20.12-6.44-15.37中柱-24.88-24.88-6.44-18.6-27.372边柱-22.77-22.77-8.14-23.51中柱-30.78-30.78-8.14-23.9-43.191边柱-51.4-27.68-9.98-33.49中柱-36.96-30.24-9.98-26.4-59.55-103-
高校土木综合楼设计-103-
高校土木综合楼设计3.4地震作用下横向框架的内力计算1.0.5(雪+活)重力荷载作用下横向框架的内力计算按《建筑抗震设计规范》,计算重力荷载代表值时,顶层取用雪荷载,其他各层取用活荷载。当雪荷载与活荷载相差不大时,可近似按满跨活荷载布置。(1)横梁线荷载计算顶层横梁:雪载边跨0.65×8.4×0.5=2.73kN/m中间跨0.65×3×0.5=0.98kN/m二~六层横梁:活载边跨16.8×0.5=8.4kN/m中间跨6×0.5=3.0kN/m(2)纵梁引起柱端附加弯矩(边框架纵梁偏向外侧,中框架纵梁偏向走廊)顶层外纵梁:MA6=MD6=0.5×0.65×8.4/2×8.4/2×0.15=0.86kN·m楼层外纵梁:MA1=-MD1=0.5×2×8.4/2×8.4/2×0.15=2.65kN·m顶层中纵梁MB6=-MC6=-0.5×0.65×[8.4/2×8.4/2+(8.4+8.4-3)/2×3/2]×0.100=-0.9kN·m楼层中纵梁:MB1=-MC1=-0.5×2×[8.4/2×8.4/2+(8.4+8.4-3)/2×3/2]×0.100=-2.8kN·m(3)计算简图(图3-25)-103-
高校土木综合楼设计(4)固端弯矩顶层横梁:二~六层横梁:(5)不平衡弯矩(6)弯矩分配计算(采用迭代法)弯矩分配过程如图3-26,0.5(雪+活)作用下梁柱弯矩见图3-27,梁剪力、柱轴力见图3-28。-103-
高校土木综合楼设计根据所求出的两端弯矩,再通过平衡条件,即可求出0.5(雪+活)作用下的梁剪力、柱轴力,计算过程见表3-26~表3-29。-103-
高校土木综合楼设计-103-
高校土木综合楼设计0.5(雪+活)作用下AB跨梁端剪力标准值表2-26层q(kN/m)a(m)u=(7.5-a)×q/2MAB(kN·m)MBA(kN·m)∑Mik/lVA=u-∑Mik/lVB=-(u+∑Mik/l)62.731.47.92-9.759.68-0.017.93-7.9158.41.424.36-30.929.06-0.2624.62-24.148.41.424.36-31.4729.29-0.324.66-24.0638.41.424.36-31.4229.1-0.3224.68-24.0428.41.424.36-31.7729.31-0.3424.7-24.0218.41.424.36-30.7128.23-0.3424.7-24.020.5(雪+活)作用下BC跨梁端剪力标准值表3-27层q(kN/m)l(m)gl/4VB=ql/4VC=-ql/460.9830.740.74-0.745332.252.25-2.254332.252.25-2.253332.252.25-2.252332.252.25-2.251332.252.25-2.250.5(雪+活)作用下AB跨跨中弯矩(kN·m)表3-28层q(kN/m)(板传来荷载)a(m)l(m)u=(l-a)×q/2MAB(kN·m)∑Mik/lVA=u-∑Mik/lM=u×1.05-MAB-VA×l/262.731.47.27.92-9.75-0.017.93-10.8458.41.47.224.36-30.9-0.2624.62-32.1548.41.47.224.36-31.47-0.324.66-31.7338.41.47.224.36-31.42-0.3224.68-31.8528.41.47.224.36-31.77-0.3424.7-31.5718.41.47.224.36-30.71-0.3424.7-33.17-103-
高校土木综合楼设计0.5(雪+活)作用下柱轴力标准值表3-29层边柱(A轴)中柱(B轴)横梁端部压力纵梁端部压力柱轴力(kN)横梁端部压力纵梁端部压力柱轴力(kN)67.935.9513.888.659.6218.27524.6217.6456.1426.3529.5874.2424.6617.6498.4426.3129.58130.09324.6817.64140.7626.2929.58185.96224.717.64183.126.2729.58241.81124.717.64225.4426.2729.58297.662.地震作用下横向框架的内力计算地震作用下框架柱剪力及柱端弯矩计算过程见表3-30、梁端弯矩计算过程见表3-31、柱剪力和轴力计算过程见表3-32,地震作用下框架弯矩见图3-29,框架梁剪力、柱轴力见图3-3-103-
高校土木综合楼设计-103-
高校土木综合楼设计地震作用下框架柱剪力及柱端弯矩表3-30层次层间剪力(kN)总剪力(kN)柱别Di(kN/mm)∑D(kN/mm)Vi(kN)yh(m)M下M上6761.13761.13边柱18.66620.72-22.880.33.6-24.71-57.65中柱25.06-30.730.45-49.78-60.855455.191216.32边柱18.66620.72-36.560.373.6-48.7-82.9中柱25.06-49.10.5-88.38-88.384371.151587.47边柱18.66620.72-47.220.43.6-68.71-103.1中柱25.06-64.090.5-115.4-115.43287.121874.59边柱18.66620.72-56.350.453.6-91.28-111.6中柱25.06-75.680.50-136.22-136.222203.082077.67边柱18.66620.72-62.450.503.6-112.41-112.41中柱25.06-83.880.50-150.9-150.91140.132217.8边柱12.24340.48-79.720.655.1-264.3-264.3中柱10.64-68.130.55-191.1156.36-103-
高校土木综合楼设计地震作用下梁端、跨中弯矩和剪力表3-31层次柱别M下(kN·m)M上(kN·m)节点左右梁线刚度比边跨梁端弯矩M(kN·m)中跨梁端弯矩M(kN·m)风载作用下梁端剪力边跨梁跨中弯矩(kN·m)左梁右梁VAVB左VB右6边柱-24.71-57.65057.65-10.97-18.16中柱-49.78-60.850.5421.3339.51-10.97-26.345边柱-48.7-82.90107.61-21.67-29.6中柱-88.38-88.380.5448.4489.71-21.67-59.84边柱-68.71-103.10151.8-31-40.17中柱-115.4-115.40.5471.46132.32-31-88.213边柱-91.28-111.60180.31-37.3-46.04中柱-136.22-136.220.5488.23163.38-37.3-108.922边柱-112.41-112.410203.69-42.28-51.5中柱-150.9-150.90.54100.7186.4-42.28-124.261边柱-264.3-264.30254.71-50.3-73.5中柱-191.1156.360.54107.7199.51-50.3-133地震作用下柱轴力表3-32层次柱别M下(kN·m)M上(kN·m)风载作用下梁端剪力柱轴力VAVB左VB右NANB6边柱-24.71-57.65-10.97-10.97中柱-49.78-60.85-10.97-26.34-15.375边柱-48.7-82.9-21.67-32.64中柱-88.38-88.38-21.67-59.8-53.54边柱-68.71-103.1-31-63.64中柱-115.4-115.4-31-88.21-110.713边柱-91.28-111.6-37.3-100.94中柱-136.22-136.22-37.3-108.92-182.332边柱-112.41-112.41-42.28-143.22中柱-150.9-150.9-42.28-124.26-264.311边柱-264.3-264.3-50.3-193.52中柱-191.1156.36-50.3-133-347.01-103-
高校土木综合楼设计第4章横向框架内力组合取β=0.9梁进行调幅,调幅计算过程见表4-1弯矩调幅计算表4-1荷载种类杆件跨向弯矩标准值调幅系数调幅后弯矩标准值MloMroM中MlMrM恒载顶层AB-95.55-125.64198.880.9-86-113.08210BC-65.34-65.74-34.050.9-59.16-59.16-27.48六层AB-143.74-133.89113.10.9-129.37-120.5127BC-40.92-40.92-15.050.9-36.83-36.83-10.96五层AB-132.67-133.68118.720.9-119.4-120.3132.04BC-48-48-22.130.9-43.2-43.2-17.33四层AB-140.14-129.47117.090.9-126.13-116.52130.57BC-48.61-48.61-22.740.9-43.75-43.75-17.88三层AB-130.17-142.77115.430.9-117.15-128.49129.04BC-37.84-37.84-11.970.9-34.06-34.06-8.2二层AB-134.26-129.22120.160.9-120.83-116.3133.28BC-56.09-56.09-30.220.9-50.48-50.48-24.61活载(a)顶层AB-16.05-21.0825.350.9-14.45-18.9727.2BC-8.41-8.41-8.410.9-7.57-7.57-7.57六层AB-1.11-3.53-2.330.9-1-3.18-2.1BC3.113.117.610.92.82.87.92五层AB-57.83-55.8667.960.9-52.05-50.2773.64BC-21.49-21.49-21.490.9-19.34-19.34-19.34四层AB-4.58-3.6-4.080.9-4.12-3.24-3.67BC3.813.818.310.93.433.438.69三层AB-58.52-55.7567.670.9-52.67-50.1873.38BC-21.45-21.45-21.450.9-19.3-19.3-19.3二层AB-2.54-2.61-2.580.9-2.29-2.35-2.32BC4.384.386.070.93.943.946.5活载(b)顶层AB-21.85-21.5421.770.9-19.67-19.3923.94BC-4.79-4.79-6.170.9-4.31-4.31-5.69六层AB-59.32-56.3466.980.9-53.39-50.772.76BC-19.34-19.34-19.340.9-17.48-17.48-17.48-103-
高校土木综合楼设计荷载种类杆件跨向弯矩标准值调幅系数调幅后弯矩标准值MloMroM中MlMrM活载(b)五层AB-4.21-3.28-3.740.9-3.79-2.95-3.37BC-3.89-3.898.390.9-3.5-3.58.78四层AB-57.99-55.1568.270.9-52.19-49.6473.93BC-21.08-21.08-21.080.9-18.97-18.97-18.97三层AB-4.9-3.37-4.140.9-4.41-3.03-3.73BC4.434.438.930.93.993.998.49二层AB-57.24-54.9468.730.9-51.52-49.4573.34BC-22.76-22.76-22.760.9-20.48-20.48-20.48活载(c)顶层AB-21.51-21.6521.90.9-19.36-19.4924.06BC-5.42-5.42-4.440.9-4.88-4.88-3.9六层AB-59.57-56.1866.940.9-53.61-50.5672.73BC-19.47-19.47-19.470.9-17.52-17.52-17.52五层AB-4.2-3.44-3.80.9-3.78-3.1-3.42BC3.923.928.420.93.533.538.81四层AB-57.97-55.0668.30.9-52.17-49.5573.95BC-21.42-21.42-21.420.9-19.28-19.28-19.28三层AB-4.91-3.37-4.150.9-4.42-3.03-3.74BC4.454.458.950.94.014.019.4二层AB-57.23-54.9468.750.9-51.5-49.4474.36BC-22.77-22.77-22.770.9-20.49-20.49-20.49活载(d)顶层AB-20.63-21.6222.340.9-18.57-19.4624.45BC-5.94-5.94-4.360.9-5.35-5.35-3.77六层AB-62.77-58.2364.320.9-56.5-52.470.37BC-18.72-18.72-14.220.9-16.85-16.8512.35五层AB-62.98-58.66640.9-56.68-52.7970.08BC-18.13-18.13-13.630.9-16.32-16.32-11.82四层AB-62.91-58.2664.30.9-56.62-52.4369.61BC-18.05-18.05-13.550.9-16.25-16.25-11.75三层AB-64.11-58.5563.480.9-57.7-52.769.61BC-17.64-17.64-13.140.9-15.88-15.88-11.38二层AB-60.16-57.0866.20.9-54.14-51.3772.06BC-21.7-21.7-17.20.9-19.53-19.53-15.03-103-
高校土木综合楼设计荷载种类杆件跨向弯矩标准值调幅系数调幅后弯矩标准值MloMroM中MlMrMlo0.5(活载+雪载)顶层AB-9.75-9.6810.480.9-8.78-8.7111.45BC-2.67-2.67-1.930.9-2.4-2.4-1.66六层AB-30.9-29.0632.150.9-27.81-26.1535.15BC-9.4-9.4-7.160.9-8.46-8.46-6.22五层AB-31.47-29.2931.730.9-28.32-26.3634.77BC-9.05-9.05-6.810.9-8.15-8.15-5.9四层AB-31.42-29.131.850.9-28.28-26.1934.88BC-9.01-9.01-6.770.9-8.1-8.1-5.89三层AB-31.77-28.2333.170.9-28.6-26.3834.62BC-8.86-8.86-6.620.9-7.97-7.97-5.73二层AB-30.71-28.2333.170.9-27.64-25.436.12BC-10.71-10.71-8.010.9-9.64-9.64-6.94一般组合采用三种组合形式,(见表4-2、表4-4)(1)可变荷载效应控制时:1.2恒k+1.4活k1.2恒k+0.9(活k+风k)×1.4(2)永久荷载效应控制时:1.35恒k+0.7×1.4活k≈1.35恒k+活k考虑地震作用的组合见表4-3、表4-5-103-
