- 3.92 MB
- 108页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'安徽工程大学毕业设计(论文)某高校办公楼设计摘要随着时代的发展,实验楼硬件设施也必须跟得上时代的步伐,因此,相应的对实验楼建设的要求也越来越高。实验楼是一所学校形象的重要代表,也是我们非常熟悉的建筑物,实验楼办公楼的建筑设计美不仅要外观符合时代的需要大方、得体、体现时代特色,此外还必须有较高的实用性、经济性、以满足学校老师及其他工作人员的实际需要为根本目的。通过查阅相关资料,并将资料进行总结和研究,发现混凝土框架结构有以下特点:框架结构整体性强、抗腐蚀能力强、经久耐用,并且房间的开间,进深相对较大能为建筑提供灵活的使用空间,空间分割较自由,建筑主体大都采用框架结构,或框架剪力墙结构,以满足现代公共建筑的布置灵活、大开间、大进深的要求。实验楼建筑面积较大,使用人员众多,流动性大,一般布置为内廊式建筑,必须考虑对消防、防火的要求,保证进出建筑的通畅。本设计主要的步骤包括:方案设定阶段、建筑施工图阶段、结构施工图阶段、整理阶段。到建筑的美观、实用和经济等基本要求,宿舍楼的采光、通风、人体舒适要求等等需对原方案作进一步的改正。建筑施工图阶段:此阶段主要将方案中的平、立、剖面图加以细化,并增加在前三者中无法表示清楚的详图。对窗、门、电梯、楼梯等按规范要求设置。结构施工图阶段:此阶段分两部分:一、根据建筑图、结构选型、结构布置、构件截面尺寸的确定(包括混凝土强度等级的选配)、结构计算、构件根据计算产生的内力、得出构件的配筋、再考虑构造要求、绘制施工图等,其中特别要注意的是合理进行结构选型及结构布置,选用钢筋混凝土框架结构。;二、基础设计:要保证图纸完整表达。只有采用电算来提供基础设计所需的基本数据(主要是柱底的内力值)。在此情况下,根据内力值选择基础型式。通过JCCAD进行计算,绘制的基础图包括基础平面图和基础详图。关键词:实验楼;结构;设计;V
安徽工程大学毕业设计(论文)DesignofauniversityofficeAbstractWiththedevelopmentofthehardwarefacilitiesofthelaboratorybuildingmustalsokeepupwiththepaceofthetimes,therefore,thecorrespondingrequirementsontheconstructionoflaboratorybuildingisalsogettinghigherandhigher.Thelaboratorybuildingisanimportantrepresentativeofaschoolimageisalsomeettheneedsofthetimesweareveryfamiliarbuildings,thearchitecturaldesignoftheteachingbuildingofthelaboratorybuilding,notonlytotheappearanceofgenerosity,decency,reflectthecharacteristicsofthetimes,inadditionmusthaveahighpracticaleconomic,tomeettheactualneedsofteachersandotherstaffasthefundamentalpurpose.Throughaccesstorelevantinformationanddatasummaryandconcreteframestructurehasthefollowingcharacteristics:theframeworkforstructuralintegrity,corrosionresistance,durable,relativelylargeandthebayoftheroom,deepintothebuildingtoprovideaflexiblemorefreedomintheuseofspace,spacepartitioning,themainbuildingwerepoweredbyaframestructureorframeshearwallstructuretomeettheflexiblelayoutofmodernpublicbuildings,largebays,deepintotherequirements.Laboratorybuildingconstructionarea,theuseoflargenumbers,mobility,generallayoutfortheCorridorconstruction,wemustconsidertherequirementstoensurethesmoothoutofthebuildingonfire,fire.Themainstepsofthisdesigninclude:theprogramsetthestage,theconstructiondrawingstage,theconstructiondrawingstage,finishingstage.Theprogramsetting:apreliminarydrawingoftheflat,vertical,profilecharttocompletetheconstruction.Inthisprocess,togivefullconsiderationtothebasicrequirementsofarchitecturalaesthetics,practicalandeconomic,dormitorylighting,ventilationandhumancomfortrequirements,andsoneedtomakefurthercorrectionstotheoriginalproposal.Constructiondrawingstage:thisstageismainlyflat,verticalprofilesintheprogramtoberefined,andincreasethedetailofthefirstthreecannotbeexpressedclearly.Setofwindows,doors,elevators,stairsandotherregulatoryrequirements.Constructiondrawingstage:Thisstageisdividedintotwoparts:one,accordingtoarchitecturaldrawings,structuralselection,structuralarrangement,membersectionsize(includingthematchingofthestrengthgradeofconcrete),structuralcalculation,componentaccordingtocalculationsproducetheinternalforcesmayareinforcementofthecomponents,andthenconsiderthestructuralrequirements,drawconstructionplans,inparticulartonoteisthattherationalstructureselectionandstructuralarrangement,thechoiceofthereinforcedconcreteframestructure.;Second,thebasicdesign:Toguaranteethedrawingscompleteexpression.OnlybyadoptingtheICCtoprovidethebasicdataneededforthebasicdesign(NeiLizhiinthebottomofthecolumn).Inthiscase,accordingtoNeiLizhiSelectthefoundationtype.calculatedbyJCCADdrawnbasemap,includingabasicplanandthebasisofdetail.V
安徽工程大学毕业设计(论文)Keywords:laboratorybuilding;structure;design;目录引言……………………………………………………………………………………1第1章绪论………………………………………………………………………………21.1工程概论…………………………………………………………..……………….............21.2建筑与基础设计型式……………………………...........……………….....………...........21.3框架计算方法………………………....…………………………………………...........21.4主要进程安排…………………………………………………................………...........2第2章建筑结构布置与荷载计算……………………………………..............................…42.1结构布置……………………………………………………………………….............42.2梁柱截面尺寸……………………………………………………………………...........42.3材料强度等级………………………………………………………………………...........42.4荷载计算……………………………………………………………………………...........4第3章横向框架内力计算……………………………………………………………123.1恒载作用下的框架内力………………………………………………………….........123.2活载作用下的框架内力………………………………………………………….........193.3风荷载作用下的位移、内力计算……………………………………………….........343.4地震作用下横向框架的内力计算……………………………………………............37第4章框架内力组合…………………………………………………………………47第5章横向框架梁柱截面设计………………………………………………………61第6章楼梯结构设计计算……………………………………………………………736.1楼体板计算……………………………………………………………………..........736.2休息平台板计算………………………………………………………………..........746.3梯段梁TL1计算……………………………………………………………….........74第7章基础设计………………………………………………………………………767.1荷载计算…………………………………………………………………………..........767.2确定基础面积……………………………………………………………………...........767.3地基变形验算……………………………………………………………………............797.4基础结构设计……………………………………………………………………..........80第8章建筑与结构设计说明…………………………………………………………....848.1建筑相关说明…………………………………………………………………….........848.2结构设计说明……………………………………………………………………..........85结论与展望…………………………………………………………………………………86致谢………………………………………………………………………………………87参考文献……………………………………………………………………………………88附录…………………………………………………………………………………………89附录A……………………………………………………………………..............................89附录B……………………………………………………………………..............................96V
安徽工程大学毕业设计(论文)插图清单图2-1计算简图4图2-2恒载图(a)/活载图(b)5图2-3恒载顶层集中力6图2-4恒载中间层节点集中力7图2-5横向框架上的地震作用11图3-1横向框架承担的恒载及节点不平衡弯矩12图3-2杆端弯矩方向14图3-3恒载弯矩分配过程17图3-4恒载作用下弯矩图(KN/m)18图3-5恒载作用下梁剪力、柱轴力、柱剪力18图3-6活载不利布置(a)20图3-7活载不利布置(b)20图3-8活载不利布置(c)20图3-9活载不利布置(d)20图3-10活载(a)弯矩分配过程21图3-11活载(a)弯矩图(KN.m)22图3-12活载(a)剪力、轴力(KN)22图3-13活载(b)迭代过程23图3-14活载(b)弯矩(KN.m)24图3-15活载(b)剪力、轴力(KN)24图3-16活载(c)迭代过程25图3-17活载(c)弯矩(KN.m)26图3-18活载(c)剪力、轴力(KN)26图3-19活载(d)迭代过程27图3-20满跨活载弯矩(KN.m)28图3-21满跨活载剪力、轴力(KN)28图3-22固端弯矩33图3-23弯矩分配过程35图3-24梁、柱弯矩图38图3-25梁剪力、轴力39图3-27地震作用框架弯矩42图3-27地震作用框架梁剪力、柱轴力42图6-1楼梯平面布置73图6-2踏步详图73图6-3平台板计算简图74图7-1土层分布及埋深77图7-2中柱联合基础埋深78图7-3基础剖面尺寸示意图81图7-4冲切验算计算见图83图7-5弯矩和剪力的计算结果83V
安徽工程大学毕业设计(论文)表格清单表2-1横梁、柱线刚度8表2-2每层框架柱总的抗侧移刚度见9表2-3框架顶点假想水平位移9表2-4楼层地震作用和地震剪力标准值计算表10表3-1跨梁端剪力15表3-2跨梁端剪力16表3-3跨跨中弯矩16表3-4柱轴力、剪力16表3-5活载(a)作用下1,2跨梁端剪力29表3-6活载(a)作用下2,3跨梁端剪力29表3-7活载(a)作用下1,2跨跨中弯矩29表3-8活载(a)作用下柱轴力30表3-9活载(b)作用下1,2跨梁端剪力30表3-10活载(b)作用下2,3跨梁端剪力30表3-11活载(b)作用下1,2跨跨中弯矩31表3-12活载(b)作用下柱轴力31表3-13活载(c)作用下1,2跨梁端剪力31表3-14活载(c)作用下2,3跨梁端剪力32表3-15活载(c)作用下1,2跨跨中弯矩32表3-16活载(b)作用下柱轴力32表3-17满跨活载作用下1,2跨梁端剪力33表3-18满跨活载作用下2,3跨梁端剪力33表3-19满跨活载作用下1,2跨跨中弯矩33表3-20满跨活载作用下柱轴力34表3-210.5(雪+活)作用下1,2跨梁端剪力34表3-220.5(雪+活)作用下2,3跨梁端剪力35表3-230.5(雪+活)作用下2,3跨梁端剪力36表3-240.5(雪+活)作用下柱轴力、剪力36表3-25地震作用下横向框架柱剪力及柱端弯矩37表3-26地震作用梁端弯矩40表3-27地震作用下梁剪力、柱轴力43表4-1弯矩条幅计算47表4-2横向框架梁内力组合50表4-3横向框架梁内力组合(考虑地震作用)54表4-4横向框架柱内力组合(一般组合)56表4-5横梁框架柱内力组合(考虑地震组合)59表5-1横梁12、23跨正截面受弯承载力验算62表5-2横梁12,23跨正截面抗震验算63表5-3横梁12,23跨斜截面受剪承载力计算64表5-4横梁12、23跨斜截面受剪抗震验算65V
安徽工程大学毕业设计(论文)表5-5框架柱正截面压弯承载力计算|Mmax|66表5-6框架柱正截面压弯承载力计算Nmin67表5-7框架柱正截面压弯承载力计算Nmax68表5-8框架柱正截面压弯抗震验算|Mmax|69表5-9框架柱正截面压弯抗震验算Nmin70表5-10框架柱正截面压弯抗震验算Nmax71表5-11层间弹性侧移验算72V-1-
安徽工程大学毕业设计(论文)引言作为一名即将毕业的土木工程专业的本科生,在大学几年的理论学习后,要结合社会的实际情况,检验一下自己所学的专业知识是否专业和完善。毕业设计恰好就是一种最好的检验,可以使四年中所学的知识得到综合利用,使得各方面的知识系统化和实践化。通过独立完成毕业设计,可以培养独立思考、独立工作的能力,以及调查、分析和查阅资料的能力。本次毕业设计的题目是《某高校办公楼设计》,结构形式采用全现浇框架结构。在熟悉设计任务书的基础上,结合当地的自然条件,并查阅相关建筑设计的书籍和规范,独立完成高校办公楼工程的建筑方案设计,并最终绘制出建筑施工图。通过建筑方案的设计,对框架结构进行柱网布置及结构选型,并确定材料类型及截面尺寸。首先,通过现行规范选定房间做法,并以此计算框架结构各层的重力荷载代表值;其次,采用合适的计算方法对竖向荷载作用下框架结构的内力、水平地震荷载作用下框架结构内力及侧移进行计算;最后通过以上的结构计算,对框架结构进行内力组合,进行截面设计(梁、板、柱截面尺寸及配筋)、楼板设计(楼板尺寸及配筋)、楼梯设计(平台板、楼梯梁、梯段板截面尺寸及配筋)、基础设计(柱下独立基础的截面设计及配筋),使得截面的配筋满足构造要求。最后通过框架结构的结构设计及计算结果,绘制出结构施工图。-101-
安徽工程大学毕业设计(论文)第1章绪论1.1工程概论本设计是一栋六层框架结构高校办公楼,该工程为钢筋混凝土框架结构,三跨,总建筑面积约为5054.4m2。设计使用年限为50年,结构安全等级为二级,环境类别为一类,抗震设防烈度为8度,设计基本地震加速度值为0.2g,第三组,建筑室内外高差为600m,室外标高即为现在自然地面标高。自然地表以下1m内为杂填土,重度γ=17kN/m3;杂填土下为3m厚可塑性粘土,重度为γ=18kN/m3,液性指数IL=0.62,含水率ω=23.1%,天然孔隙比e=0.8,ES=10MPa,ck=20kpa,φk=12度;再下为砾石土层,重度为γ=20kN/m3,液性指数IL=0.50,含水率ω=15.2%,天然孔隙比e=0.8,ES=20MPa,ck=15kpa,k=18度。未修正前粘土承载力特征值为180kN/m2,砾石土层承载力特征值为300kN/m2。场地土类别为Ⅲ类,地基基础设计等级为丙级。基础埋深范围内无地下水。主体结构工程采用现浇混凝土框架结构,肋梁楼盖。混凝土强度等级为C30,钢筋采用HPB300级(箍筋、楼板钢筋)和HRB400级钢筋(梁、柱纵向受力钢筋)。内外墙均采用小型混凝土空心砌块,厚度200mm,重量参见最新《结构荷载设计规范》。需根据建筑设计和结构承重、抗震方面的要求及场地地质条件,合理地进行结构选型和结构整体布置,统一构件编号及各种结构构件的定位尺寸,绘制出结构布置图。1.2建筑与基础设计型式本工程为五层框架结构,结构平面形状为“工字”型,立面体型简单规则,刚度均匀对称,减小偏心和扭转,尽量统一柱网及层高,减少构件种类和规格,简化梁柱的设计及施工。框架结构的柱网布置方式为内廊式,见建筑平面图,主梁跨度为6.6m,连系梁跨度为4.5m,房屋总长度不超过55m,详图见底层平面图、屋顶平面图、立面图。基础采用独立基础,初步估算基础顶面的位置,根据地基土层的分布情况,初步确定位置,计算可以采用h1=底层层高+0.5m进行计算。1.3框架计算方法框架结构承担的主要有恒载,使用活荷载,地震作用,其中恒载活载一般为竖向作用,地震则采用水平方向作用。在竖向荷载时无侧移框架的弯矩分配法,水平荷载作用下用D值法。框架内力组合,必须找出各构件的控制截面及其不利内力组合。在竖向荷载作用下,可考虑框架梁端塑性变形产生的内力重分布,对梁端负弯矩乘以调幅系数进行调幅。框架梁的截面设计包括正截面抗弯承载力设计和斜截面抗剪承载力设计,然后再根据构造要求统一调整和布置纵向钢筋和箍筋。框架柱在压(拉)力、弯矩、剪力的作用下,纵筋按正截面抗弯承载力设计,箍筋按斜截面抗剪承载力进行设计,此外为使柱具有一定的延性,要控制柱的轴压比。1.4主要进程安排(0)外文资料翻译、调研、复习相关主干课程——寒假;(1)建筑设计,绘制建筑施工图——第5~6周;(2)结构平面布置(楼盖布置、估算构件截面尺寸)和荷载计算——第7周;(3)竖向荷载作用下横向框架内力计算(采用弯矩二次分配法)、计算结构力学程序核算——第8周;-101-
安徽工程大学毕业设计(论文)(4)水平地震荷载作用下横向框架内力计算及侧移计算(采用D值法)、计算结构力学程序核算——第9~10周;(5)横向框架梁、柱内力组合(列表进行)和截面设计——第11~12周;(6)主楼梯的结构设计——第13周;(7)柱下基础设计——第14周;(8)绘制横向框架、主楼梯、基础结构施工图——第12~14周;(9)用PKPM软件对整栋框架结构进行SATWE电算并绘制出标准层结构平面图(板配筋图)和梁配筋平面图——第15~16周;(10)电子版毕业设计文件的输入、打印和装订——第8~16周-101-
安徽工程大学毕业设计(论文)第2章建筑结构布置与荷载计算2.1结构布置取工程横向框架⑥号轴线为一品框架计算单元,框架的计算简图假定底层住下端固定于基础,按工程地质资料提供的数据,场地土类别为Ⅱ类,初步确定工程基础采用柱下独立基础,挖去所有杂土,基础置于第二层可塑性黏土层上,基地标高为–1.800m(假定基础高度为0.5m),柱子的高度底层为h1=3.6+1.8–0.5=4.9m,二~六层柱高为3.6m。主节点刚接横梁的计算跨度取柱中心间距离,三跨分别为l=6600、2400、6600。计算简图见图2–12.2梁柱截面尺寸框架柱:700mm×700mm梁:横向框架梁300mm×700mm,纵向连系梁:250mm×500mm图2-1计算简图2.3材料强度等级混凝土:均为C30级钢筋:纵向受力筋均为HRB400,板筋及箍筋采用HPB3002.4荷载计算以⑦轴线横向框架为计算分析对象。1.屋面横梁竖向线荷载标准值(1)恒载(图2.2a)-101-
安徽工程大学毕业设计(论文)(a)恒载作用下结构计算简图(b)活载作用下结构计算简图图2-2荷载计算简图屋面恒载标准值:查《荷载规范》可取:屋面永久荷载标准值(不上人)4厚SBS改性沥青防水卷材(着色涂料保护层)0.35×0.004=0.0014KN/m220厚1:3水泥砂浆找平层20×0.02=0.4KN/m21:6水泥焦渣找2%坡(最薄处30厚)14.3×0.03=0.42KN/m260厚聚苯乙烯泡沫板0.5×0.0.06=0.03KN/m2钢筋混凝土板120厚25×0.12=3KN/m220厚板底抹灰0.02×17=0.35KN/m2合计4.2KN/m2梁自重:边跨AB、CD跨0.3×0.6×25=4.5kN/m梁侧粉刷2×(0.6–0.12)×0.02×17=0.33kN/m4.83kN/m中跨BC跨0.25×0.4×25=2.5kN/m梁侧粉刷2×(0.6–0.12)×0.02×17=0.33kN/m2.83kN/m作用在顶层框架梁上的线恒荷载标准值为:梁自重:g6AB1=g6CD1=4.83kN/m,g6BC1=2.83kN/m板传来的荷载g6AB2=g6CD2=4.2×4.05=17.01kN/m合计g6AB=g6CD=4.83+17.01=21.84kN/m-101-
安徽工程大学毕业设计(论文)g6BC=2.83kN/m(1)活载(图2–2b)作用在顶层框架梁上的线活荷载标准值为:q6AB=q6CD=0.5×4.05=2.025kN/m楼面横梁竖向线荷载标准值1-5层楼面:瓷砖地面(包括水泥,粗砂打底)0.55KN/m2120厚钢筋混凝土板25×0.12=3KN/m220厚板底抹灰0.02×17=0.34KN/m2合计3.89KN/m2边跨(AB、CD跨)框架梁自重4.83kN/m中跨(BC跨)框架梁自重2.83kN/m作用在楼面层框架梁上的线荷载标准值为:梁自重gAB1=gCD1=4.83kN/mgBC1=2.83kN/m板传来荷载gAB2=gCD2=3.89×4.05=15.75kN/m填充墙自重1.78×2.7=4.806kN/m合计gAB1=gCD=4.83+15.75+4.806=25.386kN/mgBC=2.83kN/m(1)活载楼面活载qAB=qCD=2×4.05=8.1kN/m1.屋面框架节点集中荷载标准值(图2–3)(1)恒载边跨连系梁自重0.3×0.6×4.05×25=18.225kN粉刷2×(0.6–0.12)×0.02×4.05×17=1.32kN1.5m高女儿墙2.25×4.05=9.11kN粉刷1.5×2×0.02×4.05×17=4.131KN连系梁传来屋面(含次梁)自重0.5×4.05×0.5×4.05×4.2+4.83×6.9=50.55KN-101-
安徽工程大学毕业设计(论文)75757575G6BG6CG6DG6A图2-3恒载顶层集中力顶层边节点集中荷载:G6A=G6D=83.32kN中跨连系梁自重4.83×4.05=19.56KN粉刷2×(0.6–0.12)×0.02×4.05×17=1.32kN连系梁传来屋面(含次梁)自重0.5×4.05×0.5×4.05×4.2+4.83×6.9+2.83×1.5+0.5×4.2×3.0×4.05=80.31KN顶层中节点集中荷载:G6B=G6C=101.19kN(2)活载Q6A=Q6D=0.5×4.05×0.5×4.05×0.5=2.05kNQ6B=Q6C=0.5×4.5×0.5×4.5×0.5+0.5×(4.05+4.05–3.0)×3.0/2×0.5=3.96kN1.楼面框架节点集中荷载标准值(图2–4)75757575G6AG6BG6CG6DG6A"G6B,G6C"G6D"图2-4恒载中间层节点集中力(1)恒载边柱连系梁自重+粉刷18.225+1.32=19.545kN连系梁传来楼面(含次梁)自重50.55kN边柱自重0.6×0.6×3.3×25=29.7kNA柱外填充墙2.49×(2.7×4.05-2.1×1.8)=17.82kNA柱内填充墙1.78×6.9×2.7=33.16kN窗1.8×2.1×0.4=1.512kND柱玻璃幕墙1.2×2.7×4.05=13.12kND柱内填充墙1.78×6.9×2.7×0.5=16.58kN-101-
安徽工程大学毕业设计(论文)A合计152.29kND合计129.50kN中框架柱自重:29.7kN中柱连系梁自重19.56+1.32=20.88kN连系梁传来楼面(含次梁)自重0.5×4.05×0.5×4.05×3.89+4.83×6.9+2.83×1.5+0.5×3.89×3.0×4.05=77.15KNC柱填充墙1.78×2.7×(3.45+4.05)=36.045kNB柱填充墙1.78×2.7×(3.45+3.45)+1.78×(2.7×8.1-2×1×2.1)=64.61KNB柱门0.2×1.0×2.1=0.42kNB柱合计190.76kNC柱合计163.775kN(1)活载Q6A=Q6D=0.5×4.05×0.5×4.05×2=8.2kNQ6B=Q6C=0.5×4.5×0.5×4.5×2+0.5×(4.05+4.05–3.0)×3.0/2×2=15.85kN1.风荷载已知基本风压=0.4kN/m2,本工程为市区办公楼,地面粗燥度为B类,那荷载规范ωk=z风载体型系数:迎风面为0.8,背风面为–0.5;因结构高度H=23.5m<30m(从室外地面算起),取风震系数z=1.0,计算结果如下表2–1所示,风荷载图见图2–5表2–1风荷载计算层次zZ(m)(kN/m2)A(m2)Pi(kN)61.01.322.21.2780.4013.9510.4551.01.318.61.2190.4016.210.9241.01.315.01.140.4016.29.9731.01.311.41.0390.4016.29.9721.01.37.81.00.4016.29.9711.01.34.20.840.4017.5511.642.地震作用(1)建筑物总重力荷载代表制值Gi的计算1)集中于屋盖处的质点重力荷载代表值G6:-101-
安徽工程大学毕业设计(论文)50%雪载0.5×0.65×16.8×54=294.84kN屋面恒载5.62×54×(7.2×2+2.4)=5098.46kN横梁(5.62×7.2×2+5.62×2.4)×13=1227.41kN纵梁(14.06+1.07)×12×2×2=726.24kN女儿墙1.3×3.6×(54+16.8)×2=662.69kN柱重0.7×0.7×25×1.8×52=1146.6kN横墙3.6×[7.2×1.8×23+(2.4×1.8–1.8×2.1/2)×2]=1092.85kN纵墙(4.5×1.8–3.3×2.1/2)×24×3.6+4.5×1.8×3.6×20=983.66kN(忽略内纵墙的门窗按墙重量算)钢窗24×3.3×2.1×1/2×0.4=33.26kNG6=11266.01kN1)集中于三、四、五、六层处的质点重力荷载代表值G5~G2:50%楼面活载0.5×2.0×16.8×54=907.2kN楼面恒载4.44×54×7.2×2+4.44×54×2.4=4027.97kN横梁1227.41kN纵梁726.24kN柱重1146.6×2=2293.2kN横墙1092.85×2=2185.7kN纵墙983.66×2=1967.32kN钢窗33.26×2=66.52kNG5=G4=G3=G2=13401.56kN2)集中于二层处的质点重力荷载标准值G1:50%楼面荷载907.2kN楼面恒载4027.97kN横梁1227.41kN纵梁726.24kN柱重0.7×0.7×25×(2.45+1.8)×52=2707.25kN横墙1092.85+1092.85×2.45/1.8=2580.34kN纵墙983.66+983.66×2.45/1.8=2322.53kN钢窗33.26×2=66.52kNG1=14565.46kN(1)地震作用1)框架柱的抗侧移刚度:在计算梁、柱线刚度时,应考虑楼盖对框架梁的影响,在现浇楼盖中,中框架梁的抗弯惯性矩取I=2I0;边框架梁取I=1.5I0;I0为框架梁按矩形截面计算的截面惯性矩。横梁、柱线刚度见表2–2。表2–2横梁、柱线刚度杆件截面尺寸EC(kN/mm2)I0(mm4)I(mm4)L(mm)i=EcI/L(kN·mm)相对刚度B(mm)H(mm)边框架梁300700306.9×1098.6×10966005.86×1071边框架梁300700301.6×1098.6×109240016.1×1072.747中框架梁250500306.9×1092.6×10966002.36×1070.403-101-
安徽工程大学毕业设计(论文)中框架梁250500301.6×1092.6×10924006.5×1071.109底层框架柱700700304.2×10920×109490012.2×1072.082中层框架柱700700304.2×10920×109360016.6×1072.833每层框架柱总的抗侧移刚度见表2–3表2–3框架柱横向侧移刚度D值项目K=∑ic/2iz(一般层)K=∑ic/2iz(底层)аC=K/(2+K)(一般层)аC=(0.5+K)/(2+K)(底层)D=аC·iz(12/h2)(kN·mm)根数层柱类型及截面二至六层边框架边柱(700×700)0.350.1522.174边框架中柱(700×700)1.320.4060.364中框架边柱(700×700)0.140.0719.3222中框架中柱(700×700)0.530.2162.0622底层边框架边柱(700×700)0.480.4024.134边框架中柱(700×700)1.800.6139.234中框架边柱(700×700)0.190.3223.1522中框架中柱(700×700)0.730.4527.0222底层:∑D=4×(24.13+39.23)+22×(23.15+27.02)=1357.18kN/mm二~六层:∑D=4×(22.17+60.36)+22×(19.32+62.06)=2120.48kN/mm1)2)框架自振周期的计算:自振周期为:其中а0为考虑结构非承重砖墙影响的折减系数,对于框架取0.6;Δ为框架定点假想水平位移,计算见表2–4表2–4框架定点假想水平位移Δ计算表层Gi(kN)∑Gi(kN)∑D(kN/mm)δ=∑Gi/∑D(层间相对位移)总位移Δ(mm)69457.539457.532120.484.46133.8851230521762.532120.4810.26129.4241230534067.532120.4816.07119.1631230546772.532120.4822.06103.0921230558677.532120.4827.6781.0311374872425.531357.1853.3653.36-101-
安徽工程大学毕业设计(论文)表2–5楼层地震作用和地震剪力标准值计算表层Hi(m)Gi(kN)GiHiFi=Fn+ΔFn(顶层)Fi=(GiHi/∑GiHi)FEK(1–δn)层间剪力Vi(kN)622.99457.53216577.42673.612673.61519.312305237486.52513.435187.04415.712305193188.52165.197340.23312.112305148890.51832.369172.5928.512305104592.51357.1710529.7614.91230560294.5865.3211395.08地震作用计算本工程设防烈度为8度,Ⅲ类场地土,第三组,查《建筑抗震设计规范》,特征周期Tg=0.65аmax=0.16а1=(Tg/T1)0.9аmax=(0.65/0.372)0.9×0.16=0.265结构等效总重力荷载:Geq=0.85×∑Gi=0.85×72425.53=61561.7kNT1<1.4Tg=1.4×0.65=0.91,故不需考虑框架顶部附加集中力作用框架横向水平地震作用标准值为:结构底部:FEK=а1Geq=0.265×61561.7=16313.85kN∑GiHi=747329.9kN各楼层的地震作用和地震剪力标准值见上表,图示见下图2–6图2-5横向框架上的风荷载图2-6横向框架上的地震作用-101-
安徽工程大学毕业设计(论文)第3章横向框架内力计算3.1恒载作用下的框架内力1.弯矩分配系数首先计算出本工程横向框架的杆端弯矩分配系数,由于该框架为对称结构,去框架的一般进行简化计算,如下图3–1-101-
安徽工程大学毕业设计(论文)BA66001200490036003600360036003600D1D2D3D4D5D621.95.6416.615.6416.615.6416.615.6416.615.6416.615.6416.615.6416.615.6416.615.6410.495.647.665.647.665.647.665.647.665.647.665.644.293.493.493.493.493.49-79.9933.7760.63-66.5960.63-66.5960.63-66.5960.63-66.5960.63-66.59A6A5A4A3A2A1B6B5B4B3B2B1AB66001200490036003600360036003600D1D2D3D4D5D6(a)恒载(b)恒载产生的节点不平衡弯矩图3-1横向框架承担的恒载及节点不平衡弯矩节点A1:SA1A0=4iA1A0=4×0.585=2.340SA1B1=4iA1B1=4×1.333=5.332SA1A2=4iA1A2=4×0.845=3.380节点B1:SB1D1=iB1D1=2×0.703=1.406-101-
安徽工程大学毕业设计(论文)节点A2:节点B2:节点A3B3A4B4A5B5与A2B2相同节点A6:节点B6:2.杆件固端弯矩(顺时针方向为正计算)图3-2杆端及节点弯矩正方向-101-
安徽工程大学毕业设计(论文)(1)横梁固端弯矩1)顶层横梁:自重作用:板传来的恒载作用:2)二~六层横梁:自重作用:板传来的恒载作用:-101-
安徽工程大学毕业设计(论文)(2)纵梁引起的柱端附加弯矩(边框架纵梁偏向外侧,中框架纵梁偏向内侧)顶层外纵梁MA6=–MD6=22.14kN·m(逆时针为正)楼层外纵梁MA1=–MD1=13.75kN·m顶层中纵梁MB6=–MC6=14.78kN·m楼层中纵梁MB1=–MC1=12.11kN·m3.节点不平衡弯矩(逆时针方向为正)节点A6的不平衡弯矩:MA6B6+MA6纵梁=169.79kN·4.内力计算根据对称原则,,只计算AB、BC跨。在进行弯矩分配时,应将节点不平衡弯矩反号后再进行杆件弯矩分配。节点弯矩使相交于该节点杆件的近端产生弯矩,同时也使个杆件的远端产生弯矩,近端产生的弯矩通过节点弯矩分配确定,远端产生的弯矩由传递系数C(近端弯矩与远端弯矩的比值)确定。传递系数与杆件远端的约束形式有关。恒载弯矩分配过程见图3–3,恒载作用下弯矩见图3–4,梁剪力、柱轴力见图3–5。根据所求出的两端弯矩,再通过平衡条件,即可求出恒载作用下梁剪力、柱轴力,结果见表3–1~3–4。表3–1AB跨梁端剪力(kN)层q(kN/m)(自重作用)g(kN/m)(自重作用)a(m)l(m)gl/2u=(l–a)×q/2MAB(kN·m)MBA(kN·m)∑Mik/lVA=gl/2+u–∑Mik/lVB=–(gl/2+u+∑Mik/l)621.95.642.256.618.6147.6–76.5986.571.5164.7–67.72516.615.642.256.618.6136.13–69.0567.050.3354.41–55.07416.615.642.256.618.6136.13–66.6568.310.2554.49–54.99316.615.642.256.618.6136.13–67.5967.530.0154.73–54.75216.615.642.256.618.6136.13–67.2668.240.1554.59–54.89116.615.642.256.618.6136.13–66.6267.350.1154.63–54.85表3–2BC跨梁端剪力(kN)层q(kN/m)(板传来荷载作用)g(kN/m)(自重作用)l(m)gl/2l×q/4VB=gl/2+l×q/4VC=–(gl/2+l×q/4)610.495.642.46.776.2913.06–13.0657.665.642.46.774.6011.37–11.3747.665.642.46.774.6011.37–11.3737.665.642.46.774.6011.37–11.37-101-