高校土木综合楼设计横向框架内力组合(一般组合)(单位M:kN·m;V:kN)表4-2内力组合1.35恒+活-135.77179.58310.7-172.15-191.12-87.4446.8-29.18-87.44-46.8-231.15189.1244.21-213.38-184.361.2恒+0.9(1.4活+1.4风)右风-136.11167.52283.71-157.24-174.78-86.145.84-23-74.96-38.54-244.94190.17238.82-200.47-178.21左风-119.86164.42288.83-163.26-177.87-74.9638.54-23-86.09-45.84-207.92182.81249.33-216.5-185.571.2恒+1.4活-119.86164.42288.83-163.26-177.87-74.9638.54-23-86.09-45.84-207.92182.81249.33-216.5-185.57荷载种类风载右风-6.451.23-2.032.391.23-4.422.904.422.9-14.692.92-4.176.362.92左风6.45-1.232.03-2.39-1.234.42-2.90-4.42-2.914.69-2.924.17-6.36-2.92荷载最大值-19.6717.0927.2-19.49-17.35-7.571.587.92-7.57-1.58-56.549.5872.76-50.7-48.54活荷载d-18.5716.9124.45-19.46-17.19-5.351.58-3.77-5.35-1.58-56.549.5870.37-52.4-48.32c-19.3617.0324.06-19.49-17.07-4.881.58-3.9-4.88-1.58-53.6149.4272.23-50.56-48.48b-19.6717.0923.94-19.39-17.01-4.310-5.69-4.310-53.3949.3672.76-50.7-48.54a-14.4516.7527.2-18.97-17.35-7.5707.92-7.570-1-0.34-2.1-3.18-0.34恒载-86120.36210-210-113.08---------113.08--128.72-59.1633.5-27.48-59.16-33.5-129.37103.35127-120.5-100.61内力MVMMVMVMMVMVMMV截面梁左端跨中梁右端梁左端跨中梁右端梁左端跨中梁右端跨向AB跨BC跨AB跨杆件顶层横梁六层横梁-103-
高校土木综合楼设计横向框架内力组合(一般组合)(单位M:kN·m;V:kN)续表内力组合1.35恒+活-67.2441.87-32.32-67.24-41.87-217.87187.03251.9-215.47-186.54-77.6641.87-42.74-77.66-41.871.2恒+0.9(1.4活+1.4风)右风-81.148.76-35.22-51.44-29-244.32190.66243.3-197.37-177.86-101.6655.77-45.16-50.77-22左风-51.4429-35.22-81.1-48.76-185.07178.62259.17-224.86-189.9-50.7722-45.16-101.66-55.771.2恒+1.4活-68.7239.52-39.87-68.72-39.52-222.63191.58261.54-218.5-190.69-78.9239.52-47.87-78.92-39.52荷载种类风载右风-11.777.84011.777.84-23.514.78-6.310.914.78-20.213.4020.213.4左风11.77-7.840-11.77-7.8423.51-4.786.3-10.91-4.7820.2-13.40-20.2-13.4荷载最大值-17.524.5-17.52-17.52-4.5-56.6849.5573.64-52.79-48.68-19.344.5-19.34-19.34-4.5活荷载d-12.354.5-12.35-16.85-4.5-56.6849.5570.08-52.79-48.35-16.344.5-11.82-16.32-4.5c-17.520-17.52-17.250-3.780.11-3.42-3.10.113.534.58.813.53-4.5b-17.480-17.48-17.480-3.790.13-3.37-2.950.13-3.54.58.78-3.5-4.5a2.84.57.922.8-4.5-52.0549.2273.64-50.27-48.68-19.340-19.34-19.340恒载-36.8327.68-10.96-36.83-27.68-119.4101101.84132.04-120.5-102.12-43.227.68-17.33-43.2-27.68内力MVMMVMVMMVMVMMV截面梁左端跨中梁右端梁左端跨中梁右端梁左端跨中梁右端跨向BC跨AB跨BC跨杆件六层横梁五层横梁-103-
高校土木综合楼设计横向框架内力组合(一般组合)(单位M:kN·m;V:kN)表4-2内力组合1.35恒+活-226.9189.27250.22-209.73-184.24-78.3441.87-43.42-78.34-41.87-215.85185.03247.58-226.16-188.561.2恒+0.9(1.4活+1.4风)右风-261.98194.98239.72-186.87-173.67-11262.32-45.75-41.6-15.45-262.71193.18234.8-196.17-175.41左风-183.4178.53260-224.9-189.9-41.5815.45-45.75-112-62.32-163.85172.67259.81-245-195.91.2恒+1.4活-230.62193.6260.21-213.23-188.58-79.4939.52-48.45-79.49-53.02-221.36189.88257.58-227.97-192.47荷载种类风载右风-31.18-6.44-8.0515.096.44-27.9418.6027.9418.6-39.238.14-9.9319.388.14左风31.18-6.448.05-15.09-6.4427.94-18.60-27.94-18.639.23-8.149.93-19.38-8.14荷载最大值-56.6249.673.95-52.43-48.56-19.284.5-19.28-19.28-4.5-57.749.7273.38-52.7-48.57活荷载d-56.6249.670.36-48.3-48.3-16.254.5-16.25-16.25-4.5-57.749.7269.61-52.7-48.18c-52.1749.3573.95-49.55-48.55-19.280-19.28-19.280-4.420.21-3.74-3.030.21b-52.1949.3473.93-49.64-48.56-18.970-18.97-18.970-4.410.21-3.73-3.030.21a-4.120.14-3.67-3.240.143.434.58.693.43-4.5-52.6749.3373.38-50.18-48.57恒载-126.13103.46130.57-116.52-100.5-43.7527.68-17.88-43.75-27.68-117.15100.23129.04-128.49-103.73内力MVMMVMVMMVMVMMV截面梁左端跨中梁右端梁左端跨中梁右端梁左端跨中梁右端跨向AB跨BC跨AB跨杆件四层横梁三层横梁-103-
高校土木综合楼设计横向框架内力组合(一般组合)(单位M:kN·m;V:kN)续表内力组合1.35恒+活-65.2841.87-30.37-65.28-41.86-217.26188254.28-208.38-185.36-88.6441.86-53.71-88.64-41.871.2恒+0.9(1.4活+1.4风)右风-110.469-34.16-19.58-8.77-276.78198235.35-177.3272.84-136.3172.15-55.35-36.47-5.62左风-19.988.77-34.16-110.4-69-149.65172.86271.9-231.25-195.38-36.475.62-55.35-136.31-72.151.2恒+1.4活-67.8939.52-36.86-67.89-39.52-220.79192.34264.04-211.48-189.62-89.2639.52-58.22-89.26-39.52荷载种类风载右风-35.8823.9035.8823.9-50.459.98-14.521.49.98-39.6226.4039.6226.4左风35.88-23.90-35.88-23.950.45-9.9814.5-21.4-9.9839.62-26.40-39.62-26.4荷载最大值-19.34.5-19.3-19.3-4.5-54.1449.3874.36-51.37-48.63-20.494.5-20.49-20.49-4.5活荷载d-15.884.5-11.38-15.88-4.5-54.1449.3872.06-51.37-48.52-19.534.5-15.03-19.53-4.5c4.014.59.44.01-4.5-51.549.2774.36-49.44-48.36-20.490-20.49-20.490b3.994.58.493.99-4.5-51.5249.2773.34-49.45-48.63-20.480-20.48-20.480a-19.30-19.3-19.30-2.29-0.01-2.32-2.35-0.013.944.56.53.94-4.5恒载-34.0627.68-8.2-34.06-27.68-120.83102.68133.28-116.3-101.28-50.4827.68-24.61-50.48-17.68内力MVMMVMVMMVMVMMV截面梁左端跨中梁右端梁左端跨中梁右端梁左端跨中梁右端跨向BC跨AB跨BC跨杆件三层横梁二层横梁-103-
高校土木综合楼设计横向框架梁内力组合(考虑地震组合)表4-3杆件跨向截面内力荷载种类内力组合恒载0.5(雪+活)地震作用1.2[恒+0.5(雪+活)]+1.3地震作用向左向右向左向右顶层横梁AB跨梁左端M-86-8.7857.65-57.65-38.79-188.66V120.367.93-10.9710.97139.69168.21跨中M21011.4518.16-18.16289.35242.13梁右端M-113.08-8.71-21.3321.33-173.88-118.42V128.72-7.91-10.9710.97130.71159.23BC跨梁左端M-59.16-2.439.51-39.51-22.5-125.33V33.50.74-26.3426.346.8575.33跨中M-27.84-1.6600-34.97-34.97梁右端M-59.16-2.4-39.5139.5122.51125.23V-33.5-0.74-26.3426.34-75.33-6.85六层横梁AB跨梁左端M-129.37-28.32107.61-07.61-49.34-329.12V103.3524.62-21.6721.67125.39181.73跨中M12734.7729.6-9.6323.6155.64梁右端M-120.5-26.36-48.4448.44-239.2-113.26V-100.61-24.1-21.6721.67-177.82-121.48BC跨梁左端M-36.83-8.1589.71-8.7162.64-170.6V27.682.25-59.8-59.8-59.8-41.82113.66跨中M-10.96-5.900-20.23-20.23梁右端M-36.83-8.15-89.7189.71-170.662.64V-27.68-2.25-59.859.8-113.6641.82五层横梁AB跨梁左端M-119.4-28.32151.8-151.818.89-374.5V101.8424.66-313186.2166.8跨中M132.0434.7740.17-40.17252.39147.95梁右端M-120.5-26.36-71.4671.46-269.13-83.3V-102.12-24.06-3131-191.72-112.12BC跨梁左端M-43.2-8.15132.23-132.23110.41-233.64V27.682.25-88.2188.21-78.75150.6跨中M-17.33-5.900-27.88-27.88梁右端M-43.2-8.15-132.32132.32-233.64110.41V-27.68-2.25-88.2188.21-150.678.75-103-
高校土木综合楼设计横向框架梁内力组合(考虑地震组合)续表杆件跨向截面内力荷载种类内力组合恒载0.5(雪+活)地震作用1.2[恒+0.5(雪+活)]+1.3地震作用向左向右向左向右四层横梁AB跨梁左端M-126.3-28.28180.31-180.3149.11-149.69V103.4624.68-37.337.3105.28202.26跨中M130.5734.8846.04-46.04258.39138.69梁右端M-116.52-26.19-88.2388.23-285.95-56.55V-100.5-24.04-37.337.3-197.94-100.95BC跨梁左端M-43.75-8.1163.38-163.38150.17-274.61V27.682.25-108.92108.92-105.68177.52跨中M-17.88-5.8900-28.52-28.52梁右端M-43.75-8.1-163.38163.38-274.61150.17V-27.68-2.25-108.92108.92-177.52105.67三层横梁AB跨梁左端M-117.15-28.6203.69-203.6989.9-439.7V100.2324.7-42.2842.2894.95204.89跨中M129.0434.6251.5-51.5263.34129.44梁右端M-128.49-26.38-100.7100.7-316.75-54.93V-103.73-24.02-42.2842.28-208.26-98.34BC跨梁左端M-34.06-7.97186.4-186.4191.88-292.76V27.682.25-124.26124.26-125.62197.46跨中M-8.2-5.7300-16.27-16.27梁右端M-34.06-7.97-186.4186.4-292.76191.88V-27.68-2.25-124.26124.26-197.45125.62二层横梁AB跨梁左端M-120.83-27.64254.71-254.71152.96-509.28V102.6824.7-50.350.387.47218.25跨中M133.2836.1273.5-73.5298.83107.73梁右端M-116.3-25.4-107.7107.7-310.05-30.03V-101.28-24.02-50.350.3-154.57-23.79BC跨梁左端M-50.48-9.64199.51-199.51187.22-331.5V27.682.25-133133-136.98208.82跨中M-24.61-6.9400-37.86-37.86梁右端M-50.48-9.64-199.51199.51-331.5187.22V-27.68-2.25-133133-208.82136.98-103-
高校土木综合楼设计横向框架柱内力组合(一般组合)表4-4Nma×及相应的M177.13381.13137.72424.87-105.2456.3-87.74486.6838.37770.85123.26850.04-58.38935.8-62.73966.18Nmin及相应的M167.55343.45130.71380.04-107.57417.7-92.02444.7330.72722.32105.79761.2-74.34878.13-78.26905.13│Mma×│及相应的N177.13381.13138.63392.7-107.57417.7-92.02444.7360.79732.78123.26850.04-74.34878.13-78.26905.13内力组合1.35恒+活177.13381.13137.72424.87-105.2456.3-87.74486.6838.37770.85116.6814.6-58.38935.8-62.73966.181.2恒+0.9(1.4活+1.4风)右风172.9351.26137.67390.14-90.4421.9-77.99448.9560.79732.78123.26850.04-42.69894.74-46.61921.74左风156.65348.16130.71387.04-107.57417.7-92.02444.7330.72722.32105.79761.2-74.34878.13-78.26905.131.2恒+1.4活167.55343.45138.63392.7-101.05425.21-87.65425.2150.15743.53118.63782.41-61.01907.04-64.96934.04荷载种类风载右风6.451.232.761.236.81-1.671.675.571.6711.934.156.934.1512.566.5912.56-6.59左风-6.45-1.23-2.76-1.23-6.81-1.67-1.67-5.57-1.67-11.93-4.15-6.93-4.15-12.56-6.59-12.56-6.59活载最大值19.7629.4431.7229.44-14.7438.36-18.938.3631.39114.1229.33114.12-17.84147.16-18147.16活荷载d18.7629.2626.129.26-13.6838.36-16.0838.3631.39114.1229.33114.12-17.84147.16-18147.16c19.6629.2631.6929.26-14.2338.24-18.6938.2422.59113.91.47113.9-12.73142.7-2.27142.7b19.7629.4431.7229.44-14.7436.6-18.936.622.58114.881.47114.8-12.68141.12-2.21141.1a14.229.1-1.2229.1-10.7936.94-1.3736.944.7564.0426.1164.06-3.2197.76-13.9797.76恒载116.57260.5178.52292.51-67.01309.59-50.99332.095.17486.4764.64518.87-30.03584.18-33.13606.68内力MNMNMNMNMNMNMNMN截面柱顶柱底柱顶柱底柱顶柱底柱顶柱底跨向A柱B柱A柱B柱杆件顶层柱五层柱-103-
高校土木综合楼设计横向框架柱内力组合(一般组合)续表Nma×及相应的M101.561158.79113.251202.43-71.681417.4-65.721447.4110.171548.77115.321592.5-61.381896.7-551927.1Nmin及相应的M79.91092.5555597.531131.4-93.531335.7-41.741401.183.181462.6591.881501.5-91.821786.8-85.921817.5│Mma×│及相应的N121.691115.1125.41153.9-93.531335.7-88.241362.7133.881501.38133.361540.3-91.821786.8-85.921817.5内力组合1.35恒+活101.561158.799113.251202.4-71.681417.4-65.721447.4110.171548.77115.321592.5-61.831896.7-551927.071.2恒+0.9(1.4活+1.4风)右风121.691115.03125.41153.9-46.761374.05-65.721447.43133.881501.38133.361540.26-30.131855.8-24.571879.17左风79.91092.5597.531131.4-93.531335.72-41.471401.0583.171462.6591.881501.53-91.821786.84-85.921817.481.2恒+1.4活104.771131.63115.321170.5-72.581390.72-67.281417.72112.521521.75116.441560.63-63.41872.39-57.791899.39荷载种类风载右风16.588.9311.068.9318.5615.2118.5615.2120.1215.3716.4615.3724.4827.3724.4824.48左风-16.58-8.93-11.06-8.93-18.56-15.21-18.56-15.21-20.12-15.37-16.46-15.37-24.48-27.37-24.48-24.48活载最大值28.35198.9529.08198.95-17.34255.99-17.34255.9928.54283.8327.25283.83-17.29364.77-16.96364.77活荷载d28.35198.9529.08198.95-17.34255.99-17.34255.9928.54283.8327.25283.83-17.29364.77-16.96364.77c2.74149.3526.64149.35-3.02203.07-14.2203.0726.03233.981.52233.98-14.14307.6-2.63306.01b2.74149.4926.59149.49-2.98201.47-14.2201.4726.03234.111.52234.11-14.14307.6-2.63307.6a27.4148.542.25148.54-15.15202.42-2.68202.422.49183.9625.63183.96-2.67263.04-13.92263.04恒载54.23710.9262.35743.32-40.25860.28-35.84882.7860.47936.9965.24969.39-32.661134.76-28.371157.26内力MNMNMNMNMNMNMNMN截面柱顶柱底柱顶柱底柱顶柱底柱顶柱底跨向A柱B柱A柱B柱杆件四层柱三层柱-103-
高校土木综合楼设计横向框架柱内力组合(一般组合)续表Nma×及相应的M101.031934.6138.471978.48-60.12376.2-71.782406.673.682323.436.832385.37-21.38-39.292856.8-12.432899.8510.15Nmin及相应的M72.641826.9107.881865.78-992233.47-110.032260.4339.482158.94-27.592246.42-45.34-77.372680.5-59.82718.76-9.86│Mma×│及相应的N130.021886.14165.261925.02-992233.47-110.032260.43109.232243.34101.942330.822.13-77.372680.5-59.82718.76-9.86内力组合1.35恒+活101.031934.6138.471978.48-60.12376.2-71.782406.673.682323.436.832385.37-21.38-39.292856.8-12.432899.8510.151.2恒+0.9(1.4活+1.4风)右风130.021886.14165.261925.02-21.442342.3-32.462369.3109.232243.34101.942330.822.13-1.172830.5733.342868.8330.46左风72.641826.9107.881865.78-992233.47-110.032260.4339.482158.94-27.592246.42-9.86-77.372680.5-59.82718.76-9.861.2恒+1.4活105.681908.16141.661947.04-62.792354.17-74.052381.1777.72297.0338.842352.1-22.6-40.912834.08-14.052875.3310.78荷载种类风载右风22.7723.5122.7723.5130.7843.1930.7843.1927.6833.4951.433.4918.8330.2459.5536.9659.5516左风-22.77-23.51-22.77-23.51-30.78-43.19-30.78-43.19-27.68-33.49-51.4-33.49-18.83-30.24-59.55-36.96-59.55-16活载最大值31.05368.8336.34368.83-18.34473.43-20.5473.4323.88453.4911.94453.49-7.02-11.71582.43-5.86582.433.45活荷载d31.05363.8336.34368.83-18.34473.43-20.05473.4318.54453.499.21453.49-5.44-9.73582.43-5.86582.432.86c3.37269.4728.06269.47-3.14367.87-15.17367.8723.88354.0211.94354.02-7.02-11.71472.48-5.86472.483.45b3.37269.628.07269.6-3.14366.28-15.17366.2823.87354.1511.9354.15-7.01-11.71470.89-5.86470.893.45a27.58268.577.75268.57-14.77367.59-4.36367.59-5.19303.84-2.6303.841.532.25428.081.13428.08-0.66恒载51.841159.875.651192.3-30.931409.5-38.321431.9736.891385.1218.441431.02-10.64-20.431684.73-4.871716.614.96内力MNMNMNMNMNMNVMNMNV截面柱顶柱底柱顶柱底柱顶柱底柱顶柱底跨向A柱B柱A柱B柱杆件二层柱底层柱-103-
高校土木综合楼设计横向框架柱内力组合(考虑地震组合)表4-5杆件跨向截面内力荷载种类内力组合│Mma×│及相应的NNmin及相应的MNma×及相应的M恒载0.5(雪+活)地震作用1.2[恒+0.5(雪+活)]+1.3地震作用向左向右向左向右顶层柱A柱柱顶M116.578.79-57.6557.6575.49225.38225.3875.49225.38N260.5113.88-10.9710.97315.01343.53343.53315.01343.53柱底M78.5212.62-24.7124.7177.25141.49141.4977.2514149N292.2113.88-10.9710.97353.89382.41382.41353.89382.41B柱柱顶M-67.01-6.44-60.8560.85-167.25-9.04-167.25-167.25-9.04N309.5918.27-15.3715.37373.45413.4373.45373.45413.4柱底M-50.99-7.88-49.7849.78-135.36-5.89-135.36-135.36-5.89N332.0918.27-15.3715.37400.45440.38400.45400.45440.38五层柱A柱柱顶M5.1715.64-82.982.9-82.8132.74132.74-82.8132.74N486.4756.14-32.6432.64608.7693.56693.56608.7693.56柱底M64.6414.69-48.748.731.89158.51158.5131.89158.51N518.8756.14-32.6432.64647.58732.44732.44647.58732.44B柱柱顶M-30.03-8.95-88.3888.38-161.6768.11-161.6768.1168.11N584.1874.2-53.553.5720.51859.61720.51720.51859.61柱底M-33.13-8.8-88.3888.38-165.2164.57-165.21-165.2164.57N606.874.2-53.553.5747.51886.61747.51747.51886.61四层柱A柱柱顶M54.2314.14-103.1103.1-51.99216.07216.07-51.99216.07N710.9298.44-63.6463.64888.51053.961053.96888.51053.96柱底M62.3513.79-68.7168.712.05174.1174.12.05174.1N743.3298.44-63.6463.64927.381092.841092.84927.381092.84B柱柱顶M-40.25-8.65-115.4115.4-203.4196.63-203.41-203.4196.63N860.28130.09-110.71110.711044.521332.371044.521044.521332.37柱底M-35.84-8.65-115.4115.4-203.4196.63-203.41-203.4196.63N88.78130.09-110.71110.71118.72406.56118.72118.72406.56-103-
高校土木综合楼设计横向框架柱内力组合(考虑地震组合)续表杆件跨向截面内力荷载种类内力组合│Mma×│及相应的NNmin及相应的MNma×及相应的M恒载0.5(雪+活)地震作用1.2[恒+0.5(雪+活)]+1.3地震作用向左向右向左向右三层柱A柱柱顶M60.4714.25-116.6116.6-55.42234.74234.74-55.42234.74N936.99140.76-100.94100.941162.081424.521424.521162.081424.52柱底M65.2413.61-91.2891.28-24.75213.28213.28-24.75213.28N969.39140.76-100.94100.941161.361423.81423.81161.361423.8B柱柱顶M-32.66-8.63-136.22136.22-226.63127.54-226.63-226.63127.54N1134.76185.96-182.33182.331347.841821.891347.841347.891821.89柱底M-28.27-8.51-136.22136.22-221.22132.95-221.22-221.22132.95N1157.26185.96-182.33182.331374.841848.891374.841374.841848.89二层柱A柱柱顶M51.8415.5-112.41112.41-65.33226.93226.93-65.33226.93N1159.83183.1-143.22143.221425.331797.711797.711425.331797.71柱底M75.6517.9-112.41112.41-33.87258.39258.39-33.87258.39N1192.23183.1-143.22143.221464.211836.591836.591464.211836.59B柱柱顶M-30.93-9.16-150.9150.9-244.28148.06-244.28-244.28148.06N1409.47241.81-264.31264.311637.932325.141637.931637.932323.14柱底M-38.32-9.92-150.9150.9-254.06138.28-254.06-254.06138.28N1431.97241.81-264.31264.311664.932352.141664.931664.932352.14底层柱A柱柱顶M36.898.44-142.3142.3-130.59239.39239.39-130.58239.39N1385.12225.44-193.52193.521681.092184.282184.251681.092184.25柱底M18.444.22-264.3264.3-316.4370.78370.18-316.4370.78N1431.02225.44-193.53193.531736.182239.332239.331736.182239.33V-10.64-2.4878.18-78.1885.89-117.37-117.3785.59-117.37B柱柱顶M-20.43-4.79-156.36156.36-233.53173.01-225.53-233.53173.01N1684.73297.66-347.01347.011927.762829.981927.761927.762829.98柱底M-4.87-2.4-191.1191.1-257.15239.71-257.15-257.15239.71N1716.61297.66-347.01347.011966.012868.231966.011966.012868.23V4.961.4166.82-66.8294.51-79.2394.5194.51-79.23-103-
高校土木综合楼设计第5章横向框架梁柱截面设计经查《建筑抗震设计规范》知本工程框架的抗震等级是三级,所以在计算地震作用下梁、柱的配筋时需要对梁、柱内力进行调整。为了增大梁“强剪弱弯”的程度,抗震设计中,一、二、三级的框架,其梁端截面组合的剪力设计值应按下式调整:弯矩组合设计值:例如二层横梁AB左右端剪力V左、V右计算如下:梁左端:梁右端:取梁端顺时针或逆时针方向弯矩组合的绝对值大者计算梁端剪力。所以,V左=ηvb左(Mbl+Mbr)/ln+VGb=1.1×479.25/7.2+1.2×(102.68+24.7)=226.07kNV右=ηvb右(Mbl+Mbr)/ln+VGb=1.1×479.25/7.2+1.2×(101.28+24.02)=223.58kNBC左右端剪力V左、V右计算如下:梁左端:梁右端:取梁端顺时针或逆时针方向弯矩组合的绝对值大者计算梁端剪力。+Mb=331.5+187.22=518.72kN·m–Mb=–331.5–187.22=–518.72kN·m-103-