安徽工程大学毕业设计(论文)27.665.642.46.774.6011.37–11.3717.665.642.46.774.6011.37–11.37表3–3AB跨跨中弯矩(kN·m)层q(kN/m)(板传来作用)g(kN/m)(自重作用)a(m)l(m)gl/2u=(l–a)×q/2MAB(kN·m)∑Mik/lVA=gl/2+u–∑Mik/lM=gl/2×l/4+u×1.05–MAB–VA×L/2621.95.642.256.618.6147.6–76.591.5164.7-56.21516.615.642.256.618.6136.13–69.050.3354.41–41.86416.615.642.256.618.6136.13–66.650.2554.49–44.52316.615.642.256.618.6136.13–67.590.0154.73–44.37216.615.642.256.618.6136.13–67.260.1554.59–44.19116.615.642.256.618.6136.13–66.620.1154.63–44.96表3–4柱轴力(kN)层边柱A轴、D轴中柱B轴、C轴横梁端部压力纵梁端部压力横梁端部压力纵梁端部压力横梁端部压力纵梁端部压力6柱顶64.76柱顶柱底64.76柱顶柱底64.76柱底291.495柱顶54.415柱顶柱底54.415柱顶柱底54.415柱底505.434柱顶54.494柱顶柱底54.494柱顶柱底54.494柱底718.963柱顶54.733柱顶柱底54.733柱顶柱底54.733柱底932.562柱顶54.592柱顶柱底54.592柱顶柱底54.592柱底1146.221柱顶54.631柱顶柱底54.631柱顶柱底54.631柱底1368.84-101-
安徽工程大学毕业设计(论文)节点分配顺序:(A6B5A4B3A2B1);(B6A5B4A3B2A1)图3-3恒载弯矩分配过程-101-
安徽工程大学毕业设计(论文)图3-4恒载作用下弯矩图(kN·m)图3-5恒载作用下梁剪力、柱轴力(kN)-101-
安徽工程大学毕业设计(论文)3.2活载作用下的框架内力1.梁固端弯矩(1)顶层MA6B6=-MB6A6=-ql²(1-2a²/l²+a³/l³)/12=-21.23KN·mMB6D6=-5ql²/96=-2.86N·mMD6B6=-ql²/32=-1.72KN·m(2)二~四层横梁MA1B1=-MB1A1=-ql²(1-2a²/l²+a³/l³)/12=-60.66KN·mMB1D1=-5ql²/96=-8.17KN·mMD1B1=-ql²/32=-4.90KN·m2.纵梁偏心引起柱端附加弯矩(边框架纵梁偏向外侧,中框架纵梁偏向内侧)顶层外纵梁MA6=–MD6=1.42kN·m(逆时针为正)楼层外纵梁MA1=–MD1=4.05kN·m顶层中纵梁MB6=–MC6=1.59kN·mMB6=–MC6=0.64kN·m(仅BC作用活载)楼层中纵梁MB1=–MC1=–4.53kN·mMB1=–MC1=–1.83kN·m(仅BC作用活载)3.本工程考虑如下四种最不利组合(1)顶层边跨梁跨中弯矩最大,见图3–6(2)顶层边柱柱顶左侧及柱底右侧受拉最大弯矩,见图3–7(3)顶层边跨梁梁端最大负弯矩,见图3–8(4)活载满跨布置,见图3–94.各节点不平衡弯矩当AB跨布置活载时:MA6=MA6B6+MA6=-19.81KN·mMA1=MA2=MA3=MA4=MA5=MA1B1+MA1=-56.61KN·mMB6=MB6A6+MD6=19.81KN·mMB1=MB2=MB3=MB4=MB5=MB1A1+MD1=56.61KN·m当BC跨布置活载时:MB6=MB6D6+MB6=-3.50KN·mMB1=MB2=MB3=MB4=MB5=MB1D1+MB1=-10.00KN·m当AB跨和BC跨均布置活载时:MA6=MA6B6+MA6=-19.81KN·mMA1=MA2=MA3=MA4=MA5=MA1B1+MA1=-56.61KN·mMB6=MB6A6+MB6+MB6D6=16.78KN·mMB1=MB2=MB3=MB4=MB5=MB1A1+MB1+MB1D1=47.96KN·m5.内力计算:采用“迭代法”计算,迭代计算次序同恒载,如图3–10、图3–13、图3–16、图3–19。活载(a)作用下梁弯矩、剪力、轴力如图3–11、图3–12。活载(b)作用下梁弯矩、剪力、轴力如图3–14、图3–15。活载(c)作用下梁弯矩、剪力、轴力如图3–17、图3–18。活载(d)作用下梁弯矩、剪力、轴力如图3–20、图3–21。-101-
安徽工程大学毕业设计(论文)3.15kN/m490036003600360036003600BA660012009.0kN/m9.0kN/m4.8kN/m4.8kN/m4.8kN/m0.270.760.760.270.590.760.590.590.763.15kN/m490036003600360036003600BA660012004.8kN/m0.270.270.760.590.760.760.599.0kN/m9.0kN/m9.0kN/m0.760.760.76图3-6活载不理布置a图3-7活载不利布置b3.154kN/m490036003600360036003600BA660012004.8kN/m4.8kN/m0.270.271.351.351.351.351.359.0kN/m9.0kN/m9.0kN/m0.760.760.764.8kN/m3.15kN/m490036003600360036003600BA750016509.0kN/m9.0kN/m0.270.471.351.351.351.351.359.0kN/m9.0kN/m9.0kN/m0.760.760.765.04kN/m9.0kN/m9.0kN/m14.4kN/m9.0kN/m9.0kN/m0.760.76-101-
安徽工程大学毕业设计(论文)图3-8活载不利布置c图3-9活载不利布置d节点分配顺序:(A6B5A4B3A2B1);(B6A5B4A3B2A1)图3-10活载(a)迭代过程-101-
安徽工程大学毕业设计(论文)图3-11活载(a)弯矩图(kN·m)图3-12活载(a)剪力、轴力(kN)-101-
安徽工程大学毕业设计(论文)节点分配顺序:(A6B5A4B3A2B1);(B6A5B4A3B2A1)图3-13活载(b)迭代过程-101-
安徽工程大学毕业设计(论文)图3-14活载(b)弯矩图(kN·m)图3-15活载(b)剪力、轴力(kN)-101-
安徽工程大学毕业设计(论文)节点分配顺序:(A6B5A4B3A2B1);(B6A5B4A3B2A1)图3-16活载(c)迭代过程-101-
安徽工程大学毕业设计(论文)图3-17活载(c)弯矩图(kN·m)图3-18活载(c)剪力、轴力(kN)-101-
安徽工程大学毕业设计(论文)节点分配顺序:(A6B5A4B3A2B1);(B6A5B4A3B2A1)图3-19满跨活载迭代过程-101-
安徽工程大学毕业设计(论文)图3-20满跨活载弯矩图(kN·m)图3-21满跨活载剪力、轴力(kN)-101-
安徽工程大学毕业设计(论文)根据做求出的两端弯矩,在通过平衡条件,即可求出荷载作用下的梁剪力、柱轴力,结果见表3–5~表3–20表3–5活载(a)作用下AB跨梁端剪力层q(kN/m)a(m)u=(7.5–a)×q/2MAB(kN·m)MBA(kN·m)∑Mik/lVA=u–∑Mik/lVB=–(u+∑Mik/l)63.152.255.91–7.159.210.315.6–6.22502.250.00–0.490.40.01–0.01–0.01492.2516.88–25.225.540.0516.83–16.93302.250.00–0.570.460.02–0.02–0.02292.2516.88–25.2526.550.2016.68–17.08102.250.00–0.290.330.01–0.01–0.01表3–6活载(a)作用下BC跨梁端剪力层q(kN/m)l(m)gl/4VB=ql/4VC=–ql/4602.400054.82.42.882.88–2.88402.400034.82.42.882.88–2.88202.400014.82.42.882.88–2.88表3–7活载(a)作用下AB跨跨中弯矩(kN·m)层q(kN/m)(板传来荷载)a(m)l(m)u=(l–a)×q/2MAB(kN·m)∑Mik/lVA=u–∑Mik/lM=u×1.05–MAB–VA×l/263.152.256.66.85–7.150.315.6-7.24502.256.60.00–0.490.01–0.010.52492.256.619.58–25.20.0516.83–18.69302.256.60.00–0.570.02–0.020.64292.256.619.58–25.250.2016.68–18.15102.256.60.00–0.290.01–0.010.32-101-
安徽工程大学毕业设计(论文)表3–8活载(a)作用下柱轴力层边柱(A轴)中柱(B轴)横梁纵梁横梁纵梁端部剪力端部剪力端部剪力端部剪力66.543.5466.543.5465–0.0110.135–0.0110.135419.5310.13419.5310.1343–0.0210.133–0.0210.133219.3810.13219.3810.1321–0.0110.131–0.0110.131表3–9活载(b)作用下AB跨梁端剪力层q(kN/m)a(m)u=(7.5–a)×q/2MAB(kN·m)MBA(kN·m)∑Mik/lVA=u–∑Mik/lVB=–(u+∑Mik/l)63.152.256.85-8.989.160.036.82-6.8859.002.2519.58-25.5825.51-0.0119.58-19.5740.002.250.000.020.720.11-0.11-0.1139.002.2519.58-27.1724.56-0.3919.97-19.1820.002.250.00-0.080.740.10-0.10-0.1019.002.2519.58-25.3425.420.0119.56-19.59表3–10活载(b)作用下BC跨梁端剪力层q(kN/m)l(m)gl/4VB=ql/4VC=–ql/4602.4000502.400044.82.42.882.88–2.88302.400024.82.42.882.88–2.88102.4000-101-
安徽工程大学毕业设计(论文)表3–11活载(b)作用下AB跨跨中弯矩(kN·m)层q(kN/m)(板传来荷载)a(m)l(m)u=(l–a)×q/2MAB(kN·m)∑Mik/lVA=u–∑Mik/lM=u×1.05–MAB–VA×l/263.152.256.66.85–8.980.036.82–6.3559.002.256.619.58–25.58-0.0119.58–18.5040.002.256.600.020.110.110.3539.002.256.619.58–27.17-0.3919.97–18.1820.002.256.60–0.080.100.100.4119.002.256.619.58–25.340.0119.59–18.67表3–12活载(b)作用下柱轴力层边柱(A轴)中柱(B轴)横梁纵梁横梁纵梁端部剪力端部剪力端部剪力端部剪力66.823.5410.366.823.5413.2519.5810.1340.0719.5810.1350.8240.1110.1350.310.1110.1371.86319.9710.1380.4119.9710.13109.0920.110.1390.640.110.13130.12119.5910.13120.3619.5910.13167.76表3–13活载(c)作用下AB跨梁端剪力层q(kN/m)a(m)u=(7.5–a)×q/2MAB(kN·m)MBA(kN·m)∑Mik/lVA=u–∑Mik/lVB=–(u+∑Mik/l)63.152.256.85–9.009.090.016.84–6.8759.02.2519.58–25.5025.680.0319.55–19.6402.250–0.070.520.07–0.07–0.0739.02.2519.58–27.0824.760.3519.93–19.22202.250–0.160.530.06–0.06–0.0619.02.2519.58–25.2525.600.05-19.63–19.63-101-
安徽工程大学毕业设计(论文)表3–14活载(c)作用下BC跨梁端剪力层q(kN/m)l(m)gl/4VB=ql/4VC=–ql/464.82.42.882.88–2.88502.400044.82.42.882.88–2.88302.400024.82.42.882.88–2.88102.4000表3–15活载(c)作用下AB跨跨中弯矩(kN·m)层q(kN/m)(板传来荷载)a(m)l(m)u=(l–a)×q/2MAB(kN·m)∑Mik/lVA=u–∑Mik/lM=u×1.05–MAB–VA×l/263.152.256.66.85–17.650.016.84-6.3759.02.256.619.58–44.960.0319.55–18.54402.256.60–5.440.07–0.070.2939.02.256.619.58–41.370.3519.93-18.13202.256.60–6.070.06–0.060.3519.02.256.619.58–40.150.05-19.63-18.62表3–16活载(c)作用下柱轴力层边柱(A轴)中柱(B轴)横梁纵梁柱轴力(kN)横梁纵梁柱轴力(kN)端部剪力端部剪力端部剪力端部剪力66.843.5410.386.876.3213.19519.5510.1340.0622.4818.0553.7240.0710.1350.260.0718.0571.84319.9310.1380.3222.1018.05111.9920.0610.1390.510.0618.05130.10119.6310.13120.2722.5118.05170.66-101-
安徽工程大学毕业设计(论文)表3–17满跨活载作用下AB跨梁端剪力层q(kN/m)a(m)u=(7.2–a)×q/2MAB(kN·m)MBA(kN·m)∑Mik/lVA=u–∑Mik/lVB=–(u+∑Mik/l)63.152.256.85–8.89.120.056.8–6.959.02.2519.58–25.7725.810.0119.57–19.5949.02.2519.58–25.6526.090.0719.51–19.6539.02.2519.58–25.8425.84019.58–19.5829.02.2519.58–25.7426.10.0519.53–19.6319.02.2519.58–25.7725.77019.58–19.58表3–18满跨活载作用下BC跨梁端剪力层q(kN/m)l(m)gl/4VB=ql/4VC=–ql/461.682.41.011.01-1.0154.82.42.882.88-2.8844.82.42.882.88-2.8834.82.42.882.88-2.8824.82.42.882.88-2.8814.82.42.882.88-2.88表3–19满跨活载作用下AB跨跨中弯矩(kN·m)层q(kN/m)(板传来荷载)a(m)l(m)u=(l–a)×q/2MAB(kN·m)∑Mik/lVA=u–∑Mik/lM=u×1.05–MAB–VA×l/263.152.256.66.85–8.80.056.8–6.4559.02.256.619.58–25.770.0119.57–18.2549.02.256.619.58–25.650.0719.51–18.1739.02.256.619.58–25.84019.58–18.2229.02.256.619.58–25.740.0519.53–18.1519.02.256.619.58–25.77019.58–18.29-101-
安徽工程大学毕业设计(论文)表3–20满跨活载作用下柱轴力层边柱(A轴)中柱(B轴)横梁纵梁柱轴力(kN)横梁纵梁柱轴力(kN)端部剪力端部剪力端部剪力端部剪力66.83.5410.347.916.3214.23519.5710.1340.0422.4718.0554.75419.5110.1369.6822.5318.0595.33319.5810.1399.3922.4618.05135.84219.5310.13129.0522.5118.05176.4119.5810.13158.7622.4618.05216.913.3风荷载作用下的位移、内力计算1.框架侧移(表3–21)表3–21风荷载作用下框架侧移层次层高hi(m)Pik(kN)Vik(kN)∑D(kN/mm)总侧移Δi(mm)63.68.678.67162.760.051.4053.610.2718.94162.760.121.3543.69.6028.54162.760.181.2333.68.7637.30162.760.231.0523.68.4245.72162.760.280.8214.28.2153.93100.340.540.542.层间侧移其中0.85为位移放大系数。3.定点侧移侧移相对侧移满足要求4.水平风载作用下框架层间剪力(图3–22)-101-