高校土木综合楼设计所以,V左=ηvb左(Mbl+Mbr)/ln+VGb=1.1×518.72/7.2+1.2×(27.68+2.25)=153.98kNV右=ηvb右(Mbl+Mbr)/ln+VGb=1.1×518.72/7.2+1.2×(27.68+2.25)=153.98kN其中,ηvb为梁端剪力增大系数取1.1。ln为净跨,此处近似按计算跨度计算。具体计算结果见表5–1~表5–7。为了满足和提高框架结构的“强柱弱梁”程度,在抗震设计中采用增大柱端弯矩设计值的方法,一、二、三级框架的梁柱节点处,除框架顶层和轴压比小于0.15者及框支梁与框支柱的节点外,柱端组合的弯矩设计值应符合下式要求:∑Mc=ηc∑Mb例如二层A柱下端和底层A柱上端弯矩,计算过程如下:考虑地震组合时二层横梁AB左端弯矩最大值为509.28kN·m(表4–3),所以∑Mc=ηc∑Mb=1.1×509.28=560.2kN·m,上下柱端的弯矩设计值按柱线刚度分配,二层A柱下端弯矩.............底层A柱上端弯矩取以上调整后的数值与表4–5中相应的数据的大者。具体计算结果见表5–8~表5–10。-103-
高校土木综合楼设计横梁AB、BC跨正截面受弯承载力计算表5–1备注ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518ξ<0.518实际选用(mm2)220,AS=628422,AS=1520320,AS=941314,AS=461210,AS=157314,AS=461420,AS=1256420,AS=1570420,AS=1256314,AS=461310,AS=236314,AS=1473325,AS=1473422,AS=1520420,AS=1256222,AS=760214,AS=308222,AS=760As=ξbh0·α1fc/fy640.3613661585.67448.23145.68448.231225.812801067.28406.12196.1406.12140813411152.66717.17274.5717.7ξ0.1050.0280.260.080.0260.080.2010.210.1750.0730.0350.0730.2310.220.1890.1280.0490.1280.10.230.1270.0760.0260.0760.1810.190.160.0710.0350.0710.2050.20.1710.120.0480.12h0(m)615615615565565565615615615565565565615615615565565565组合内力V(kN)167.52-191.1246.8-46.8190.17-185.5748.76-48.76198-195.3872.1572.15M(kN·m)–136.11310.7-172.15-87.44-29.18-87.44-244.94254.26-216.5-81.1-39.87-81.1-276.78264.04-231.25-136.31-55.35-136.31截面位置A6支座跨中B6支座左B6支座右跨中C6支座左A5支座跨中B5支座左B5支座右跨中C5支座左A1支座跨中B1支座左B1支座右跨中C1支座左b×h300×650300×600300×650300×600300×650300×600混凝土强度等级C25C25C25层顶层六层二层-103-
高校土木综合楼设计横梁AB、BC跨正截面抗震验算表5–2备注安全安全安全安全安全安全安全安全安全安全安全安全安全安全安全安全安全安全实际选用(mm2)318,AS=763422,AS=1520318,AS=763318,AS=763318,AS=763318,AS=763422,AS=1520322,AS=1140322,AS=1140318,AS=763318,AS=763318,AS=763622,AS=2281422,AS=1520322,AS=1140422,AS=1520320,AS=941422,AS=1520As=ξbh0·α1fc/fy(mm2)676.91463.7622.07524.49168.08524.491238.041158.76872.12666.74112.05666.742211.61524.6811581395.2162.481395.12ξ0.1110.240.1020.0860.030.0860.2030.190.1430.1190.020.1190.3780.250.190.2490.0290.2490.1050.210.0970.0820.030.0820.1830.1720.1330.1120.020.1120.3070.220.1720.2180.0290.218h0(m)615615615565565565615615615565565565590615615565565565γRE0.750.750.750.750.750.750.750.750.750.750.750.750.750.750.750.750.750.75组合内力V(kN)168.21130.7175.33-6.85181.73-177.82113.66-113.6-218.25-154.57208.82-208.82M(kN·m)-188.66289.35-173.88-125.33-34.91125.23-329.12232.6-239.2-170.6-20.23-170.6-509.28298.83-310.5-331.5-37.68-331.5截面位置A6支座跨中B6支座左B6支座右跨中C6支座左A5支座跨中B5支座左B5支座右跨中C5支座左A1支座跨中B1支座左B1支座右跨中C1支座左b×h300×650300×600300×650300×600300×650300×600混凝土强度等级C25C25C25层顶层六层二层-103-
高校土木综合楼设计横梁AB、BC跨斜截面受简承载力计算表5-3备注安全安全安全安全安全安全安全安全安全安全安全安全Vcs=0.7ftbh0+1.25fyvh0Asv/S(kN)216.16216.16198.58198.58216.16216.16198.58198.58216.16216.16198.58198.58选用箍筋(双肢)ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@2000.7ftbh0(kN)164.02164.02150.69150.69164.02164.02150.69150.69164.02164.02150.69150.690.25βcfcbh0(kN)548.89548.89504.26504.26548.89548.89504.26504.26548.89548.89504.26504.26h0(mm)615615565565615615565565615615565565组合内力V(kN)167.52191.1246.846.8190.17185.5748.7648.76198195.3872.1572.15斜截面位置A6支座B6支座左B6支座右C6支座左A5支座B5支座左B5支座右C5支座左A1支座B1支座左B1支座右C1支座左b×h300×650300×600300×650300×600300×650300×600混凝土强度等级C25C25C25层顶层六层二层-103-
高校土木综合楼设计横梁AB、BC跨斜截面受简抗震验算表5-4备注ρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminVcs=1/γRE(0.42ftbh0+1.25fyvh0Asv/S)(kN)200.74200.74184.41184.41200.74200.74184.41184.41200.74200.74184.41184.41选用箍筋(双肢)ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@200ϕ8@2000.42ftbh0/γRE(kN)131.22131.22120.54120.54131.22131.22120.54120.54131.22131.22120.54120.540.2βcfcbh0/γRE(kN)585.48585.48537.8537.8585.48585.48537.8537.8585.48585.48537.8537.8h0(mm)615615565565615615565565615615565565组合内力V(kN)198.6208.663.5863.58211.41207.4871.5471.54226.08223.58153.98153.98Mbl+Mbr(kN·m)292.28292.28147.76147.76378.56378.56233.23233.23479.25479.25518.72518.72VGb(kN)153.5916.3.9641.0841.08153.58149.6535.9235.92152.85150.3635.9235.92斜截面位置A6支座B6支座左B6支座右C6支座左A5支座B5支座左B5支座右C5支座左A1支座B1支座左B1支座右C1支座左b×h300×650300×400300×650300×400300×650300×400混凝土强度等级C25C25C25层顶层六层二层-103-
高校土木综合楼设计框架柱正截面压弯柱类别层次混凝土强度b×h(mm2)l0(m)l0/h柱截面组合内力e0(mm)ea(mm)ei(mm)ei/h0ζ1ζ2ηe(mm)Mmax(kN·m)N(kN)A柱顶层C25600×6004.507.50上端177.13381.13464.7520484.750.8711.001.057687.50下端138.63192.7351.4120371.410.6611.001.06653.7二层C25600×6004.507.50上端130.021886.1468.92088.90.1611.001.25371.37.50下端165.261925.0285.820105.80.1911.001.21388.01底层C25600×6005.108.50上端109.232243.4348.72068.70.120.951.001.4356.188.50下端101.942330.8243.72063.70.110.921.001.43260B柱顶层C25500×5004.509.0上端107.57417.7257.520277.50.611.001.1515.259.0下端92.02444.73206.920226.90.4911.001.1460二层C25500×5004.509.0上端992233.4744.32064.30.140.951.001.393009.0下端110.032260.4348.72068.70.150.951.001.36303.43底层C25500×5005.1010.2上端77.372680.528.92048.90.110.81.001.54285.310.2下端59.82718.762220440.10.791.001.58279.52承载力计算(|Mmax|)表5-5ηei-0.32h0N-Nb(kN)判断破坏类型小偏压ξAs=As’(mm2)大偏压ξx-2a’As=As’(mm2)(x<2a’)As=As’(mm2)(x>2a’)选用钢筋(mm2)备注329.78-1690.04大偏压0.08-26.62502.9416,As=As’=804ρ>0.2%214-1687.47大偏压0.06-25277.78416,As=As’=804ρ>0.2%-68-205.03不破坏(按构造配筋)720416,As=As’=804ρ>0.2%-51.8-146.15不破坏(按构造配筋)720416,As=As’=804ρ>0.2%-80.95172.26不破坏(按构造配筋)720416,As=As’=804ρ>0.2%-88.4259.65不破坏(按构造配筋)720416,As=As’=804ρ>0.2%158.05-1015.47大偏压0.09-9.8260.3416,As=As’=804ρ>0.2%102.39-988.44大偏压0.07-5.2115.07416,As=As’=804ρ>0.2%-57.82800.3不破坏(按构造配筋)500416,As=As’=804ρ>0.2%-53.78827.26不破坏(按构造配筋)500416,As=As’=804ρ>0.2%-71.891247.33不破坏(按构造配筋)500416,As=As’=804ρ>0.2%-77.681285.59不破坏(按构造配筋)500416,As=As’=804ρ>0.2%-103-
高校土木综合楼设计框架柱正截面压弯柱类别层次混凝土强度b×h(mm2)l0(m)l0/h柱截面组合内力e0(mm)ea(mm)ei(mm)ei/h0ζ1ζ2ηe(mm)Mmax(kN·m)N(kN)A柱顶层C25600×6004.507.50上端167.55343.45487.8420.00507.840.9111.001.04788.157.50下端130.71380.04343.9320.00363.930.6511.001.06645.76二层C25600×6004.507.50上端72.641826.939.7620.0059.760.1111.001.36341.277.50下端107.881865.7857.8220.0077.820.1411.001.28359.6底层C25600×6005.108.50上端39.482185.9418.2820.0038.280.060.951.001.74326.68.50下端27.592246.4212.2820.0032.280.060.951.001.82318.75B柱顶层C25500×5004.509.0上端107.57417.7257.2320.00277.530.611.001.1515.289.0下端92.02443.47207.420.00227.40.4911.001.12464.68二层C25500×5004.509.0上端992233.4744.320.0064.30.140.661.001.27291.669.0下端110.032260.4348.6720.0068.670.150.661.001.25295.83底层C25500×5005.1010.2上端77.372680.528.820.0048.80.110.551.001.37276.8610.2下端59.82718.762220.00440.10.541.001.4271.6承载力计算(Nmin)表5-6ηei-0.32h0N-Nb(kN)判断破坏类型小偏压ξAs=As’(mm2)大偏压ξx-2a’As=As’(mm2)(x<2a’)As=As’(mm2)(x>2a’)选用钢筋(mm2)备注348.95-1727.2大偏压0.078-31.9487.28同表5-5ρ>0.2%206.56-1691.13大偏压0.06-26.8252.88同表5-5ρ>0.2%-98.25-244.27不破坏(按构造配筋)720同表5-5ρ>0.2%-79.59-205.39不破坏(按构造配筋)720同表5-5ρ>0.2%-112.59114.77不破坏(按构造配筋)720同表5-5ρ>0.2%-120.45175.25不破坏(按构造配筋)720同表5-5ρ>0.2%158.08-1015.47大偏压0.09-9.8260.12同表5-5ρ>0.2%107.4-989.44大偏压0.07-5.42129.6同表5-5ρ>0.2%-65.53800.3不破坏(按构造配筋)500同表5-5ρ>0.2%-61.36827.26不破坏(按构造配筋)500同表5-5ρ>0.2%-80.31247.33不破坏(按构造配筋)500同表5-5ρ>0.2%-85.61285.59不破坏(按构造配筋)500同表5-5ρ>0.2%-103-
高校土木综合楼设计框架柱正截面压弯柱类别层次混凝土强度b×h(mm2)l0(m)l0/h柱截面组合内力e0(mm)ea(mm)ei(mm)ei/h0ζ1ζ2ηe(mm)Mmax(kN·m)N(kN)A柱顶层C25600×6004.507.50上端177.13381.13464.7420.00484.740.871.001.001.05768.97.50下端137.7424.8732420.003440.611.001.001.06624.26二层C25600×6004.507.50上端101.031934.652.220.0072.20.1311.001.3353.867.50下端138.471978.487020.00900.1611.001.25372.5底层C25600×6005.108.5上端73.682323.431.620.0051.60.090.91.001.52338.438.5下端36.682385.3715.420.0035.40.060.91.001.77322.65B柱顶层C25500×5004.509.0上端105.2456.3230.520.00250.50.541.001.001.1485.559.0下端87.74486.68180.220.00200.20.441.001.001.13436.23二层C25500×5004.509.0上端60.12376.225.320.0045.30.10.631.001.36271.69.0下端71.182406.629.620.0049.60.10.621.001.35276.9底层C25500×5005.1010.2上端39.292856.813.7520.0033.750.070.521.001.55262.310.2下端12.432899.85420.00240.050.511.001.75252承载力计算(Nmax)表5-7ηei-0.32h0N-Nb(kN)判断破坏类型小偏压ξAs=As’(mm2)大偏压ξx-2a’As=As’(mm2)(x<2a’)As=As’(mm2)(x>2a’)选用钢筋(mm2)备注329.78-1690.04大偏压0.08-26.62502.07同表5-5ρ>0.2%185.44-1646.3大偏压0.21-20.5235.23同表5-5ρ>0.2%-85.34-136.57不破坏(按构造配筋)720同表5-5ρ>0.2%-34.7-92.69不破坏(按构造配筋)720同表5-5ρ>0.2%-100.76252.23不破坏(按构造配筋)720同表5-5ρ>0.2%-116.54314.2不破坏(按构造配筋)720同表5-5ρ>0.2%128.35-976.87大偏压0.474-3.3248.39同表5-5ρ>0.2%79.03-946.49大偏压1.086小于0同表5-5ρ>0.2%-85.59943.03不破坏(按构造配筋)500同表5-5ρ>0.2%-80.2973.43不破坏(按构造配筋)500同表5-5ρ>0.2%-94.81423.63不破坏(按构造配筋)500同表5-5ρ>0.2%-105.21466.68不破坏(按构造配筋)500同表5-5ρ>0.2%-103-
高校土木综合楼设计框架柱正截面压弯柱类别层次混凝土强度b×h(mm2)l0(m)l0/h柱截面组合内力轴压比γREe0(mm)ea(mm)ei(mm)ei/h0ζ1ζ2ηMmax(kN·m)N(kN)A柱顶层C25600×6004.507.50上端225.38343.530.080.7565620.006761.211.001.037.50下端141.49382.410.090.7537020.003900.711.001.05二层C25600×6004.507.50上端226.931797.710.4208126.2320.00146.230.2611.001.157.50下端258.391836.590.420.8140.720.00160.70.2911.001.13底层C25600×6005.108.5上端239.392184.250.50.8109.620.00129.60.230.981.001.228.5下端370.782239.330.520.8165.620.00185.60.330.961.001.05B柱顶层C25500×5004.509.0上端167.25373.450.130.75447.820.00467.81.0211.001.059.0下端135.36400.450.130.7533820.003580.7811.001.07二层C25500×5004.509.0上端244.281637.930.550.8149.1420.00169.140.370.91.001.149.0下端254.061664.930.560.8152.620.00172.60.380.891.001.13底层C25500×5005.1010.2上端223.531927.760.640.811620.001360.30.771.001.1910.2下端257.151966.010.660.8130.820.00150.80.330.761.001.17抗震验算(|Mmax|)表5-8eηei-0.32h0N-Nb(kN)判断破坏类型小偏压ξAs=As’(mm2)大偏压ξx-2a’As=As’(mm2)(x<2a’)As=As’(mm2)(x>2a’)选用钢筋(mm2)备注956.38517.08-1727.64大偏压0.1-31.88816.07522,As=As’=1900ρ>0.2%669.5230.3-1688.76大偏压0.06-26.44302.48522,As=As’=1900ρ>0.2%478.16-11.03-273.46不破坏720522,As=As’=1900ρ>0.2%441.592.31-234.58大偏压0.13177.2250.85522,As=As’=1900ρ>0.2%418.12-21.08113.08不破坏720522,As=As’=1900ρ>0.2%454.8815.68168.16大偏压0.19233.63553.28522,As=As’=1900ρ>0.2%751.19343.99-1059.72大偏压0.14-17.23686.34522,As=As’=1900ρ>0.2%593.06235.86-1032.72大偏压0.1-12.69452.95522,As=As’=1900ρ>0.2%402.8145.61204.76大偏压0.21195.28807.75522,As=As’=1900ρ>0.2%405.3847.83231.76大偏压0.23199.8873.7522,As=As’=1900ρ>0.2%371.8414.64494.59大偏压0.2243.9867.73522,As=As’=1900ρ>0.2%386.4429.23532.84大偏压0.24250.421113.45522,As=As’=1900ρ>0.2%-103-
高校土木综合楼设计框架柱正截面压弯柱类别层次混凝土强度b×h(mm2)l0(m)l0/h柱截面组合内力轴压比γREe0(mm)ea(mm)ei(mm)ei/h0ζ1ζ2ηMmax(kN·m)N(kN)A柱顶层C25600×6004.507.50上端75.49215.010.140.75239.620.00259.20.461.001.001.097.50下端77.25353.890.170.75218.220.00238.20.431.001.001.09二层C25600×6004.507.50上端65.331425.330.670.845.820.0065.80.121.001.001.337.50下端33.871464.210.680.823.120.0043.10.081.001.001.5底层C25600×6005.108.5上端130.591681.090.780.877.6820.0097.680.171.001.001.38.5下端316.41736.180.810.8182.2320.00202.230.361.001.001.14B柱顶层C25500×5004.509.0上端167.25373.450.250.15447.8520.00467.851.011.001.001.059.0下端135.36400.450.190.15338.0120.00358.010.781.001.001.07二层C25500×5004.509.0上端244.281637.931.10.8149.1420.00169.140.371.001.001.159.0下端254.061664.931.10.8152.620.00172.60.381.001.001.15底层C25500×5005.1010.2上端233.531927.761.20.8121.1420.00141.140.31.001.001.2410.2下端257.151966.011.30.8130.820.00150.80.321.001.001.23抗震验算(Nmin)表5-9eηei-0.32h0N-Nb(kN)判断破坏类型小偏压ξAs=As’(mm2)大偏压ξx-2a’As=As’(mm2)(x<2a’)As=As’(mm2)(x>2a’)选用钢筋(mm2)备注542.9103.76-1756.16大偏压0.03-35.8838.27同表5-8ρ>0.2%519.6480.44-1717.28大偏压0.03-30.40同表5-8ρ>0.2%347.51-91.66-645.84不破坏720同表5-8ρ>0.2%324.65-114.55-606.96不破坏720同表5-8ρ>0.2%386.98-51.98-390.08不破坏720同表5-8ρ>0.2%490.5451.34-334.99大偏压0.29163.16373.19同表5-8ρ>0.2%751.24344.04-1059.72不破坏0.14-17.23456.91同表5-8ρ>0.2%643.07235.86-1032.72不破坏0.1-12.69322.11同表5-8ρ>0.2%454.5147.31204.76不破坏0.21195.281361.22同表5-8ρ>0.2%458.4951.29231.76不破坏0.22199.81451.64同表5-8ρ>0.2%435.0127.81494.59不破坏0.1243.91663.76同表5-8ρ>0.2%445.4838.28532.84大偏压0.22250.421872.09同表5-8ρ>0.2%-103-
高校土木综合楼设计框架柱正截面压弯柱类别层次混凝土强度b×h(mm2)l0(m)l0/h柱截面组合内力轴压比γREe0(mm)ea(mm)ei(mm)ei/h0ζ1ζ2ηMmax(kN·m)N(kN)A柱顶层C25600×6004.507.50上端225.38343.530.160.75656.0720.00676.071.2111.037.50下端141.49382.410.170.837020.003900.69111.05二层C25600×6004.507.50上端226.931797.710.840.8126.320.00136.230.24111.167.50下端258.391836.590.850.8140.6920.00160.690.28111.14底层C25600×6005.208.5上端239.392184.251.020.8109.620.00129.60.230.9811.218.5下端370.782239.331.040.8165.520.00185.50.330.9511.15B柱顶层C25500×5004.509.0上端9.04413.40.270.7521.8620.0041.860.09111.649.0下端5.89440.380.30.813.3720.0033.370.07111.82二层C25500×5004.509.0上端118.062325.141.50.863.6720.0083.670.180.6311.29.0下端138.282354.141.50.858.7820.0078.780.170.6311.2底层C25400×5005.2010.2上端173.012829.981.90.861.1320.0081.130.180.5311.210.2下端239.712868.231.90.883.5720.00103.570.230.5211.16抗震验算(Nmax)表5-10eηei-0.32h0N-Nb(kN)判断破坏类型小偏压ξAs=As’(mm2)大偏压ξx-2a’As=As’(mm2)(x<2a’)As=As’(mm2)(x>2a’)选用钢筋(mm2)备注956.35517.15-1727.64大偏压0.1-31.88793.12同表5-8ρ>0.2%669.5230.3-1688.76大偏压0.06-26.44302.48同表5-8ρ>0.2%418.02-21.17-273.46不破坏720同表5-8ρ>0.2%443.183.98-231.58大偏压0.13177.22115.76同表5-8ρ>0.2%416.82-22.38113.08不破坏720同表5-8ρ>0.2%473.3334.13168.16大偏压0.19233.63835.97同表5-8ρ>0.2%278.65-78.54-1019.77大偏压500同表5-8ρ>0.2%270.73-85.81-992.79不破坏500同表5-8ρ>0.2%310.4-46.79891.97不破坏500同表5-8ρ>0.2%304.54-52.66918.97不破坏500同表5-8ρ>0.2%307.35-49.841936.81不破坏500同表5-8ρ>0.2%330.14-27.051435.06不破坏500同表5-8ρ>0.2%-103-
高校土木综合楼设计由内力计算可知,本工程柱各截面的剪力设计值小,故不进行斜截面承载力计算,箍筋按抗震构造要求配置。箍筋形式采用菱形复合箍,直径均采用ϕ10,计算柱加密区配箍率为0.98%,满足抗震要求。多遇地震下横向框架的层间弹性侧移见表5-11。对于钢筋混凝土框架[θe]取1/550。层间弹性侧移验算表5-11层次h(m)Vi(kN)∑Di(kN/mm)Δμe=Vi/∑Di(mm)[θe]hi(mm)63.6761.13620.721.226.5553.61216.32620.721.956.5543.61587.47620.722.566.5533.61874.59620.723.026.5523.62077.67620.723.346.5515.12217.84340.486.519.27通过以上计算结果看出,各层层间弹性侧移均满足规范要求,即Δue≤[θe]h。-103-
高校土木综合楼设计第6章楼梯结构设计计算本题工程采用现浇混凝土板式楼梯,设计混凝土强度等级为C25,梯板钢筋为HPB300钢,梯梁钢筋为HRB400钢。活荷载标准值为2.5kn/m2,楼梯栏杆采用金属栏杆。楼梯平面布置如图6-1,踏步装修做法见图6-2。6.1楼体板计算1.荷载计算板厚取l0/30,l0为梯段板跨度=320×11+800+200/2=4420板厚h=l0/30=4420/30=147.3,取160。α=arctan150/320=25.11°,cosα=0.9取1m宽板带为计算单位踏步板自重(图6-1部分A)(0.1778+0.3278)/2×0.32×1×25/0.32×1.2=7.58kN/m踏步地面重(图6-1部分B)(0.32+0.16)×0.02×1×20/0.32×1.2=0.72kN/m底板抹灰重(图6-1部分C)0.353×0.02×1×17/0.32×1.2=0.45kN/m栏杆重0.1×1.2=0.12kN/m活载1×0.32×2.5/0.32×1.4=3.50kN/mΣ=12.37kN/m2.内力计算Mma×=1/10pl2=1/10×12.37×4.422=24.17kN·m-103-
高校土木综合楼设计Vma×=1/2plcosα=1/2×12.37×4.42×0.9=24.6kN3.配筋计算板的有效高度h0=h-20=160-20=140,混凝土抗压设计强度fc=11.9N/mm2钢筋抗拉强度设计值fy=270N/mm2αs=M/(fcbh02)=22.17×106÷(11.9×1000×1202)=0.130,γs=0.945As=M/(fcγsh0)=22.17×106÷(270×0.945×140)=676.63mm2选用10@110As=714mm2梯段板抗剪,因0.7ftbh0=0.7×1.27×1000×140=124.468kN>24.6kN满足抗剪要求。制作构造配10@220。6.2休息平台板计算按简支梁计算,简图如图6-2。图6-2平台板计算简图以板宽1m为计算单位,计算跨度近似取:l=2880-200/2=2780板厚取100mm1.荷载计算面层0.02×1×20×1.2=0.48kN/m板自重0.10×1×25×1.2=3kN/m板底粉刷0.02×1×17×1.2=0.408kN/m活载2.5×1×1.4=3.5kN/mΣ=7.388kN/m2.内力计算Mma×=1/10pl2=1/10×7.388×2.782=5.7kN·m3.配筋计算αs=M/(fcbh02)=0.075,γs=961As=M/(fcγsh0)=5.7×106÷(210×0.961×80)=274.6mm2选用6@100As=283mm2-103-