安徽工程大学毕业设计(论文)图3-22水平风载作用下框架层间剪力表3–22各层柱反弯点位置层次柱别K6边柱0.14—0100.350.35中柱0.53—0100.250.255边柱0.1410100.140.14中柱0.5310100.350.354边柱0.1410100.240.24中柱0.5310100.400.403边柱0.1410100.400.40中柱0.5310100.450.452边柱0.14101.1700.740.74中柱0.53101.1700.500.501边柱0.190.80—00.940.94中柱0.730.80—00.730.73注:风荷载作用下的反弯点高度按均布水平力考虑-101-
安徽工程大学毕业设计(论文)表3–23风荷载作用下框架柱剪力及柱端弯矩层次h(mm)Vik(kN)∑D柱别DiViyM下M上63.610.4566.46边柱16.59–2.610.35–3.29–6.11中柱16.64–2.620.42–3.96–5.4753.621.3766.46边柱16.59–5.330.40–7.68–11.51中柱16.64–5.350.45–8.67–10.5943.631.3466.46边柱16.59–7.820.45–12.67–15.48中柱16.64–7.850.47–13.28–14.9833.641.3166.46边柱16.59–10.310.45–16.70–20.41中柱16.64–10.340.50–18.61–18.6123.651.2866.46边柱16.59–12.800.50–23.04–23.04中柱16.64–12.840.50–23.11–23.1114.262.9233.58边柱9.46–17.730.62–46.17–28.30中柱7.33–13.730.55–31.72–25.95表3–24风荷载作用下梁端、跨中弯矩和剪力层次柱别M下(kN·m)M上(kN·m)节点左右梁线刚度比边跨梁端弯矩M(kN·m)中跨梁端弯矩M(kN·m)风载作用下梁端剪力边跨梁跨中弯矩(kN·m)左梁右梁VAVB左VB右6边柱–1.26–2.3102.31–0.71–0.52中柱–2.98–8.940.362.376.57–0.71–5.485边柱–1.13–6.9708.23–1.92–1.26中柱–9.10–16.890.364.4712.42–1.92–10.35554边柱–2.93–9.28010.41–2.52–1.38中柱–15.67–23.500.366.2217.28–2.52–14.43边柱–6.38–9.57012.5–2.92–1.51中柱–23.04–25.600.366.7818.82–2.92–15.682边柱–14.47–5.08011.46–2.99–2.01中柱–31.37–31.370.368.3023.07–2.99–19.231边柱–42.1–7.17021.64–3.94–2.37中柱–38.16–16.470.364.3612.11–3.943–10.0-101-
安徽工程大学毕业设计(论文)表3–25风载作用下柱轴力层次柱别M下(kN·m)M上(kN·m)风载作用下梁端剪力柱轴力VAVB左VB右NANB6边柱–3.29–6.11–1.29——–1.29—中柱–3.96–5.47—–1.29–1.16—0.135边柱–7.68–11.51–3.24——–4.53—中柱–8.67–10.59—–3.24–3.04—0.334边柱–12.67–15.48–5.16——–9.69—中柱–13.28–14.98—–5.16–4.95—0.543边柱–16.70–20.41–7.20——–16.89—中柱–18.61–18.61—–7.20–6.67—1.072边柱–23.04–23.04–8.94——–25.83—中柱–23.11–23.11—–8.94–8.72—1.291边柱–46.17–28.30–11.13——–36.96—中柱–31.72–25.95—–11.13–10.26—2.163.4地震作用下横向框架的内力计算1.0.5(雪+活)重力荷载作用下横向框架的内力计算按《建筑抗震设计规范》,计算重力荷载代表值时,顶层取用雪荷载,其他各层取用活荷载。当雪荷载与活荷载相差不大时,可近似按满跨活荷载布置。(1)横梁线荷载计算顶层横梁:雪载边跨0.5×7.2×0.5=1.80kN/m中间跨0.5×7.2×0.5=1.80kN/m二~六层横梁:活载边跨14.4×0.5=7.20kN/m中间跨14.4×0.5=7.20kN/m(2)纵梁引起柱端附加弯矩(边框架纵梁偏向外侧,中框架纵梁偏向走廊)顶层外纵梁:MA6=–MD6=0.5×0.5×7.2/2×7.2/2×0.150=0.49kN·m楼层外纵梁:MA1=–MD1=0.5×2×7.2/2×7.2/2×0.150=1.94kN·m顶层中纵梁:MB6=–MC6=–0.5×0.5×[7.2/2×7.2/2+(7.2+7.2–2.4)/2×2.4/2]×0.100=–0.55kN·m楼层中纵梁:MB1=–MC1=–0.5×2×[7.2/2×7.2/2+(7.2+7.2–2.4)/2×2.4/2]×0.100=–2.21kN·m-101-
安徽工程大学毕业设计(论文)图3-23风载作用框架弯矩图(kN·m)图3-24风载作用框架梁剪力、柱轴力(kN)-101-
安徽工程大学毕业设计(论文)(1)计算简图(图3–25)1.46kN/m520036003600360036003600BA660012000.120.220.680.680.680.680.684.50kN/m0.380.78kN/m2.4kN/m4.50kN/m2.4kN/m4.50kN/m2.4kN/m4.50kN/m2.4kN/m4.50kN/m2.4kN/m0.380.380.380.38图3-25固端弯矩(4)固端弯矩顶层横梁:二~六层横梁:-101-
安徽工程大学毕业设计(论文)(5)不平衡弯矩(6)弯矩分配计算(采用迭代法)弯矩分配过程如图3–26,0.5(雪+活)作用下梁柱弯矩见图3–27,梁剪力、柱轴力见图3–28。根据所求出的两端弯矩,再通过平衡条件,即可求出0.5(雪+活)作用下的梁剪力、柱轴力,计算过程见表3–26~表3–29。表2–260.5(雪+活)作用下AB跨梁端剪力标准值层q(kN/m)a(m)u=(7.2–a)×q/2MAB(kN·m)MBA(kN·m)∑Mik/lVA=u–∑Mik/lVB=–(u+∑Mik/l)61.462.253.18–4.084.220.023.16–3.2054.52.259.79–12.8412.860.019.78–9.8044.52.259.79–12.7913.010.039.76–9.8234.52.259.79–12.8812.880.009.79–9.7924.52.259.79–12.8313.020.039.76–9.8214.52.259.79–12.7112.840.029.77–9.81-101-
安徽工程大学毕业设计(论文)节点分配顺序:(A6B5A4B3A2B1);(B6A5B4A3B2A1)图3-260.5(雪+活)作用下迭代过程-101-
安徽工程大学毕业设计(论文)图3-270.5(雪+活)作用下杆端弯矩(kN·m)图3-280.5(雪+活)作用下框架梁剪力、柱轴力(kN)-101-
安徽工程大学毕业设计(论文)表3–270.5(雪+活)作用下BC跨梁端剪力标准值层q(kN/m)l(m)gl/4VB=ql/4VC=–ql/460.782.40.470.47–0.4752.42.41.441.44-1.4442.42.41.441.44-1.4432.42.41.441.44-1.4422.42.41.441.44-1.4412.42.41.441.44-1.44表3–280.5(雪+活)作用下AB跨跨中弯矩(kN·m)层q(kN/m)(板传来荷载)a(m)l(m)u=(l–a)×q/2MAB(kN·m)∑Mik/lVA=u–∑Mik/lM=u×1.05–MAB–VA×l/261.462.256.63.18–4.080.023.16-3.0154.52.256.69.79–12.840.019.78–9.1544.52.256.69.79–12.790.039.76–9.1434.52.256.69.79–12.880.009.79–9.1524.52.256.69.79–12.83330.039.76–9.1014.52.256.69.79–12.710.029.77–9.25表3–290.5(雪+活)作用下柱轴力标准值层边柱(A轴)中柱(B轴)横梁端部压力纵梁端部压力柱轴力(kN)横梁端部压力纵梁端部压力柱轴力(kN)63.162.085.243.673.837.559.786.4121.4311.2411.7930.5349.766.4137.611.2611.7953.5839.796.4153.811.2311.7976.6029.766.4169.7911.2611.7999.6519.776.4186.1511.2511.79122.692.地震作用下横向框架的内力计算地震作用下框架柱剪力及柱端弯矩计算过程见表3–30、梁端弯矩计算过程见表3–31、柱剪力和轴力计算过程见表3–32,地震作用下框架弯矩见图3–29,框架梁剪力、柱轴力见图3–30。-101-
安徽工程大学毕业设计(论文)70.60102.84122.44144.30145.28187.7470.60140.85191.00244.48263.35333.0338.0168.56100.18118.07145.28306.3121.7948.3867.4981.5795.62109.6563.1894.55118.35131.58145.71172.27210.55145.71131.58104.9677.3645.7541.3991.92128.22154.97181.68208.33图3-29地震作用框架弯矩图(kNm)图3-30地震作用框架梁剪力、柱轴力(kN)-13.21-13.21-66.45-66.45-57.95-57.95-49.44-49.44-40.90-40.90-29.32-29.32-30.26-30.26-47.75-47.75-62.03-62.03-73.10-73.10-80.95-80.95-73.62-73.6238.0168.56100.18118.07145.28306.3170.60140.85191.00244.48263.35333.0370.60102.84122.44144.30145.28187.7421.7948.3867.4981.5795.62109.6545.7577.36104.96131.58145.7163.1894.55118.35131.58145.71172.27210.5541.3991.92128.22154.97181.68208.33-30.17-30.17-47.61-47.61-61.84-61.84-72.88-72.88-80.71-80.71-95.01-95.01-14.93-45.97-88.53-141.79-201.13-273.31-14.93-14.93-31.04-31.04-42.56-42.56-53.26-53.26-59.34-59.34-72.18-72.181.723.445.108.9210.3116.04-101-
安徽工程大学毕业设计(论文)表3–30地震作用下横向框架柱剪力及柱端弯矩层次层间剪力(kN)总剪力(kN)柱别Di(kN/mm)∑D(kN/mm)Vi(kN)yh(m)M下M上62673.612673.61边柱19.322120.48–24.360.353.6–29.82–57.00中柱62.06–78.250.25–70.43–211.2852513.435187.04边柱19.322120.48–47.260.143.6–23.82–146.32中柱62.06–151.810.35–191.28–355.2442165.197340.23边柱19.322120.48–66.880.243.6–57.78–182.98中柱62.06–214.830.40–309.36–464.0331832.369172.59边柱19.322120.48–83.570.403.6–120.34–180.51中柱62.06–268.450.45–434.89–531.5321357.1710529.76边柱19.322120.48–95.140.743.6–255.58–89.80中柱62.06–308.170.50–554.71–554.711865.3211395.08边柱23.151357.18–194.370.944.9–895.27–152.39中柱27.02–226.860.73–811.48-300.14表3–31地震作用下梁端弯矩层次柱别M下(kN·m)M上(kN·m)节点左右梁线刚度比边跨梁端弯矩M(kN·m)中跨梁端弯矩M(kN·m)风载作用下梁端剪力边跨梁跨中弯矩(kN·m)左梁右梁VAVB左VB右6边柱–29.82–57.00057–17.11–8.05中柱–70.43–211.280.3655.93155.35–17.11–129.465边柱–23.82–146.340176.14–40.93–20.32中柱–191.288–355.20.3694.03261.21–40.93–217.684边柱–57.78–182.940206.8–49.94–24.57中柱–309.366–464.050.36122.83341.20–49.94–284.33边柱–120.347–180.500238.2957.42–27.49中柱–434.898–531.5380.36140.70390.8357.42–325.62边柱–255.58–89.880210.14–54.09–26.13中柱–554.71–554.710.36146.84/407.88–54.09–339.91边柱–895.21–152.40407.97–73.85–35.12中柱–811.45-300.140.3679.45220.69–73.85–183.9-101-
安徽工程大学毕业设计(论文)表3–32地震作用下梁剪力、柱轴力层次柱别M下(kN·m)M上(kN·m)风载作用下梁端剪力柱轴力VAVB左VB右NANB6边柱–29.82–57–17.11–17.11中柱–70.43–211.28–17.11-129.46-112.355边柱–23.82–146.32–40.93–58.04中柱–191.28–355.24–40.93–217.68-298.14边柱–57.78–182.98–49.94–107.98中柱–309.36–118.35–49.94–284.33-523.493边柱–120.34–464.03-57.42–165.4中柱–434.89–531.53-57.42–325.69-791.762边柱–255.58–89.80–54.09–219.49中柱–554.71–554.71–54.09–329.90-1067.571边柱–895.27–152.39–73.85–293.34中柱–811.48-300.14–73.85–183.91-1177.63-101-
安徽工程大学毕业设计(论文)第4章框架内力组合取β=0.9对梁进行调幅,调幅计算过程见表4–1表4–1弯矩调幅计算荷载种类杆件跨向弯矩标准值调幅系数调幅后弯矩标准值MloMroM中MlMrM恒载顶层AB–117.24–145.83192.650.9–105.52–131.25205.77BC–49.44–49.44–16.550.9–44.50–44.50–11.61六层AB-76.59-86.5756.210.9-68.93-77.9164.37BC-10.12-10.12-1.720.9-9.11-9.11-0.71五层AB-69.05-67.0541.860.9-62.15-60.3548.67BC-8.68-8.68-0.930.9-7.81-7.81-0.06四层AB-66.65-68.3144.520.9-59.99-61.4851.27BC-8.63-8.63-0.880.9-7.77-7.77-0.02三层AB-67.59-67.5344.190.9-60.83-60.7850.95BC-8.91-8.91-1.160.9-8.02-8.02-0.27二层AB-67.26-68.2444.960.9-60.53-61.4251.74BC-8.28-8.28-0.530.9-7.45-7.450.30活载(a)顶层AB–10.71–13.2826.560.9–9.64–11.9527.76BC–4.44–4.44–4.440.9–4.00–4.00–4.00六层AB-7.15-9.217.240.9-6.44-8.298.06BC-1.88-1.88-1.880.9-1.69-1.69-1.69五层AB-0.49-0.4-0.520.9-0.44-0.36-0.48BC-0.44-0.4410.9-0.40-0.401.04四层AB-25.2-25.5418.690.9-22.68-22.9921.23BC-2.71-2.71-2.710.9-2.44-2.44-2.44三层AB-0.57-0.46-0.640.9-0.51-0.41-0.59BC-0.25-0.251.190.9-0.23-0.231.22二层AB-25.25-26.5518.150.9-22.73-23.9020.74BC-2.76-2.76-2.760.9-2.48-2.48-2.48活载(b)顶层AB–17.96–10.6524.450.9–15.84–9.5925.88BC–4.37–4.37–4.370.9–3.93–3.93–3.93六层AB–43.52–47.8065.150.9–39.17–43.0269.72BC–7.16–7.16–7.160.9–6.44–6.44–6.44-101-
安徽工程大学毕业设计(论文)荷载种类杆件跨向弯矩标准值调幅系数调幅后弯矩标准值MloMroM中MlMrM活载(b)五层AB-25.58-25.5118.50.9-23.02-22.9621.05BC-2.33-2.33-2.330.9-2.10-2.10-2.10四层AB-0.02-0.72-0.350.9-0.02-0.65-0.31BC-0.19-0.191.250.9-0.17-0.171.27三层AB-27.17-24.5618.180.9-24.45-22.1020.77BC-2.64-2.64-2.640.9-2.38-2.38-2.38二层AB-0.08-0.74-0.410.9-0.07-0.67-0.37BC-0.08-0.081.360.9-0.07-0.071.37活载(c)顶层AB–17.65–12.1623.730.9–15.89–10.9425.22BC–6.76–6.76–2.180.9–6.08–6.08–1.50六层AB-9.096.370.9-8.10-8.187.27-9BC-0.57-0.570.9-0.51-0.51-0.51-0.57五层AB-25.6818.450.9-22.95-23.1121.01-25.5BC-3.53-1.230.9-3.18-3.18-0.88-3.53四层AB-0.52-0.290.9-0.06-0.47-0.26-0.07BC0.970.970.90.870.870.870.97三层AB-24.7618.130.9-24.37-22.2820.72-27.08BC-3.81-1.510.9-3.43-3.43-1.13-3.81二层AB-0.53-0.350.9-0.14-0.48-0.32-0.16BC1.071.070.90.960.960.961.07活载(d)顶层AB–15.48–18.1721.940.9–13.93–16.3523.62BC–5.00–5.00–0.420.9–4.50–4.500.08六层AB–46.00–52.4561.850.9–41.40–47.2166.50BC–13.53–13.53–0.460.9–12.18–12.180.89五层AB–47.55–53.4260.330.9–42.80–48.0865.38BC–13.11–13.11–0.040.9–11.80–11.801.27四层AB–47.20–53.1660.650.9–42.48–47.8465.67BC–13.11–13.11–0.040.9–11.80–11.801.27三层AB–48.12–53.7159.880.9–43.31–48.3464.97BC–12.94–12.940.130.9–11.65–11.651.42二层AB–42.99–50.8263.920.9–38.69–45.7468.61BC–14.52–14.52–1.450.9–13.07–13.070.00-101-
安徽工程大学毕业设计(论文)荷载种类杆件跨向弯矩标准值调幅系数调幅后弯矩标准值MloMroM中MlMrMlo0.5(活载+雪载)顶层AB–6.15–6.817.360.9–5.54–6.138.01BC–1.59–1.590.040.9–1.43–1.430.20六层AB–22.75–26.0730.000.9–20.48–23.4632.44BC–6.83–6.83–0.300.9–6.15–6.150.38五层AB–23.63–26.7730.200.9–21.27–24.0932.72BC–6.56–6.56–0.030.9–5.90–5.900.63四层AB–23.60–26.5730.300.9–21.24–23.9132.81BC–6.55–6.55–0.020.9–5.90–5.900.64三层AB–24.05–26.8429.970.9–21.65–24.1632.52BC–6.47–6.470.060.9–5.82–5.820.71二层AB–21.47–25.4031.980.9–19.32–22.8634.32BC–7.26–7.26–0.730.9–6.53–6.530.00一般组合采用三种组合形式,(见表4–2、表4–4)(1)可变荷载效应控制时:1.2恒k+1.4活k1.2恒k+0.9(活k+风k)×1.4(2)永久荷载效应控制时:1.35恒k+0.7×1.4活k≈1.35恒k+活k考虑地震作用的组合见表4–3、表4–5-101-
安徽工程大学毕业设计(论文)表4–2横向框架内力组合(一般组合)(单位M:kN·m;V:kN)内力组合1.35恒+活–154.34167.65280.30–173.59–172.78–63.4444.16–18.97–58.14–41.23–209.17176.18256.34–195.38–172.011.2恒+0.9(1.4活+1.4风)右风–138.95164.40283.50–182.16–176.03–58.1441.23–18.97–63.44–44.16–171.88168.02263.00–219.39–180.17左风–148.87168.17285.79–180.39–176.46–61.9143.28–19.53–61.91–43.28–196.32177.79269.91–213.99–181.911.2恒+1.4活–148.87168.17285.79–180.39–176.46–61.9143.28–19.53–61.91–43.28–196.32177.79269.91–213.99–181.91荷载种类风载右风–6.111.29–1.273.581.29–1.891.160.001.891.16–14.803.24–2.649.533.24左风6.11–1.291.27–3.58–1.291.89–1.160.00–1.89–1.1614.80–3.242.64–9.53–3.24荷载最大值–15.8915.3327.76–16.35–14.72–6.084.16–4.00–6.08–4.16–41.4040.6973.17–47.21–41.61活荷载d–13.9314.0023.62–16.35–14.72–4.504.160.08–4.50–4.16–41.4040.1866.50–47.21–41.90c–15.8915.0925.22–10.94–13.63–6.084.16–1.50–6.08–4.16–40.4640.6973.17–42.83–41.39b–15.8415.3325.88–9.59–13.39–3.930.00–3.93–3.930.00–39.1740.4769.72–43.02–41.61a–9.6413.9627.76–11.95–14.70–4.000.00–4.00–4.000.00–3.74–0.446.39–6.71–0.44恒载–105.52122.26205.77–131.25–129.88–44.5031.21–11.61–44.50–31.21–115.30100.69139.56–123.25–103.05内力MVMMVMVMMVMVMMV截面梁左端跨中梁右端梁左端跨中梁右端梁左端跨中梁右端跨向AB跨BC跨AB跨杆件顶层横梁六层横梁-101-
安徽工程大学毕业设计(论文)续表横向框架内力组合(一般组合)(单位M:kN·m;V:kN)内力组合1.35恒+活–142.12162.47277.61–229.20–185.85–31.9223.6210.30–59.64–40.43–136.75160.33270.32–236.73–187.921.2恒+0.9(1.4活+1.4风)–189.74177.22280.57–209.57–182.63–47.4333.6811.52–47.43–33.68–192.89177.28272.50–209.06–182.50–25.78–33.087.20–6.1020.897.20–11.006.670.0011.006.67–39.74–8.94–6.2127.338.94–38.261.2恒+1.4活33.08–7.206.10–20.89–7.2011.00–6.670.00–11.00–6.6739.74–8.946.21–27.33–8.94荷载种类风载右风–5.023.040.005.023.04–23.165.16–3.8315.515.16–8.164.950.008.164.95左风5.02–3.040.00–5.02–3.0423.16–5.163.83–15.50–5.168.16–4.950.00–8.16–4.95荷载最大值–12.1811.888.23–12.18–11.88–42.8040.5471.57–48.08–41.82–11.8011.888.89–11.80–11.88活荷载d–12.1811.880.89–12.18–11.88–42.8040.2665.38–48.08–41.82–11.8011.881.27–11.80–11.88c–6.490.00–6.49–6.490.00–4.90–0.36–6.11–7.29–0.36–4.1911.888.89–4.19–11.88b–6.440.00–6.44–6.440.00–4.90–0.34–6.05–7.17–0.34–4.2011.888.87–4.20–11.88a–4.8411.888.23–4.84–11.88–37.5540.5471.57–40.98–41.54–7.600.00–7.60–7.600.00恒载–23.8714.211.32–23.87–14.21–107.66100.28145.82–118.42–103.46–26.1714.21–0.98–26.17–14.21内力MVMMVMVMMVMVMMV截面梁左端跨中梁右端梁左端跨中梁右端梁左端跨中梁右端跨向BC跨AB跨BC跨杆件六层横梁五层横梁-101-
安徽工程大学毕业设计(论文)续表横向框架内力组合(一般组合)(单位M:kN·m;V:kN)内力组合1.35恒+活144.93389.13114.98418.29–122.02451.86–100.27476.1685.60745.4292.20774.58–73.80896.98–77.391.2恒+0.9(1.4活+1.4风)142.66356.72114.97382.64–105.86414.38–92.51435.9899.11702.5499.81728.46–59.23846.5764.60–165.39127.26353.46106.68379.39–119.64414.71–102.49436.3170.11691.1280.46717.04–85.92847.40–86.45–187.921.2恒+1.4活137.28358.56114.07384.48–114.37419.41–100.66441.0187.82709.7593.22735.67–75.21865.72–78.06荷载种类风载右风–33.087.20–6.1020.897.20–11.006.670.0011.006.67–39.74–8.94–6.2127.338.94左风33.08–7.206.10–20.89–7.2011.00–6.670.00–11.00–6.6739.74–8.946.21–27.33–8.94荷载最大值–42.4840.5775.99–47.84–41.83–11.8011.888.72–11.80–11.88–43.3140.5671.47–48.34–41.79活荷载d–42.4840.2565.67–47.84–41.83–11.8011.881.27–11.80–11.88–43.3140.2964.97–48.34–41.79c–37.2340.5775.99–40.41–41.51–7.330.00–7.33–7.330.00–5.46–0.36–6.69–7.70–0.36b–37.2340.5771.99–40.41–41.51–7.330.00–7.33–7.330.00–5.46–0.33–6.58–7.70–0.33a–5.16–0.39–6.47–7.79–0.39–4.3511.888.72–4.35–11.88–37.7240.5671.47–40.98–41.52恒载–108.56100.35145.15–118.83–103.39–25.7614.21–0.57–25.76–14.21–110.21100.41143.70–117.82–103.33内力MVMMVMVMMVMVMMV截面梁左端跨中梁右端梁左端跨中梁右端梁左端跨中梁右端跨向AB跨BC跨AB跨杆件四层横梁三层横梁-101-
安徽工程大学毕业设计(论文)续表横向框架内力组合(一般组合)(单位M:kN·m;V:kN)内力组合1.35恒+活–45.8931.068.84–45.89–31.06–172.52175.14282.74–198.65–182.44–52.2231.062.76–52.22–31.061.2恒+0.9(1.4活+1.4风)右风–63.2343.0111.22–26.99–21.03–232.39184.72267.69–153.06–163.76–72.5944.955.38–29.95–19.09左风–26.9921.0311.22–63.23–43.01–103.02156.67291.88–234.05–191.81–29.9519.095.38–72.59–44.951.2恒+1.4活–46.7433.6812.49–46.74–33.68–173.12176.35290.52–199.96–183.68–52.1033.686.49–53.10–33.68荷载种类风载右风–14.388.720.0014.388.72–51.3411.13–9.6032.1411.13–16.9210.260.0016.9210.26左风14.38–8.720.00–14.38–8.7251.34–11.139.60–32.14–11.1316.92–10.260.00–16.92–10.26荷载最大值–11.6511.889.07–11.65–11.88–38.6940.4576.69–45.74–42.08–13.0711.887.90–13.07–11.88活荷载d–11.6511.881.42–11.65–11.88–38.6940.0068.61–45.74–42.08–13.0711.880.00–13.07–11.88c–4.0011.889.07–4.00–11.88–36.1440.4576.69–40.11–41.63–7.760.00–7.76–7.760.00b–4.0011.889.07–4.00–11.88–36.1440.4572.69–40.11–41.63–7.760.00–7.76–7.760.00a–7.560.00–7.56–7.560.002.40–0.54–4.23–6.06–0.54–5.1811.887.90–5.18–11.88恒载–25.3614.21–0.17–25.3614.21–99.1399.77152.63–113.27–103.97–29.0014.21–3.81–29.00–14.21内力MVMMVMVMMVMVMMV截面梁左端跨中梁右端梁左端跨中梁右端梁左端跨中梁右端跨向BC跨AB跨BC跨杆件三层横梁二层横梁-101-
安徽工程大学毕业设计(论文)表4–3横向框架梁内力组合(考虑地震组合)杆件跨向截面内力荷载种类内力组合恒载0.5(雪+活)地震作用1.2[恒+0.5(雪+活)]+1.3地震作用向左向右向左向右顶层横梁AB跨梁左端M–105.52–5.5470.60–70.60–41.49–225.05V122.265.04–14.9314.93133.35172.17跨中M205.778.0114.61–14.61275.53237.55梁右端M–131.25–6.13–41.3941.39–218.66–111.05V–129.88–5.22–14.9314.93–181.53–142.71BC跨梁左端M–44.50–1.4321.79–21.79–26.79–83.44V31.211.49–13.2113.2122.0756.41跨中M–11.610.200.000.00–13.69–13.69梁右端M–44.50–1.43–21.7921.79–83.44–26.79V–31.21–1.49–13.2113.21–56.41–22.07六层横梁AB跨梁左端M–115.30–20.48140.85–140.85–20.17–346.04V100.6920.08–31.0431.04104.57185.28跨中M139.5632.4424.47–24.47238.21174.59梁右端M–123.25–23.46–91.9291.92–295.55–56.56V–103.05–20.96–31.0431.04–189.16–108.46BC跨梁左端M–23.87–6.1548.38–48.3826.87–98.92V14.215.94–29.3229.32–13.9462.30跨中M1.320.380.000.002.042.04梁右端M–23.87–6.15–48.3848.38–98.9226.87V–14.21–5.94–29.3229.32–62.3013.94五层横梁AB跨梁左端M–107.66–21.27191.00–191.0093.58–403.02V100.2820.10–42.5642.5689.13199.78跨中M145.8232.7231.39–31.39255.06173.44梁右端M–118.42–24.09–128.22128.22–337.70–4.33V–103.46–20.94–42.5642.56–204.61–93.95BC跨梁左端M–26.17–5.9067.49–67.4949.25–126.22V14.215.94–40.9040.90–28.9977.35跨中M–0.980.630.000.00–0.42–0.42梁右端M–26.17–5.90–67.4967.49–126.2249.25V–14.21–5.94–40.9040.90–77.3528.99-101-
安徽工程大学毕业设计(论文)续表横向框架梁内力组合(考虑地震组合)杆件跨向截面内力荷载种类内力组合恒载0.5(雪+活)地震作用1.2[恒+0.5(雪+活)]+1.3地震作用向左向右向左向右四层横梁AB跨梁左端M–108.56–21.24244.48–244.48162.06–473.58V100.3520.12–53.2653.2675.33213.80跨中M145.1532.8144.76–44.76271.74155.36梁右端M–118.83–23.91–154.97154.97–372.7530.17V–103.39–20.92–53.2653.26–218.41–79.93BC跨梁左端M–25.76–5.9081.57–81.5768.05–144.03V14.215.94–49.4449.44–40.0988.45跨中M–0.570.640.000.000.080.08梁右端M–25.76–5.90–81.5781.57–144.0368.05V–14.21–5.94–49.4449.44–88.4540.09三层横梁AB跨梁左端M–110.21–21.65263.35–263.35184.12–500.59V100.4120.15–59.3459.3467.53221.81跨中M143.7032.5240.84–40.84264.56158.37梁右端M–117.82–24.16–181.68181.68–406.5665.81V–103.33–20.89–59.3459.34–226.21–71.92BC跨梁左端M–25.36–5.8295.62–95.6286.89–161.72V14.215.94–57.9557.95–51.1699.52跨中M–0.170.710.000.000.650.65梁右端M–25.36–5.82–95.6295.62–161.7286.89V–14.21–5.94–57.9557.95–99.5251.16二层横梁AB跨梁左端M–99.13–19.32333.02–333.02290.79–575.56V99.7720.00–72.1872.1849.89237.56跨中M152.6334.3262.35–62.35305.40143.29梁右端M–113.27–22.86–208.33208.33–434.19107.47V–103.97–21.04–72.1872.18–243.85–56.18BC跨梁左端M–29.00–6.53109.65–109.6599.91–185.18V14.215.94–66.4566.45–62.21110.57跨中M–3.810.000.000.00–4.57–4.57梁右端M–29.00–6.53–109.65109.65–185.1899.91V–14.21–5.94–66.4566.45–110.5762.21-101-