高校土木综合楼设计6.3梯段梁TL1计算截面高度h=L/12=1/12×4200=350取400高,宽取2001.荷载计算梯段梁传12.37×4.315/2=26.69kN/m休息平台板传7.388×2.66/2=9.83kN/m梁自重0.2×0.4×25×1.05×1.2=2.52kN/mΣ=39.04N/m2.内力计算Mma×=1/8pl2=1/8×39.04×4.22=86.08kN·m3.配筋计算钢筋采用HRB400钢,h0=400-35=365αs=M/(fcbh02)=86.08×106÷(11.9×200×3652)=0.272γs=0.838As=M/(fcγsh0)=86.08×106÷(360×0.838×365)=781.7mm2选用318As=763mm2Vma×=1/2=1/2×39.04×4.2=81.89kN0.25βcfcbh0=0.25×1.0×11.9×200×365=217.18kN>Vma×0.7ftbh0=0.7×1.27×200×365=64.9kNVma×=81.98Knρsv=n·Asv1/bs=2×28.3/150=0.189%>ρsv,min=0.24ft/fyv=0.24×1.27/270=0.112%满足要求。-103-
高校土木综合楼设计第7章现浇楼面板设计本工程楼盖为整体现浇,楼板布置示意图如图7–1根据楼面结构布置情况,楼面板均按双向板计算。板厚h≥l/50=72mm。本工程房间部分取120mmh0=120–20=100mm走廊部分取100mmh0=80mm。本工程楼板按弹性理论方法计算内力,并考虑活荷载布利布置的影响。7.1跨中最大弯矩将总荷载q=g+p分成两部分:q"=g+1/2pq""=1/2p当板的各区格均受q"时,(图7–2b),可近似地认为板都嵌固在中间的支座上,亦即内部区格的板可按四边固定的单块板进行计算。当q”在一区格中向上作用而在相邻的区格中向下作用时(图7–2c),近似符合反对称关系,可认为中间支座的弯矩等于零,亦即内部区格的板按四边简支的单板进行计算。将上部两种情况叠加可得跨内最大弯矩。-103-
高校土木综合楼设计图7-2跨中最大弯矩活荷载不利布置7.2求支座中点最大弯矩当活荷载和静荷载全部满布在各区格时,可近似求得支座中点最大弯矩。此时可先将内部区格的板按四边固定的单块板求得支座中点固端弯矩,然后与相邻支座中点固端弯矩平均,可得该支座的中点最大弯矩。双向板在均布荷载作用下的弯矩系数查附表。房间部分:恒载设计值g=3.74×1.2=4.48,活载设计值p=2×1.4=2.8走廊部分:恒载设计值g=3.24×1.2=3.89,活载设计值p=2.5×1.4=3.5故房间部分q=4.48+2.8=7.28则q"=4.48+1.4=5.8q""=1/2×2.8=1.4kN/m2走廊部分:q=3.89+3.5=7.28则q"=3.88+3.5/2=5.63q""=1/2×3.5=1.75钢筋混凝土泊桑比可取1/6。-103-
高校土木综合楼设计7.3A区格图7-3A区格板1.求跨内最大弯矩Mx(A),My(A)q"作用下查附表得时=0.400×5.88×2.82=1.84=0.0038×5.88×2.82=0.175换算成时,可利用公式q""作用下查表得时换算成时,可利用公式-103-
高校土木综合楼设计叠加后:2.求支座中点固端弯矩Mx(A),My(A)q作用下查附表得7.4E区格图7-4E区格板q""作用计算简图1.求跨内最大弯矩M×(E)My(E)q’作用下查表得μ=0时-103-
高校土木综合楼设计换算成μ=1/6时,可利用公式q""作用下查表得μ=0时换算成μ=1/6时,可利用公式叠加后板跨中配筋计算表7–1截面位置AxAyExEyM2.50.6662.091.690.0210.0050.0170.0140.0210.0050.0180.01511928.3310285实际配筋-103-
高校土木综合楼设计支座配筋计算表7–2截面位置x向y向[A][E][A][E]M4.733.43.253.450.0390.0290.0270.0290.0390.0290.0270.03221164.3153170实际配筋-103-
高校土木综合楼设计第8章基础设计8.1荷载计算基础承载力计算时,应采用荷载标准组合恒K+0.9(活K+风K)或恒K+活K取两者中最大值以轴线8为计算单元进行基础设计,上部结构传来柱底荷载标准值边柱柱底:恒K+0.9(活K+风K)MK=17.97+0.9×(10.27+40.40)=65.37NK=899.56+0.9×(204.96+26.07)=1107.49VK=-10.37+0.9×(-5.90+13.59)=3.45恒K+活K,:MK=18.44+11.94=30.38NK=1431.02+453.49=1884.51VK=-10.64-7.02=-17.66中柱柱底:恒K+0.9(活K+风K:MK=-4.87+0.9×(-5.86+36.96)=23.12NK=1716.61+0.9×(582.43+59.55)=2294.39VK=4.96+0.9×(3.45+16)=22.46恒K+活K,:MK=-4.87-5.86=-10.73NK=1716.61+582.43=2299.04VK=4.96+3.45=8.41底层墙、基础连系梁传来荷载标准值(连系梁顶面标高同基础顶面)墙重:±0.000以上=3.6×0.2×2.95=2.13±0.000以上=19×0.24×1.5=6.84连梁重:(500×240)25×0.5×0.24=3∑=2.13+6.84+3=11.97(与纵向轴线距离0.1m)柱A基础底面:FK=1869.3+11.97×8.4=1969.85MK=75.45+11.97×8.4×0.1+0.01×0.7=85.51柱B基础底面:FK=1642.04+11.86×6=1713.20MK=-24.35-11.86×6×0.1-13.07×0.55=-38.65-103-
高校土木综合楼设计8.2确定基础底面积根据地质条件取2二层粉质粘土三层作为持力层,设基础在持力层中的嵌固深度为0.1m,设天然地面绝对标高为室外地面,则室外埋深1.5m室内埋深2.1m(室内外高差0.6m)土层分布及埋深间图8-1。图8-1土层分布及埋深1.A柱(1)初估基底尺寸由于基底尺寸未知,持力层土的承载力特征值先考虑深度修正,由于持力层为可粘性土,故取ηd=1.6γm=(17×1.0+18×0.5)/1.5=17.3fa=fk+ηdγm(d+0.5)=180+1.6×17.3×(1.5-0.5)=207.68aA≥1.1FK/(fa-γGd)=1.1×1969.85/(207.68-20×0.5×(2.1+1.5))=12.62m2设l/b=1.2b=(A/1.2)1/2=(12.62/1.2)1/2=3.2取b=3.2ml=3.86m(2)按持力层强度验算基底尺寸基底形心处竖向力:∑Fk=1969.85+20×3.2×3.86×1/2×(1.5+2.1)=2414.5基底形心处弯矩:∑Mk=85.51偏心矩:e=∑Mk/∑Fk=85.51/2414.5=0.035mFL所以满足要求。(3)纵向内力计算bPj=4×207.52=839.02,弯矩和剪力的计算结果见图-103-
高校土木综合楼设计图8-4冲切验算计算简图图8-9弯矩和剪力计算结果(1)抗剪验算柱边剪力:Vma×=835.27βhs=1.00.7βhsftbh0=0.7×1.0×1.27×4×655=2329.18>Vmax满足要求(2)纵向配筋计算板底层配筋:AS=M/(0.9h0fy)=1818.4×106/(0.9×655×2360)=8536.74mm2配12@180板顶层配筋:按构造配筋10@200。(3)横向配筋柱下等效梁宽为:ac+2×0.075h0=0.5+2×0.75×0.655=1.48m柱边弯矩:M=(FB/2b)×((b-bc)/2)2=3020.5/(2×4)×((4-0.5)/2)2=1156.28AS=1156.28×106/(0.9×640×360)=5576.2mm2选用1422-103-
高校土木综合楼设计第9章建筑与结构设计说明9.1建筑相关说明1、建筑设计依据1)、芜湖市城市规划管理技术规定。2)、甲方提供的设计任务书及其资料。3)、《民用建筑设计防火规范》4)、《民用建筑设计通规》5)、《建筑专业标准规范大全》6)、国家、安徽省及芜湖市相关规范规定7)、芜湖市城市规划局相关文件2、工程概况1)主办单位:安徽工程大学建筑工程学院2)工程名称:某企业办公楼3)地理位置:芜湖市区4)工程性质:建筑主要为某企业的办公及会议用房3、设计构思1)总平面布局该建筑的设计以人为本,充分体现人文主义为基本出发点,建筑的南面设计为大楼主入口,同时也为人提供了一个短时间停留集聚的场所,为商业带来了繁荣。主建筑左右两侧设计了大会议室及活动中心,为大楼增加了色彩和活性。2)平面布局建筑采用比较规整的柱网设计,为商业和办公空间的灵活组合划分提供条件。3)造型设计在本项目的立面造型设计中,经过多方面的考虑,结合当地的地理特征和建筑环境,采用从周围建筑借建筑元素符号的方法来完成本设计的立面造型,使整栋建筑形成一种良性的协商关系,使之成为城市新规划中的一个亮点。4)建筑色彩色彩方面,建筑的上部用灰白色为主,群楼商业部分营造出商业营业的氛围,建筑主立面的玻璃幕墙主要为淡蓝色,营造出冷静的办公环境,使整座建筑的色彩既有对比,又统一协调。4、经济技术指标建设用地面积:1400.1m2总建筑面积:5685.12m2建筑占地面积:1300.32m2层数:6层建筑高度:24.1m5、建筑消防和人防1)、办公楼设两个疏散楼梯及相关消防设备。2)、在规划内部与市政道路沿建筑两长边形成消防车道。3)、满足消防要求和消防扑救面要求。4)、人防异地建设。-103-
高校土木综合楼设计9.2结构设计说明1、设计依据1)、工程设计采用的主要规范及规程:《建筑结构可靠度设计统一标准》(GB50068-2001)《建筑抗震设防分类标准》(GB50068-2001)《建筑抗震设计规范》(GB50011-2001)《高层建筑混凝土结构技术规程》(JGJ3-2001)《混凝土结构设计规范》(GB50010-2002)《建筑结构荷载规范》(GB50009-2001)《建筑地基基础设计规范》(GB50007-2002)2)、建筑及有关设备专业提供的图纸及技术资料2、结构设计根据本建筑使用功能及规模,建筑安全等级为二级,结构设计使用年限50年,建筑抗震设防类别按乙类进行结构设计。1)、结构选型:采用一般框架结构体系。本栋楼结构均平面规则,上下刚度变化均匀,高宽比满足要求,均是受力明确,传力直接,抗震性能良好的结构体系。2)、基础:埋深为2.3m的基础,具体见基础设计。3)、主要材料混凝土:C25钢筋:HPB300,HRB400-103-
高校土木综合楼设计结论与展望毕业设计是学生在学习阶段的最后一个环节,是对所学基础知识和专业知识的一种综合应用,是一种综合的学习、提高和加以实践的过程。这一过程对学生的学习能力和独立工作能力以及自学能力的提高有很大的帮助,同时毕业设计的水平也反映了本科教育的综合水平,以及学生所掌握的知识。通过这段时间的毕业设计,总的体会可以用一句话来表达:理论和实践相结合是一个很长的过程。这次毕业设计能让我们理论联系实际。学以致用,更好的应用我们学的知识。以往的课程设计都是单独的构件或建筑物的某一部分的设计,而毕业设计则不一样,它需要综合考虑各个方面的工程因素,诸如布局的合理,安全,经济,美观,还要兼顾施工的方便。这是一个综合性系统性的工程,因而要求我们分别从建筑,结构等不同角度去思考问题。在设计的过程中,遇到的问题是不断的。前期的建筑方案由于考虑不周是,此后在杨老师及同学们的帮助下,通过参考各种相关设计资料,使我们的设计渐渐趋于合理。在计算机制图的过程中,我更熟练AutoCAD、天正建筑等建筑设计软件。在此过程中,我对制图规范有了较为深入地了解,对平、立、剖面图的内容、线形、尺寸标注等问题上有了更为清楚地认识。对手绘图有了更深的认识和熟练。中期进行对选取的一榀框架进行结构手算更是重头戏,对各门专业课程知识贯穿起来加以运用,比如恒载,活载与抗震的综合考虑进行内力组合等。开始的计算是错误百出,稍有不慎,就会出现与规范不符的现象,此外还时不时出现笔误,于是反复参阅各种规范,设计例题等,把课本上的知识转化为自己的东西。后期的计算书电脑输入,由于以前对各种办公软件应用不多,以致开始的输入速度相当的慢,不过经过一段时间的练习,逐渐熟练。在设计的过程中我们能认真的对毕业设计,老师对学生能认真对待毕业设计的态度也较满意。设计期间,我们都自觉独立进行设计,有问题时就同学之间进行讨论或找老师进行询问和研讨。通过这种方式,我们也都获得了很大收益。通过毕业设计,我们普遍都感觉到自己的基础知识和专业知识及解决问题的能力有了很大的提高。毕业设就要圆满的结束,我们也即将离开母校。在以后的职业生涯中,我们要努力实现和提高自己来答谢母校栽培。-103-
高校土木综合楼设计致谢本次设计的完成是在我们的导师杨老师的耐心指导下进行的。我们非常感谢我们的杨老师!杨老师严谨的治学态度,开拓创新的精神和高度的责任心都感染了我们!让我们在以后的职业生涯中都以他为榜样。我们要努力提升自己,要做出一番成绩来答谢母校的栽培。还要感谢和我同一设计小组的同学们给我的帮助,才使我很快并顺利的完成设计。作者:周星星2012年6月1日-103-
高校土木综合楼设计参考文献[1]湖南大学结构力学教研室编.《结构力学》上册,第四版,[S].北京:高等教育出版社,1998[2]沈蒲生、苏三庆主编.《高等学校建筑工程专业毕业设计指导》[S].北京:中国建筑工业出版社,2000.6[3]同济大学、西安建筑科技大学、东南大学、重庆建筑大学编.《房屋建筑学》.第三版,[S].北京:中国建筑工业出版社,1997[4]同济大学建筑制图教研室,陈文斌、章金良主编《建筑工程制图》,第三版,[S].上海:同济大学出版社,1996[5]东南大学编著.《建筑结构抗震设计》[S].北京:中国建筑工业出版社,1998[6]中华人民共和国建设部主编.《混凝土结构设计规范》,[S],北京:中国建筑工业出版社,2002[7]天津大学、同济大学、东南大学主编.《混凝土结构》上册,第四版,[S].北京:中国建筑工业出版社,2008[8]梁兴文、史庆轩主编.《土木工程专业毕业设计指导》[S].北京:科学出版社,2002[9]中华人民共和国建设部主编.《建筑结构荷载规范》[S].北京:中国建筑工出版社,2002[10]王祖华主编.《混凝土及砌体结构》[S].华南理工大学出版社,1993[11]邵全,韦敏才编著.《土力学与基础工程》[S].重庆大学出版社出版,1997-103-
高校土木综合楼设计附录RecentapplicationsoffiberopticsensorstohealthmonitoringincivilengineeringHong-NanLia,,Dong-ShengLia,Gang-BingSonga,bAStateKeyLaboratoryofCoastalandOffshoreEngineering,DepartmentofCivilandHydraulicEngineering,DalianUniversityofTechnology,Ganjingzidistrict,LinggongRoad2,Dalian116024,ChinaDepartmentofMechanicalEngineering,UniversityofHouston,Houston,TX77204-4006,USAReceived10January2003;receivedinrevisedform11May2004;accepted25May2004AbstractAbstractThispaperpresentsanoverviewofcurrentresearchanddevelopmentinthefieldofstructuralhealthmonitoringwithcivilengineeringapplications.Specifically,thispaperreviewsfiberopticalsensorhealthmonitoringinvariouskeycivilstructures,includingbuildings,piles,bridges,pipelines,tunnels,anddams.Threecommonlyusedfiberopticsensors(FOSs)arebrieflydescribed.Finally,existingproblemsandpromisingresearcheffortsinpackagingandimplementingFOSsincivilstructuralhealthmonitoringarediscussed.2004elsevierLtd.Allrightsreserved.Keywords:StructuralhealthmonitoringFiberopticsensorCivilhealth1.IntroductionStructuralhealthmonitoringhasattractedmuchattentioninbothresearchanddevelopmentinrecentyears.Thisreflectscontinuousdeteriorationconditionsofimportantcivilinfrastructures,especiallylong-spanbridges.Amongthem,manywerebuiltinthe1950switha40-to-50-yeardesignedlifespan.Thecollapsesandfailuresofthesedeficientstructurescauseincreasingconcernaboutstructuralintegrity,durabilityandreliability,i.e.thehealthofastructurethroughouttheWorld.Currently,therearenofootproofmeasuresforstructuralsafety.Astructureistestedfordeteriorationsanddamagesonlyaftersignsthatresultfromfaultaccumulationsaresevereandobviousenough.Whenthenecessityofsuchtestsbecomesobvious,damageshavealreadyexacerbatedthesystem’sreliabilityinmanycasesandsomestructuresareevenonthevergeofcollapse.Thoughroutinevisualinspectionismandatoryforimportantstructuresinsomecountries,forinstance,-103-
高校土木综合楼设计bridgesintheUS,itseffectivenessinfindingallthepossibledefectsisquestionable.ArecentsurveybyMooreetal.[1]oftheUSFederalHighwayAdministrationrevealedthatatmost68%oftheconditionratingswerecorrectandin-depthinspectionscouldnotfindinteriordeficienciesconsideringthefactthatvisualexaminationbyinspectorsbarelyexists.Structuralhealthmonitoring(SHM)referstotheuseofin-situ,continuousorregular(routine)measurementandanalysesofkeystructuralandenvironmentalparametersunderoperatingconditions,forthepurposeofwarningimpendingabnormalstatesoraccidentsatanearlystagetoavoidcasualtiesaswellasgivingmaintenanceandrehabilitationadvice.ThistentativelyproposeddefinitionofSHMcomplementsthatgivenbyhousner[2].ThisdefinitionemphasizestheessenceoftheadvancealertabilityofSHM.Ingeneral,atypicalSHMsystemincludesthreemajorcomponents:asensorsystem,adataprocessingsystem(includingdataacquisition,transmissionandstorage),andahealthevaluationsystem(includingdiagnosticalgorithmsandinformationmanagement).ThesensorsutilizedinSHMarerequiredtomonitornotonlythestructuralstatus,forinstancestress,displacement,accelerationetc,butalsoinfluentialenvironmentalparameters,suchaswindspeed,temperatureandthequalityofitsfoundation.Sincealargenumberofsensorswillbeinvolvedinahealthmonitoringsystem,theacquisition,transmissionandstorageofalargequantityofdataforsuchcontinuousmonitoringisachallengingtask.Forinstance,rawdataareacquiredatarateof63.46MBperhourfortheTsingMaandKapShuiMunBridgesand55.87MBperhourforTingKauBridge[3].Therefore,manywireless[4,5],GPS[6]orGIS[7]baseddataacquisition,transmissionmethodsanddataarchivalandmanagementarchitectures[8]wereproposedtodealwiththisproblem.Thoughitisveryimportanttoembedsensorsandcollectdatasuccessfullyforahealthmonitoringapplication,thefinalstepistointerpretcorrectlythedatafromvarioustypesofsensorstoreachcriticaldecisionsregardingtheloadcapacity,systemreliability,i.e.thehealthstatusofthestructure[9].Atthiscrucialstep,prognosticanddiagnosticalgorithmsbasedonmodalanalysis,patternrecognitionandtimeseriesanalysisareamongthemosteffectivemethodstodetectthepresence,location,magnitude,andextentofstructuralfaults[10].Moreover,theinformationanalyzedshouldbeuserfriendlytoimproveoperationandmaintenancemanagementdecisions.AnothercrucialfunctionofSHMistheabilitytoalertongoingdangersorfutureaccidentsinadvance.Thoughitisnotasimpletasktorealizefullysuchanappealingscenario,severalprojectshadbeenundertakentoimplementpartiallySHMsystemsfromresearchlaboratoriestofieldapplications.TsingMa,KapShuiMun,andTingKaubridges,connectingHongKonganditsnewairport,arethemostnoteworthybridgesbeingheavilyinstrumentedforhealthmonitoring.Windloadisamajorconcernofthesebridgesaswellastemperature,trafficload,geometricconfiguration,strain,andglobaldynamiccharacteristics.Amongthe786permanentlyinstalledsensorsinTsingMaBridge,anemometers,temperature,strainandaccelerometersensorscompriseamajorportion.Monitoringresultsaresatisfactoryandhaveverifieddesignperformance[11].SimilarsensorswerealsousedinthehealthmonitoringsystemoftheAkashiKaikyoBridge-103-
高校土木综合楼设计inJapan.Thetransversaldisplacementof5.17mmonitoredinSeptember1998agreedwellwithnumericalsimulations.CommodoreBarryBridgeandBenicia-MartinezbridgeoftheUSareequallyimportantexamplesofSHM[12].InCommodoreBarryBridge,real-timeimagesanddatafromnearly500channelscombinedwithitsfiniteelementmodelareusedformaintenanceandmanagementofthebridgetothemaximumbenefit.OthersignificanteffortsinimplementinghealthmonitoringsystemsincludebridgesinKorea,Canada,IndiaandColombia[13].Mostoftheconventionalsensorsusedintheabovementionedhealthmonitoringapplicationsarebasedontransmissionofelectricsignals.Theirlimitationsarebecomingmoreandmoremanifest.Thesesensorsareusuallynotsmallordurableenoughtobeembeddedinastructuretomeasureinteriorproperties.Theyarelocal(orpoint)sensors,whicharerestrictedtomeasureonlyparametersatonelocationandcannotbeeasilymultiplexed.Thelongleadlinesalsoposeproblemsforlargecivilstructures,whichoftenspanseveralortensofkilometers.Insomecases,thesignalscouldnotbediscriminatedfromnoisebecauseofelectricalormagneticinterference(EMI).Inaddition,variousdemodulationtechniquesarerequiredfordifferentsensors.TheyalladdinincreasingtheinconveniencesofconventionalsensorsinSHM.Fiberopticsensors(FOSs)arepromisingsensingalternativesincivilSHMsystemsandfuturesmartstructures.Theyexhibitseveraladvantagessuchas,flexibility,embeddability,multiplexityandEMIimmunity[14],ascomparedwithtraditionalsensors.Thepast20yearshavewitnessedanintenseinternationalresearchinthefieldofopticalfibersensing.Inthefollowingsections,wewilldescribethisenablingtechnologyandreviewitshealthmonitoringapplicationstocivilengineering.2.ThreefiberopticsensorsforstructuralhealthMonitoringThefirstfiberopticsensor,aclosed-loopfibergyro,wasinventedtoreplacemechanicalspinninggyrosontheDeltaRocketin1978[15].ConceptionofsuchFOSsoriginatedfromfiberopticcommunications.Opticalfiberexperiencesgeometrical(sizeandshape)andoptical(refractiveindexandmodeconversion)changesduetovariousenvironmentalperturbationswhileconveyinglightfromoneplacetoanother.Thesephenomenaperplexedeffortstominimizesuchadverseinfluencessothatsignaltransmissionissmoothandreliable.However,itisfoundthatsuchopticalchangescanbeemployedtomeasuretheexternalenvironmentparameters.Opticfiberthusfounditsnicheinsensorapplications.Investigationsshowedthatthesensitiveperturbationsintemperature,strain,rotation,electricandmagneticcurrents,etc.,canbeconvertedorencodedintocorrespondingchanges,suchasamplitude(intensity),phase,frequency,wavelengthandpolarizationintheopticalpropertiesofthetransmittedlight.Thesechangescanbeeventuallydetectedbyappropriatedemodulationsystems[16,17].Withrapidadvancesincommunicationandstartofmassproductionoffiberopticcables,fiberopticsensingisgrowingtobeaprosperousindustry,benefitingfromthedecreasingfiberprices.Manytechniqueshavebeendevisedto-103-