安徽工程大学毕业设计(论文)表4–4横向框架柱内力组合(一般组合)Nma×及相应的M144.39389.13144.98418.29–122.02451.86–100.27476.1685.60745.4292.20774.58–73.80896.98–77.39921.28Nmin及相应的M127.26153.46106.68379.39–105.86414.38–92.51435.9870.11691.1280.46717.04–59.23846.5764.60868.17│Mma×│及相应的N142.66356.72114.98418.29–122.02451.86–102.49436.3199.11702.5499.81728.46–85.92847.40–86.45869.00内力组合1.35恒+活144.93389.13114.98418.29–122.02451.86–100.27476.1685.60745.4292.20774.58–73.80896.98–77.39921.281.2恒+0.9(1.4活+1.4风)142.66356.72114.97382.64–105.86414.38–92.51435.9899.11702.5499.81728.46–59.23846.5764.60868.17868.17127.26353.46106.68379.39–119.64414.71–102.49436.3170.11691.1280.46717.04–85.92847.40–86.45869.00869.001.2恒+1.4活137.28358.56114.07384.48–114.37419.41–100.66441.0187.82709.7593.22735.67–75.21865.72–78.06887.32荷载种类风载右风6.111.293.291.295.47–0.133.96–0.1311.514.537.684.5310.59–0.338.67–0.33左风–6.11–1.29–3.29–1.29–5.47–0.13–3.960.13–11.51–4.53–7.68–4.53–10.590.33–8.670.33活载最大值16.5424.7823.2324.78–11.5634.74–22.5634.7422.9692.2522.0392.25–18.81133.84–18.14133.84活荷载d14.0623.4518.9723.45–11.5634.74–15.5734.7422.9690.6322.0390.63–18.81133.84–18.14133.84c16.2324.5422.2724.54–3.8133.65–22.1733.6518.6392.232.4592.23–14.15120.36–0.28120.36b16.5424.7823.2324.78–4.8729.25–22.5629.2516.2392.252.4592.25–14.03116.18–0.19116.18a9.2923.41–0.3723.41–7.3630.562.1030.564.5449.9719.1249.97–2.3388.20–16.7988.20恒载95.10269.8967.96291.49–81.82308.98–57.56326.9846.40483.8351.98505.43–40.73565.29–43.89583.29内力MNMNMNMNMNMNMNMN截面柱顶柱底柱顶柱底柱顶柱底柱顶柱底跨向A柱B柱A柱B柱杆件顶层柱五层柱-101-
安徽工程大学毕业设计(论文)续表横向框架柱内力组合(一般组合)Nma×及相应的M94.181099.3394.151128.49–80.341342.57–79.531366.8793.281454.9492.461484.10–79.261788.08–77.101812.38Nmin及相应的M72.181023.5675.771049.48–59.081279.14–60.571300.7465.161355.5568.951381.47–53.591711.23–51.481732.83│Mma×│及相应的N111.191047.98107.701073.90–96.831280.50–94.041302.10116.601398.11111.031424.03–100.491713.92–98.381735.52内力组合1.35恒+活94.181099.3394.151128.49–80.341342.57–79.531366.8793.281454.9492.461484.10–79.261788.08–77.101812.381.2恒+0.9(1.4活+1.4风)111.191047.98107.701073.90–59.081279.14–60.571300.74116.601398.11111.031424.03–53.591711.23–51.481732.831732.872.181023.5675.771049.48–96.831280.50–94.041302.1065.161355.5568.951381.47–100.491713.92–98.381735.521735.51.2恒+1.4活94.691057.894.771083.8–80.421312.4–79.801334.093.891408.392.941434.279.521759.077.351780.6荷载种类风载右风15.489.6912.679.6914.98–0.5413.28–0.5420.4116.8916.7016.8918.61–1.0718.61–1.07左风–15.489.6912.679.6914.98–0.5413.28–0.5420.4116.8916.7016.89–18.611.07–18.611.07活载最大值21.46157.8921.68157.89–17.63232.86–17.81232.8621.47225.1421.04225.14–17.75331.89–17.25331.89活荷载d21.46157.8921.68157.89–17.63232.86–17.81232.8621.47225.1421.04225.14–17.75331.89–17.25331.89c2.99118.8718.78118.87–1.35177.92–16.39177.9218.54186.442.52186.44–16.31264.75–0.82264.75b2.99118.9118.78118.91–1.37173.72–16.39173.7218.54186.482.52186.48–16.31260.55–0.82260.55a18.55117.512.89117.51–16.13175.06–0.99175.062.84144.1218.45144.12–1.00232.65–16.10232.65恒载53.87697.3653.68718.96–46.45822.01–45.72840.0153.19910.9652.90932.56–45.561078.6–44.331096.6内力MNMNMNMNMNMNMNMN截面柱顶柱底柱顶柱底柱顶柱底柱顶柱底跨向A柱B柱A柱B柱杆件四层柱三层柱-101-
安徽工程大学毕业设计(论文)续表横向框架柱内力组合(一般组合)Nma×及相应的M127.421650.66112.541760.55–84.422233.47–94.692257.4359.662165.2429.852207.36–17.22–50.952680.01–24.481715.1114.51Nmin及相应的M69.361585.5780.611611.49–53.322143.58–62.922165.1823.382011.48–28.642048.92–35.09–17.922576.2615.552607.4628.41│Mma×│及相应的N127.421650.66138.671676.58–111.562146.83–121.162168.4394.702104.6287.712142.06–1.00–83.312581.70–64.392612.900.46内力组合101.071731.39112.541760.55–84.422233.47–94.692257.7759.662165.2429.852207.36–17.22–50.952680.01–24.482715.1114.5114.51127.4269.361650.66138.671676.58–53.322143.58–62.922165.1894.702104.6287.712142.06–1.00–17.922576.2615.552607.4628.412607.428.411585.5780.611611.49–111.562146.83–121.162168.4323.382011.48–28.642048.92–35.09–83.312581.70–64.392612.900.462612.90.46101.611647.95113.261673.87–85.102205.53–95.012227.1361.312108.3730.672145.81–17.70–52.622653.2025.422684.4015.0115.01荷载种类风载右风23.0425.8323.0425.8323.11–1.2923.11–1.2928.3036.9646.1736.9614.3225.95–2.1631.72–2.1611.09左风–23.04–25.83–23.04–25.83–23.111.29–23.111.29–28.30–36.96–46.17–36.96–14.32–25.952.16–31.722.16–11.09活载最大值23.03213.1525.87213.15–18.99430.88–21.22430.8816.20359.438.11259.43–4.68–14.34530.16–7.17530.164.14活荷载d23.03192.4325.87192.43–18.99430.88–21.22430.8813.07359.436.54359.43–3.77–10.58530.16–5.29530.163.05c3.55213.0819.90213.08–1.45322.31–17.57322.3116.20280.538.11280.53–4.68–14.34409.26–7.17409.264.14b3.55213.1519.90213.15–1.45318.08–17.57318.0816.20280.608.11280.60–4.68–14.34405.05–7.17405.054.14a19.41211.685.87211.68–17.07319.49–3.16319.49–5.87238.14–1.60238.141.444.02377.232.01377.23–1.16恒载57.811124.6264.201164.22–48.761335.2–54.421353.232.191337.616.101368.8–9.29–27.121592.4–12.821618.47.68内力MNMNMNMNMNMNVMNMNV截面柱顶柱底柱顶柱底柱顶柱底柱顶柱底跨向A柱B柱A柱B柱杆件二层柱底层柱-101-
安徽工程大学毕业设计(论文)表4–5横向框架柱内力组合(考虑地震组合)杆件跨向截面内力荷载种类内力组合│Mma×│及相应的NNmin及相应的MNma×及相应的M恒载0.5(雪+活)地震作用1.2[恒+0.5(雪+活)]+1.3地震作用向左向右向左向右顶层柱A柱柱顶M95.105.66–70.6070.6029.13212.69212.6929.13212.69N269.898.31–14.9314.93314.43353.25353.25314.43353.25柱底M67.969.02–38.0138.0142.96141.79141.7942.96141.79N291.498.31–14.9314.93340.35379.17379.17340.35379.17B柱柱顶M–81.82–4.67–63.1863.18–185.92–21.65–185.92–21.65–185.92N308.9812.211.72–1.72387.66383.19387.66383.19387.66柱底M–57.56–7.43–45.7545.75–137.46–18.51–137.46–18.51–137.46N326.9812.211.72–1.72409.26404.79409.26404.79409.26五层柱A柱柱顶M46.4011.79–102.84102.84–63.86203.52203.52–63.86203.52N483.8341.32–45.9745.97570.42689.94689.94570.42689.94柱底M51.9811.21–68.5668.56–13.30164.96164.96–13.30164.96N505.4341.32–45.9745.97596.34715.86715.86596.34715.86B柱柱顶M–40.73–9.60–94.5594.55–183.3162.52–183.3162.52–183.31N565.2961.213.44–3.44756.27747.33756.27747.33756.27柱底M–43.89–9.18–77.3677.36–164.2536.88–164.2536.88–164.25N583.2961.213.44–3.44777.87768.93777.87768.93777.87四层柱A柱柱顶M53.8710.85–122.44122.44–81.51236.84236.84–81.51236.84N697.3674.35–88.5388.53810.961041.141041.14810.961041.14柱底M53.6810.90–100.18100.18–52.74207.73207.73–52.74207.73N718.9674.3588.5388.53836.881067.061067.06836.881067.06B柱柱顶M–46.45–8.83–118.35118.35–220.1987.52–220.1987.52–220.19N822.01110.905.10–5.101126.121112.861126.121112.861126.12柱底M–45.72–8.92–104.96104.96–202.0270.88–202.0270.88–202.02N840.01110.905.10–5.101147.721134.461147.721134.461147.72-101-
安徽工程大学毕业设计(论文)续表横向框架柱内力组合(考虑地震组合)杆件跨向截面内力荷载种类内力组合│Mma×│及相应的NNmin及相应的MNma×及相应的M恒载0.5(雪+活)地震作用1.2[恒+0.5(雪+活)]+1.3地震作用向左向右向左向右三层柱A柱柱顶M53.1910.75–144.30144.30–110.86264.32264.32–110.86264.32N910.96107.40–141.79141.791037.711406.361406.361037.711406.36柱底M52.9010.55–118.07118.07–77.35229.63229.63–77.35229.63N932.56107.40–141.79141.791063.631432.281432.281063.631432.28B柱柱顶M–45.56–8.89–131.58131.58–236.39105.71–236.39105.71–236.39N1078.66159.158.92–8.921496.971473.781496.971473.781496.97柱底M–44.33–8.64–131.58131.58–234.62107.49–234.62107.49–236.62N1096.66159.158.92–8.921518.571495.381518.571495.381518.57二层柱A柱柱顶M57.8111.55–145.28145.28–105.63272.10272.10–105.63272.10N1124.62140.48–201.13201.131256.651779.591779.591256.651779.59柱底M64.2012.97–145.28145.28–96.26281.47281.47–96.26281.47N1146.22140.48–201.13201.131282.571805.511805.511282.571805.51B柱柱顶M–48.76–9.52–145.71145.71–259.36119.49–259.36119.49–259.36N1335.25208.0810.31–10.311865.401838.591865.401838.591865.40柱底M–54.42–10.64–145.71145.71–267.50111.35–267.50111.35–267.50N1353.25208.0810.31–10.311887.001860.191887.001860.191887.00底层柱A柱柱顶M32.196.56–187.74187.74–197.56290.56290.56–197.56290.56N1337.64173.41–273.31273.311457.962168.562168.561457.962168.56柱底M16.103.29–306.31306.31–374.94421.47421.47–374.94421.47N1368.84173.41–273.31273.311495.402206.002206.001495.402206.00V–9.29–1.8995.01–95.01110.10–136.93–136.93110.10–136.93B柱柱顶M–27.12–5.29–172.27172.27–262.84185.06–262.84185.06–262.84N1592.48257.1616.04–16.042240.422198.722240.422198.722240.42柱底M–12.82–2.65–210.55210.55–292.28255.15–292.28255.15–292.28N1618.48257.1616.04–16.042271.622229.922271.622229.922271.62V7.681.5373.62–73.62106.76–84.65106.76–84.65106.76-101-
安徽工程大学毕业设计(论文)第5章横向框架梁柱截面设计经查《建筑抗震设计规范》知本工程框架的抗震等级是三级,所以在计算地震作用下梁、柱的配筋时需要对梁、柱内力进行调整。为了增大梁“强剪弱弯”的程度,抗震设计中,一、二、三级的框架,其梁端截面组合的剪力设计值应按下式调整:弯矩组合设计值:为了满足和提高框架结构的“强柱弱梁”程度,在抗震设计中采用增大柱端弯矩设计值的方法,一、二、三级框架的梁柱节点处,除框架顶层和轴压比小于0.15者及框支梁与框支柱的节点外,柱端组合的弯矩设计值应符合下式要求:∑Mc=ηc∑Mb-101-
安徽工程大学毕业设计(论文)表5–1横梁AB、BC跨正截面受弯承载力计算备注ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35ξ<0.35实际选用(mm2)320,AS=941520,AS=1570320,AS=941414,AS=615414,AS=615414,AS=615420,AS=1256520,AS=1570420,AS=1256414,AS=615414,AS=615414,AS=615420,AS=1256520,AS=1570420,AS=1256414,AS=615414,AS=615414,AS=615As=ξbh0·α1fc/fy762143087254215254210301258108540510040511581364116560450604ξ0.1250.0700.1550.1500.0420.1500.1690.0620.1780.1120.0080.0380.1900.0670.1910.1670.0040.1670.1170.0680.1430.1390.0410.1430.1550.0600.1620.1060.0080.0370.1720.0650.1730.1530.0040.153h0(m)660660660660660660660660660660660660660660660660660660组合内力V(kN)126.96–132.9124.48–5.02125.22–119.1925.28–487132.37–112.0247.8017.65M(kN·m)–135.4196.77–159.20–42.80–30.22–33.10–174.36171.82–149.91–32.85–11.996–8.35–197.66170.46–116.73–66.91–0.82411.61截面位置A6支座跨中B6支座左B6支座右跨中C6支座左A5支座跨中B5支座左B5支座右跨中C5支座左A1支座跨中B1支座左B1支座右跨中C1支座左b×h300×700300×700300×700300×700300×700300×700混凝土强度等级C30C30C30层顶层六层二层-101-
安徽工程大学毕业设计(论文)表5–2横梁AB、BC跨正截面抗震验算备注安全安全安全安全安全安全安全安全安全安全安全安全安全安全安全安全安全安全实际选用(mm2)320,AS=941520,AS=1570320,AS=941414,AS=615414,AS=615414,AS=615520,AS=1570520,AS=1570520,AS=1570514,AS=769514,AS=769514,AS=769820,AS=2513520,AS=1570820,AS=2513520,AS=1570520,AS=1570520,AS=1570As=ξbh0·α1fc/fy(mm2)817(1430)(872)(542)(152)(542)1311(1258)1098618(100)6182427(1364)17071284(50)1284ξ0.1340.0470.12960.1420.0220.1420.2150.0410.1800.1710.0010.1710.3980.0530.2800.3550.0070.3550.1250.0460.1210.1320.0220.1320.1920.0400.1640.1560.0010.1560.3190.0510.2410.2920.0070.292h0(m)660660660660660660660660660660660660660660660660660660γRE0.750.750.750.750.750.750.750.750.750.750.750.750.750.750.750.750.750.75组合内力V(kN)116.24–108.1731.673.59123.25–84.6169.1742.82203.72–4.14296.88270.52M(kN·m)–147.84164.88–114.43–55.08–24.10–12.77–221.41126.51–70.46–83.48–6.7750.89–567.4494.44211.60–362.96–12.996317.91截面位置A6支座跨中B6支座左B6支座右跨中C6支座左A5支座跨中B5支座左B5支座右跨中C5支座左A1支座跨中B1支座左B1支座右跨中C1支座左b×h300×700300×700300×700300×700300×700300×700混凝土强度等级C30C30C30层顶层六层二层-101-
安徽工程大学毕业设计(论文)表5–3横梁AB、BC跨斜截面受简承载力计算备注安全安全安全安全安全安全安全安全安全安全安全安全Vcs=0.7ftbh0+1.25fyvh0Asv/S(kN)489.89489.89290.75290.75489.89489.89290.75290.75489.89489.89290.75290.75选用箍筋(双肢)ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@1000.7ftbh0(kN)164.02164.0297.3597.35164.02164.0297.3597.35164.02164.0297.3597.350.25βcfcbh0(kN)548.89548.89325.76325.76548.89548.89325.76325.76548.89548.89325.76325.76h0(mm)660660660660660660660660660660660660组合内力V(kN)126.96-132.9124.48-5.02125.22-119.1925.28-4.87132.37-112.0247.8017.65斜截面位置A6支座B6支座左B6支座右C6支座左A5支座B5支座左B5支座右C5支座左A1支座B1支座左B1支座右C1支座左b×h300×700300×700300×700300×700300×700300×700混凝土强度等级C30C30C30层顶层六层二层-101-
安徽工程大学毕业设计(论文)表5–4横梁AB、BC跨斜截面受简抗震验算备注ρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminρsv>ρminVcs=1/γRE(0.42ftbh0+1.25fyvh0Asv/S)(kN)565.72565.72335.75335.75565.72565.72335.75335.75565.72565.72335.75335.75选用箍筋(双肢)ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@100ϕ10@1000.42ftbh0/γRE(kN)131.22131.2277.8877.88131.22131.2277.8877.88131.22131.2277.8877.880.2βcfcbh0/γRE(kN)585.48585.48347.48347.48585.48585.48347.48347.48585.48585.48347.48347.48h0(mm)660660660660660660660660660660660660组合内力V(kN)119.42124.5417.6717.67125.46126.0832.1332.13214.59216.20109.20109.20Mbl+Mbr(kN·m)69.3249.3242.3042.30154.90154.90134.37134.37790.32790.32680.86680.86VGb(kN)109.64114.7611.711.7103.62104.2413.1813.18103.13104.7413.1813.18斜截面位置A6支座B6支座左B6支座右C6支座左A5支座B5支座左B5支座右C5支座左A1支座B1支座左B1支座右C1支座左b×h300×700300×700300×700300×700300×700300×700混凝土强度等级C30C30C30层顶层六层二层-101-
安徽工程大学毕业设计(论文)表5–5框架柱正截面压弯柱类别层次混凝土强度b×h(mm2)l0(m)l0/h柱截面组合内力e0(mm)ea(mm)ei(mm)ei/h0ζ1ζ2ηe(mm)Mmax(kN·m)N(kN)A柱顶层C30250×5004.507.50上端142.66356.72399.9220.00419.920.751.001.001.05702.427.50下端114.98418.29274.8820.00294.880.531.001.001.08577.23二层C30250×5004.507.50上端127.421650.6677.1920.0097.190.170.661.001.16372.357.50下端138.681676.5882.7220.00102.720.180.691.001.15378.54底层C30250×5005.208.67上端94.702104.6245.0020.0065.000.120.521.001.23340.128.67下端87.712142.0640.9520.0060.950.110.501.001.24335.83B柱顶层C30250×5004.507.50上端122.02451.68270.0420.00290.040.631.001.001.06518.547.50下端102.49436.31234.9020.00254.900.551.001.001.07483.52二层C30250×5004.507.50上端111.562146.8351.9720.0071.970.160.631.001.16293.367.50下端121.162168.4355.8720.0075.870.170.661.001.16297.71底层C30250×5005.208.67上端83.312581.7032.2720.0052.270.110.501.001.24275.038.67下端64.392612.9024.6420.0044.640.100.471.001.25265.91承载力计算(|Mmax|)ηei–0.32h0N–Nb(kN)判断破坏类型小偏压ξAs=As’(mm2)大偏压ξx–2a’As=As’(mm2)(x<2a’)As=As’(mm2)(x>2a’)选用钢筋(mm2)备注450.09-2249.35大偏压——0.05-52.08443.75—316,As=As’=603ρ>0.2%245.64-2210.47大偏压——0.06-47.55211.69—316,As=As’=603ρ>0.2%-49.00-1233.34——720————316,As=As’=603ρ>0.2%-41.87-1194.46——720————316,As=As’=603ρ>0.2%-75.85-974.87——720————316,As=As’=603ρ>0.2%-83.28-926.27——720————316,As=As’=603ρ>0.2%367.36-2241.24大偏压——0.05-51.14349.33—316,As=As’=603ρ>0.2%195.80-2202.36大偏压——0.06-46.60141.57—316,As=As’=603ρ>0.2%-58.20-1028.22——720————316,As=As’=603ρ>0.2%-54.40-989.34——720————316,As=As’=603ρ>0.2%-81.24-730.01——720————316,As=As’=603ρ>0.2%-90.19-681.41——720————316,As=As’=603ρ>0.2%-101-
安徽工程大学毕业设计(论文)表5–6框架柱正截面压弯柱类别层次混凝土强度b×h(mm2)l0(m)l0/h柱截面组合内力e0(mm)ea(mm)ei(mm)ei/h0ζ1ζ2ηe(mm)Mmax(kN·m)N(kN)A柱顶层C30700×7004.507.50上端127.26153.46829.2720.00849.271.521.001.001.031131.727.50下端106.68379.39281.1920.00301.190.541.001.001.07583.60二层C30700×7004.507.50上端69.361585.5743.7520.0063.750.110.501.001.18335.397.50下端80.611611.4950.0220.0070.020.130.551.001.17341.92底层C30700×7004.907.83上端23.382011.4811.6220.0031.620.060.361.001.32301.817.83下端28.642048.9213.9820.0033.980.060.361.001.32304.93B柱顶层C30700×7004.507.50上端105.86414.38255.4720.00275.470.601.001.001.07503.927.50下端92.51435.98212.1920.00232.190.511.001.001.08460.48二层C30700×7004.507.50上端53.322143.5824.8720.0044.870.100.471.001.19263.347.50下端62.922165.1829.0620.0049.060.110.501.001.18268.02底层C30700×7004.907.83上端17.922576.266.9620.0026.960.060.361.001.32245.657.83下端15.552607.465.9620.0025.960.060.361.001.32244.32承载力计算(Nmin)ηei–0.32h0N–Nb(kN)判断破坏类型小偏压ξAs=As’(mm2)大偏压ξx–2a’As=As’(mm2)(x<2a’)As=As’(mm2)(x>2a’)选用钢筋(mm2)备注399.30-2252.38大偏压——0.05-52.43373.97—同表5–5ρ>0.2%228.45-2213.5大偏压——0.06-47.90184.12—同表5–5ρ>0.2%-85.59-1291.07——720————同表5–5ρ>0.2%-76.98-1252.19——720————同表5–5ρ>0.2%-109.32-1055.81——720————同表5–5ρ>0.2%-122.80-1007.21——720————同表5–5ρ>0.2%367.36-2241.24大偏压——0.05-51.14349.33—同表5–5ρ>0.2%195.80-2202.36大偏压——0.06-46.60141.57—同表5–5ρ>0.2%-58.20-1028.22——720————同表5–5ρ>0.2%-54.40-989.34——720————同表5–5ρ>0.2%-81.24-730.01——720————同表5–5ρ>0.2%-90.19-681.41——720————同表5–5ρ>0.2%-101-
安徽工程大学毕业设计(论文)表5–7框架柱正截面压弯柱类别层次混凝土强度b×h(mm2)l0(m)l0/h柱截面组合内力e0(mm)ea(mm)ei(mm)ei/h0ζ1ζ2ηe(mm)Mmax(kN·m)N(kN)A柱顶层C30700×7004.507.50上端144.93389.13372.4020.00392.400.701.001.001.05672.027.50下端114.98418.29274.9020.00294.900.501.001.001.08578.49二层C30700×7004.507.50上端127.421650.6677.2020.0097.200.200.871.001.17373.727.50下端112.541760.5563.9020.0083.900.150.811.001.22362.36底层C30700×7004.908.67上端59.662165.2427.6020.0047.600.090.701.001.42327.598.67下端29.852207.3613.5020.0033.500.060.651.001.58312.93B柱顶层C30700×7004.507.50上端122.02450.86270.0020.00290.000.631.001.001.06517.407.50下端100.27476.16210.6020.00230.600.501.001.001.08459.05二层C30700×7004.507.50上端84.422233.4737.8020.0057.800.130.531.001.16227.057.50下端94.692257.4341.9020.0061.900.130.521.001.16281.80底层C30700×7004.908.67上端50.952680.0119.0020.0039.000.080.441.001.30260.708.67下端24.481715.1114.3020.0034.300.070.691.001.53262.48承载力计算(Nmax)ηei–0.32h0N–Nb(kN)判断破坏类型小偏压ξAs=As’(mm2)大偏压ξx–2a’As=As’(mm2)(x<2a’)As=As’(mm2)(x>2a’)选用钢筋(mm2)备注414.47-2227.23大偏压——0.05-49.50434.94—同表5–5ρ>0.2%215.76-2183.49大偏压——0.06-44.41183.46—同表5–5ρ>0.2%-68.72-1184.91——720————同表5–5ρ>0.2%-61.64-1141.17——720————同表5–5ρ>0.2%-94.07-924.64——720————同表5–5ρ>0.2%-115.05-869.96——720————同表5–5ρ>0.2%305.87-2209.16大偏压——0.06-47.40302.70—同表5–5ρ>0.2%150.37-2165.42大偏压——0.07-42.3081.34—同表5–5ρ>0.2%-86.95-911.05——720————同表5–5ρ>0.2%-82.71-867.31——720————同表5–5ρ>0.2%-106.20-586.82——720————同表5–5ρ>0.2%-120.83-532.14——720————同表5–5ρ>0.2%-101-