高校土木综合楼设计providesolutionstomeasureabroadrangeofphysicalandchemicalparameters.Asaconsequence,fiberopticbasedmeasurementsystemshavemadethetransitionfromresearchlaboratoriestopracticalengineeringapplications,andhavefoundwideapplicationsinaerospace,composites,medicine,chemicalproducts,concretestructures,andintheelectricalpowerindustry.ThemarketvolumeofFOSsishypothesizedtorisefromUS$305millionsin1997tothisyear’sUS$550millions[18],amongwhichtemperature,strainandpressuresensorsaccountforabout40%ofthetotalFOSproducts[19].ExtensiveeffortsarenowengagedtorealizeeconomicFOSsandassociatedinterrogationsystemsandtoexplorewiderengineeringapplications.Opticalfibers,whichusuallyconsistofthreelayers:fibercore,claddingandjacket,aredielectricdevicesusedtoconfineandguidelight.Themajorityofopticalfibersusedinsensingapplicationshavesilicaglasscoresandcladdings,andtherefractiveindexofthecladdingislowerthanthatofthecoretosatisfytheconditionofSnell’slawfortotalinternalreflectionandthusconfinethepropagationofthelightalongthefibercoreonly.TheouterlayerofaFOS,calledjacket,isusuallymadeofplastictoprovidethefiberwithappropriatemechanicalstrengthandprotectitfromdamageormoistureabsorption.Insomesensingapplications,aspecializedjacketisrequiredtoenhancethefiber’smeasurementsensitivityandtoaccommodatethehoststructure.Ingeneral,anFOSischaracterizedbyitshighsensitivitywhencomparedtoothertypesofsensors.Itisalsopassiveinnatureduetoitsdielectricconstruction.Speciallypreparedfiberscanwithstandhightemperatureandotherharshenvironments.Intelemetryandremotesensingapplications,itispossibletouseasegmentofthefiberasasensorgaugeandalonglengthofthesameoranotherfibertoconveythesensedinformationtoaremotestation.Deploymentofdistributedandarraysensorscoveringextensivestructuresandgeographicallocationsisalsofeasible.Withmanysignalprocessingdevices(splitter,combiner,multiplexer,filter,delayline,etc.)beingmadeoffiberelements,anall-fibermeasuringsystemcanberealized.Table1liststheFOSsavailabletocivilengineeringapplicationsandtheircategories.OnemethodofclassifyingFOSsisbasedonitslightcharacteristics(intensity,wavelength,phase,orpolarization)thatisaffectedbytheparametertobesensed.AnothermethodclassifiesanFOSbywhetherthelightinthesensingsegmentismodifiedinsideoroutsidethefiber(intrinsicorextrinsic).FOSscanalsobeclassifiedaslocal(orpoint),quasi-distributedanddistributedsensorsdependingonthesensingrange.Thismethodofclassificationisadoptedheretoorganizetherestofthissection.2.1.LocalfiberopticsensorsManyintensitybasedsensors,suchasmicrobendsensors,andmostoftheinterferometricFOSsarelocalsensors,whichcanmeasurechangesatspecifiedlocalpointsinastructure.InterferometricFOSsarebyfarthemostcommonlyusedlocalsensorssincetheyofferthebestsensitivity.Thissensingtechniqueisbasedprimarilyondetectingtheopticalphasechangeinducedinthelightasitpropagatesalongtheopticalfiber.Lightfromasourceisequallydividedintotwofiber-guidedpaths(oneisa-103-
高校土木综合楼设计referencepath).Thebeamsarethenrecombinedtomixcoherentlyandforma‘‘fringepattern’’whichisdirectlyrelatedtotheopticalphasedifferenceexperiencedbetweenthetwoopticalbeams.ThemostcommonconfigurationsofsuchinterferometricsensorsaretheMach-Zehnder,MichelsonandFabry–PerotFOSs[20,21].Amongthem,theFabry–Perot(F-Pcavity)FOSandtheso-calledlonggageFOS(LGFOSs)arethetwotypesoflocalsensorscommonlyutilizedincivilengineering.Fabry–PerotFOSs,whichcanprovideabsoluteFabry–Perotcavitylengthmeasurementswithsuperioraccuracy(Fig.1),arebasedonwhite-lightcross-correlationprinciple.Inadditiontoitsstrain-sensingability,anF-Psensorcanalsomeasurepressure,displacementandtemperaturewithdifferentconfigurations.LGFOSsarebasedontwolow-coherentdoubleMichelsoninterferometers(Fig.2).Bothsensorsmeasuretheaveragestrainbetweentwofixedpointsalongthegagewithoptionaltemperaturecompensation.Thelengthofthelonggagesensorsrangesfrom0.2to50m.-103-
高校土木综合楼设计结合近年来对基金申请纤维光学传感器的安全监测李宏男李东升宋钢兵国家重点实验室的沿海和海洋工程土木工程系和水利工程系。大连理工大学中国大连甘井子区凌工路2号116024机械工程系美国休斯敦大学,休斯顿,德克萨斯州77204-4006收到时间:2003年的一月十日修订后的形式收到时间:2004年5月11最终接受时间:2004年5月25日摘要文章概述了目前研究开发的结构安全监测领域与土木工程领域。具体地说,本文回顾了光纤传感器的安全监测各种民用建筑。包括建筑物,桩、桥梁、管道、隧道、水坝。简要的描述常用的三种光纤传感器(自由/开源软件)。最后,存在的问题和广阔的研究成果在包装和实施自由/开源软件在土木结构安全监测进行了讨论2004年教育部博士点基金有限公司版权所有关键词:结构安全监测光纤传感器民用的安全1.介绍结构安全最近几年的研究和发展吸引了很多监测机构的关注。这反映了不断恶化的条件这些土建结构不变的,尤其是大跨径桥梁。其中,很多结构都建于1950年代和一般是40到50的设计寿命。伴随着这些缺陷和不足,在以后的安全结构则会更注重完整性,耐用性和可靠性。目前,没有办法即刻证明结构的安全性。结构进行恶化和损害迹象之后,这些结果表明从严重故障中积累经验效果还是不够明显的。当测试的必要性变得越来越明显,由于损害赔偿责任已经提高了系统的可靠性。许多情况下,一些建筑甚至处于崩溃的边缘。在一些国家重要结构是需要强制性的常规视觉检测,比如桥梁在美国,其发现所有可能的缺陷的有效性是值得商榷的。最近一项摩尔的调查表明。[1]美国联邦公路管理局显示的最高只有68%的状态评级是正确的,不深入检查不能找到内部缺陷,即使已经考虑到视觉检查检验存在。几乎所有的结构安全监测(单孔位微吹气扰动)都是指的是使用的现场、连续或定期(常规)测量并分析了关键结构和环境参数在常规的操作条件下,为目的警告即将在异常或事故早期和晚期避免人员伤亡以及时给予维护和康复的建议。初步提出了并定义了单孔位微吹气扰动定义[2]。这个定义强调的是单孔位微吹气扰动的警觉本质进步能力。-103-
高校土木综合楼设计一般来说,一个典型的单孔位微吹气扰动系统包括三个主要成份:一个传感器系统,数据处理系统(包括数据采集、传输和存储),和安全评估体系(包括诊断算法和信息管理)。传感器是利用只需要监视单孔位微吹气扰动时结构状况,例如压力,位移、加速度等,但同时也有影响力环境参数,例如风速、温度和高质量的基础。由于大部分感觉遥感数字将会积极参与的在一个安全监测系统,采集、传输和储存大量数据这样很有挑战性的不间断的监控任务。例如,原始数据获得每小时63.46MB速度的青马桥和汲水门桥梁和以每小时55.87MB的汀九桥[3]。因此,许多无线[4、5)、GPS[6][7]或地理信息系统(GIS)的基础数据采集,传播手段和数据档案[8]管理架构提出了方法解决这个问题。尽管它很成功嵌入传感器并在数据采集和安全监测中广泛应用,最后一步是翻出来正确数据从各种类型的传感器达到关键性的部位对于负载能力、系统可靠性,即要求有较高安全状况的结构[9]。在这个重要的一步,预后与诊断算法基于模态分析、模式识别方法和时间序列分析是最为有效的方法来探测是否存在错位、规模和断层程度.[10]。此外,另一个重要的功能是应用传来的信息分析提高操作和维护管理。单孔位微吹气将在扰动警惕危险事故中持续或未来的结构中广泛应用。它并不是一个简单的任务,实现完全这样的吸引人的情况下,几个项目已经在部分研究实验室进行单孔位微吹气扰动系统实施在现场中的应用的实验。青马,汲水门、和汀九桥梁,连接香港和新的机场,是被装有大量有益于安全监测的最值得关注的桥梁。在桥的温度、流量负荷、几何配置、应变、全球动态特性等中风荷载是一个重要的问题.在安装786个的永久传感器的青马桥,是由风速计、温度、应变加速度计传感器主要部分组成。监测结果是令人满意的,验证了设计的性能[11]。类似的传感器也被使用在正式通车日本石海峡大桥的安全监测。1998年9月巴里桥同意监测和数值进行模拟所得横向位移为5.17米。例如-准将马丁内兹桥都是我们是单孔位微吹气扰动的同等重要的实例.[12]。巴里司令大桥,实时图象、数据来自近500个频道结合的有限元模型用于维护和管理桥梁。在执行其他重大的桥梁安全监测系统国家包括韩国、加拿大、印度和哥伦比亚.[13].传统的传感器最主要的用于上述提到安全监测应用的基础所传播的信号。其局限性是变得越来越明显。这些传感器通常粘贴在耐用的一个较小结构的内部进行测量.这些(或点)传感器的限制量只局限在一个位置参数而不容易多路复用。大型民用建筑长跨度问题也随之而来,经常跨几个至数十个公里。在某些情况下,信号会遭受噪音的磁场干扰(EMI)。此外,不同解调技术对传感器要求不同。在传统传感器都加入了单孔位微吹气扰动。光纤传感器(自由/开源软件)是有希望的应用在单孔位微吹气扰动系统的传感和未来的智能结构中。他们展示有灵活性,也有多复杂性和电磁干扰免疫。[14],相比而言,传统的传感器。在过去的20年里,目睹了一场激烈的耦合光纤传感在这一领域的国际研究。在接下来的段落里,我们来描述这项技术在土木工程安全监测的应用。2.三光纤传感器结构安全监测第一个光纤传感器,一个闭合回路的光纤回转仪,,是用来替代1978的德尔塔火箭上呆板的回转仪。关于这个构思的起源来自于对于光学纤维的联系与了解。这样的构想的起源于光纤通信。-103-
高校土木综合楼设计光纤的几何(形状和大小)和光学(折射率和模式转换)由于各种环境的扰动变化同时输送光从一个地方到另一个。这些现象让人感到困惑,我们要努力以最大限度地减少这种不利的影响,使信号的传输顺利可靠。但是,它又被发现,这种光学变化可以用来衡量的外部环境参数得变化。因此,光纤发现其在传感器的应用。调查表明其敏感性在温度,应变,旋转,电动扰动磁流等等,都可以转换或编码成相应的变化,如幅度,(强度),相位,频率,波长和偏振在光学性质的这些变化最终可以通过适当的检测解调系统。随着在通信和启动生产纤维光缆日新月异,光纤传感日益成为一个繁荣行业,受益于较低的纤维价格。已经制订了许多物理及化学参数测量范围广泛的技术解决方案。因此,光纤基于测量系统已经过渡从研究实验室到实际工程中应用,并已发现它广泛的应用在航空航天,复合材料,医药,化工产品,混凝土结构,以及在电力行业。假设市场最初成交量的从1997年的305百万美元上升到今年的550美元百万,其中温度,应变和压力传感器占总数的40%的低聚果糖产品广泛的努力,现在从事以实现经济自由和开放源码软件和相关审讯系统和探索更广泛的工程应用。光纤,通常由丁极层:纤芯,包层和护套,介质设备用于限制和引导光。多数的光学遥感应用中使用的纤维,石英玻璃芯和包层,折射率熔覆满足条件Snell定律的内部全反射法因此只沿光纤传播。夹克,外层OFA低聚果糖,是通常塑料提供适当的纤维机械强度和保护它免受损害或水分的吸收。在一些敏感的应用程序,要求,以提高纤维的专门夹克测量灵敏度,以适应主机结构在一般情况下,其灵敏度高的特点是果低聚果糖相比其他类型传感器较低。这是也被动的性质,由于其介电建设。特意准备的纤维可以承受高温和其他恶劣环境。在遥测和遥感应用,它可以使用一个[传感器仪表和长纤维合体相同或其他纤维传达遥感信息远程工作站。部署分布式和阵列传感器,覆盖广泛的结构的地理也是可行的。与许多信号加工设备(分配器,合成器,复用器,滤波器,延迟线等光纤元素,全光纤测量系统可以实现的。表1列出了可用于土木工程的源码应用程序和它们的类别。方法之一分类源码是基于其光特性(强度,波长,相位,偏振或)被检测的参数影响。另一个方法分类是否在光低聚果糖内部或外部光纤传感段进行修改(内在或外在)。源码还可以被列为本地(或点),准分布式和分布式传感器根据感应范围。这种方法这里通过分类组织的其余部分保持原位。2.1.本地光纤传感器许多基于传感器强度,如微弯传感器,是当地最早的干涉源码传感器,它可以测量在指定的地方的变化分在一个结构。干涉源码是迄今为止最常用的,因为他们提供的传感器灵敏度最好的。这是基于遥感技术主要检测的光学相变在沿光传播的光诱导纤维。同样分为两个光从源光纤制导路径(一个是参考路径)。然后重组连贯和混合形成“这直接关系到光学条纹图案”经历了两者之间的光学相位差。最常见的的配置这类干涉传感器马赫-曾德尔型,迈克尔逊法布里-珀罗源码[20,21]。其中,法布里-珀罗(FP腔)FOS和所谓的长量具低聚果糖(LG源码)的是两个类型当地传感器普遍使用的土木工程。法布里-珀罗源码,它可以提供绝对的法布里-珀罗腔具有卓越的精度测量长度(图1),基于白光交叉相关的原则。在除了其应变传感能力,FP传感器还可以测量压力,位移和温度不同的配置。LG源码是基于两个低相干双迈克尔逊干涉仪(图2)。两个传感器测量平均应变两固定点沿与可选的规温度补偿。长度国税发长规传感器范围从0.2到50米。-103-'
您可能关注的文档
- xxx结构设计计算书
- x市xx银行综合楼设计计算书
- 本科住宅楼建筑结构毕业设计计算书
- 毕业设计 某办公楼计算书(参考版)
- 毕业设计计算书-郑州五层土木工程学院教学楼毕业设计
- 毕业设计桥梁计算书
- 城市职业技术学院教学楼设计计算书(正稿)
- 多高层钢结构住宅毕业设计(含计算书、建筑结构设计图)
- 二广高速连怀段路基路面工程综合设计计算书
- 公寓综合楼设计计算书参考模式
- 后张法预应力混凝土简支t型梁桥上部结构设计计算书(参考)
- 华东交通大学1号综合楼施工图设计计算书
- 济南怡和花苑3#住宅楼设计计算书
- 框架结构高校办公楼设计计算书1
- 七层教学楼,现浇框架填充墙结构设计计算书
- 商业中心配套公共建筑毕业设计计算书最终版
- 沈阳市林瑞建筑办公楼计算书完成版
- 水利水电学院新教学楼结构设计毕业设计(含计算书、部分建筑结构设计图)