安徽工程大学毕业设计(论文)表5–8框架柱正截面压弯柱类别层次混凝土强度b×h(mm2)l0(m)l0/h柱截面组合内力轴压比γREe0(mm)ea(mm)ei(mm)ei/h0ζ1ζ2ηMmax(kN·m)N(kN)A柱顶层C30700×7004.507.50上端212.69353.250.120.75602.0920.00622.091.111.001.001.037.50下端141.79379.170.130.75373.9020.00393.900.701.001.001.05二层C30700×7004.507.50上端272.101779.590.620.80152.9020.00172.900.300.801.001.107.50下端281.471805.510630.80155.9020.00175.900.300.791.001.10底层C30700×7004.907.83上端290.562168.560.760.80133.9820.00153.980.270.651.001.107.83下端421.472206.000.770.80191.0020.00211.000.380.651.001.09B柱顶层C30700×7004.507.50上端185.92387.660.160.75479.6020.00494.601.071.001.001.037.50下端137.46409.260.170.75335.8720.00355.870.771.001.001.05二层C30700×7004.507.50上端259.361865.400.780.80139.0420.00159.040.340.641.001.077.50下端267.501887.500.790.80147.7020.00167.700.360.631.001.07底层C30700×7004.907.83上端262.842240.420.900.80117.3020.00137.300.300.531.001.097.83下端292.282271.620.900.80128.6020.00158.600.340.521.001.08抗震验算(|Mmax|)eηei–0.32h0N–Nb(kN)判断破坏类型小偏压ξAs=As’(mm2)大偏压ξx–2a’As=As’(mm2)(x<2a’)As=As’(mm2)(x>2a’)选用钢筋(mm2)备注929.48512.78-2254.61大偏压——0.05-52.69512.46—425,As=As’=1964ρ>0.2%645.24228.54-2215.73大偏压——0.06-48.16182.75—425,As=As’=1964ρ>0.2%489.1772.47-1176.37大偏压——0.2772.97—<0425,As=As’=1964ρ>0.2%491.1974.49-1137.49大偏压——0.2877.51—<0425,As=As’=1964ρ>0.2%457.7343.05-856.15大偏压——0.34110.30—<0425,As=As’=1964ρ>0.2%559.08144.40-807.55大偏压——0.35115.96—<0425,As=As’=1964ρ>0.2%916.27499.57-2257.73大偏压——0.05-53.06489.32—425,As=As’=1964ρ>0.2%648.50231.80-2218.85大偏压——0.06-48.53185.37—425,As=As’=1964ρ>0.2%698.99282.29-1575.58大偏压——0.1926.45—<0425,As=As’=1964ρ>0.2%689.55272.85-1536.7大偏压——0.2030.98—<0425,As=As’=1964ρ>0.2%691.13276.46-1495.9大偏压——0.2135.73—<0425,As=As’=1964ρ>0.2%764.69350.02-1447.3大偏压——0.2241.40—<0425,As=As’=1964ρ>0.2%-101-
安徽工程大学毕业设计(论文)表5–9框架柱正截面压弯柱类别层次混凝土强度b×h(mm2)l0(m)l0/h柱截面组合内力轴压比γREe0(mm)ea(mm)ei(mm)ei/h0ζ1ζ2ηMmax(kN·m)N(kN)A柱顶层C30700×7004.507.50上端29.13314.430.110.7592.6020.00112.600.201.001.001.207.50下端42.96340.350.120.75126.2220.00146.220.261.001.001.15二层C30700×7004.507.50上端105.631256.650.440.8084.0020.00104.000.191.001.001.217.50下端96.261282.570.450.8075.0520.0095.050.171.001.001.23底层C30700×7004.907.83上端197.561457.960.510.80135.5020.00155.050.280.981.001.187.83下端374.941495.400.530.80250.7020.00270.700.480.951.001.10B柱顶层C30700×7004.507.50上端21.65383.190.160.7556.4020.0076.400.171.001.001.247.50下端18.51404.790.170.7545.7020.0065.400.141.001.001.28二层C30700×7004.507.50上端119.491838.590.770.8064.9020.0084.900.180.651.001.147.50下端111.351860.190.780.8059.8520.0079.850.170.641.001.14底层C30700×7004.907.83上端185.062198.720.900.8084.5020.00104.500.230.541.001.127.83下端255.152229.920.900.80114.2120.00134.210.290.531.001.10抗震验算(Nmin)eηei–0.32h0N–Nb(kN)判断破坏类型小偏压ξAs=As’(mm2)大偏压ξx–2a’As=As’(mm2)(x<2a’)As=As’(mm2)(x>2a’)选用钢筋(mm2)备注696.82280.12-2267.79大偏压——0.05-54.23208.85—同表5–8ρ>0.2%564.87148.17-2228.91大偏压——0.05-49.7062.31—同表5–8ρ>0.2%424.037.33-1589.59大偏压——0.1924.81—<0同表5–8ρ>0.2%406.49-10.21-1550.71——720————同表5–8ρ>0.2%464.0949.41-1470.56大偏压——0.2138.69—<0同表5–8ρ>0.2%671.63256.95-1421.96大偏压——0.2244.35—<0同表5–8ρ>0.2%525.07108.37-2235.66大偏压——0.05-50.496.86—同表5–8ρ>0.2%449.6632.96-2196.78大偏压——0.06-45.95109.76—同表5–8ρ>0.2%698.99282.29-1575.58大偏压——0.1926.45—<0同表5–8ρ>0.2%689.55272.85-1536.7大偏压——0.2030.98—<0同表5–8ρ>0.2%691.13276.46-1495.9大偏压——0.2135.73—<0同表5–8ρ>0.2%764.69350.02-1447.3大偏压——0.2241.40—<0同表5–8ρ>0.2%-101-
安徽工程大学毕业设计(论文)表5–10框架柱正截面压弯柱类别层次混凝土强度b×h(mm2)l0(m)l0/h柱截面组合内力轴压比γREe0(mm)ea(mm)ei(mm)ei/h0ζ1ζ2ηMmax(kN·m)N(kN)A柱顶层C30700×7004.507.50上端212.69353.250.120.75602.0920.00622.091.111.001.001.037.50下端141.79379.170.130.75373.9020.00393.900.701.001.001.05二层C30700×7004.507.50上端272.101779.590.620.80152.9020.00172.900.300.801.001.107.50下端281.471805.510630.80155.9020.00175.900.300.791.001.10底层C30700×7004.907.83上端290.562168.560.760.80133.9820.00153.980.270.651.001.107.83下端421.472206.000.770.80191.0020.00211.000.380.651.001.09B柱顶层C30700×7004.507.50上端185.92387.660.160.75479.6020.00494.601.071.001.001.037.50下端137.46409.260.170.75335.8720.00355.870.771.001.001.05二层C30700×7004.507.50上端259.361865.400.780.80139.0420.00159.040.340.641.001.077.50下端267.501887.500.790.80147.7020.00167.700.360.631.001.07底层C30700×7004.907.83上端262.842240.420.900.80117.3020.00137.300.300.531.001.097.83下端292.282271.620.900.80128.6020.00158.600.340.521.001.08抗震验算(Nmax)eηei–0.32h0N–Nb(kN)判断破坏类型小偏压ξAs=As’(mm2)大偏压ξx–2a’As=As’(mm2)(x<2a’)As=As’(mm2)(x>2a’)选用钢筋(mm2)备注900.75461.50–1027.53大偏压——0.05-52.69512.46—同表5–8ρ>0.2%673.59234.39–1001.61大偏压——0.06-48.16182.75—同表5–8ρ>0.2%450.1910.90398.81大偏压——0.2772.97—<0同表5–8ρ>0.2%453.4914.29424.73大偏压——0.2877.51—<0同表5–8ρ>0.2%429.38–9.82805.78不破坏——0.34110.30—<0同表5–8ρ>0.2%489.9050.79825.22大偏压——0.35115.96—<0同表5–8ρ>0.2%719.43362.24–746.55大偏压——0.05-50.496.86—同表5–8ρ>0.2%583.66226.46–724.95大偏压——0.06-45.95109.76—同表5–8ρ>0.2%380.1722.97733.19大偏压——0.35115.09—<0同表5–8ρ>0.2%289.4432.23753.29大偏压——0.36119.63—<0同表5–8ρ>0.2%359.662.451106.21大偏压——0.44167.06—<0同表5–8ρ>0.2%381.2824.081137.41大偏压——0.45172.73—<0同表5–8ρ>0.2%-101-
安徽工程大学毕业设计(论文)由内力计算可知,本工程柱各截面的剪力设计值小,故不进行斜截面承载力计算,箍筋按抗震构造要求配置。箍筋形式采用菱形复合箍,直径均采用ϕ10,计算柱加密区配箍率为0.98%,满足抗震要求。多遇地震下横向框架的层间弹性侧移见表5–11。对于钢筋混凝土框架[θe]取1/550。表5–11层间弹性侧移验算层次h(m)Vi(kN)∑Di(kN/mm)Δμe=Vi/∑Di(mm)[θe]hi(mm)63.6928.88510.761.826.5553.61465.74510.762.876.5543.61903.99510.763.736.5533.62243.64510.764.396.5523.62484.68510.764.876.5515.22639.43262.8010.049.45通过以上计算结果看出,各层层间弹性侧移均满足规范要求,即Δue≤[θe]h。-101-
安徽工程大学毕业设计(论文)第6章楼梯结构设计计算本题工程采用现浇混凝土板式楼梯,设计混凝土强度等级为C30,梯板钢筋为HPB300钢,梯梁钢筋为HRB400钢。活荷载标准值为2.5kn/m2,楼梯栏杆采用金属栏杆。楼梯平面布置如图6–1,踏步装修做法见图6–2。50025006600TL1(200x400)TL1(200x400)KJL450020021502150休息平台板(100mm厚)TB(140mm厚)41/420280202013020336306.5粉面B156.5抹灰C140计算单元=300图6-1楼梯平面图图6-2踏步详图6.1楼体板计算1.荷载计算板厚取l0/30,l0为梯段板跨度=300×11+1200+200/2=4200板厚h=l0/30=4200/30=140,取140。α=arctan150/300=26.57°,cosα=0.894取1m宽板带为计算单元。踏步板自重(图6–2部分A)(0.1565+0.3065)/2×0.3×1×30/0.3×1.2=8.33kN/m踏步地面重(图6–2部分B)(0.3+0.15)×0.02×1×20/0.3×1.2=0.72kN/m底板抹灰重(图6–2部分C)0.336×0.02×1×17/0.3×1.2=0.46kN/m栏杆重0.1×1.2=0.12kN/m活载1×0.3×2.5/0.3×1.4=3.50kN/mΣ=13.13kN/m2.内力计算3.配筋计算板的有效高度h0=h–20=140–20=120,混凝土抗压设计强度fc=14.3N/mm2-101-
安徽工程大学毕业设计(论文)钢筋抗拉强度设计值fy=270N/mm2梯段板抗剪,因0.7ftbh0=0.7×1.43×1000×120=120.12kN>24.65kN满足抗剪要求。制作构造配。6.2休息平台板计算按简支梁计算,简图如图6–3。图6-3平台板计算简图以板宽1m为计算单位,计算跨度近似取:l=2700–200/2=2700板厚取100mm1.荷载计算面层0.02×1×20×1.2=0.48kN/m板自重0.12×1×25×1.2=3.6kN/m板底粉刷0.02×1×17×1.2=0.408kN/m活载2.5×1×1.4=3.5kN/mΣ=7.988kN/m2.内力计算3.配筋计算6.3梯段梁TL1计算截面高度h=L/12=1/12×3600=300,取300高,宽取2001.荷载计算梯段梁传13.13×3.975/2=26.10kN/m休息平台板传7.988×2.7/2=10.78kN/m梁自重0.2×0.3×30×1.05×1.2=2.27kN/mΣ=39.15kN/m2.内力计算Mmax=Pl²/8=32.57×4.2²/8=71.82KN·m3.配筋计算钢筋采用HRB400钢,h0=300–25=265-101-
安徽工程大学毕业设计(论文)选用320,Vmax=1/2pl=1/2×39.15×3.6=70.47kN0.25βcfcbh0=0.25×1.0×14.3×200×265=189.5kN>Vmax0.7ftbh0=0.7×1.43×200×265=53.1kN0.5所以α=230tanα=0.424软卧层顶面处附加应力:Pz=(PK-PCO)lb/[(l+2ztanα)(b+2ztanα)]=(139.07-17.25×1.2)×3.6×3.0/[(3.6+2×4.5×tan230)×(3.0+2×4.5×tan230)]=40.82kpaPCZ+PZ=49+40.82=89.820.5,α==230tanα=0.424PZ=(139.07-17.25×1.2)×6×3.6/[(6+2×4.5×tan230)×(3.6+2×4.5×tan230)]=40.55kpaPCZ+PZ=60.3+40.55=100.850.025所以取Zn=12.5mES=∑Ai/∑(Ai/Esi)=4P0Znαn/S’=95.04×4×12.5/14.70=4.53MpaP0=95.04kpa0.75fak=90kpa查《建筑地基基础设计规范》φs=0.99SA=0.99×14.70=14.55mm(1)(B-C)柱中心点沉降差:P0=(2836.24+20×6×3.6×1.6)/(6×3.6)-17.75×1.2=105.53kpal’/b’=6/3.6=1.66初步计算深度Zn=11.4m取△Z=0.6m表7-2B、C柱沉降计算Zil/b"Z/b"αi4Ziαi4(Ziαi-Zi-1ai-1)EsiSi"=4Po(Ziαi-Zi-1αi-1)∑6.21.662.90.06781681.441681.44200008.87—10.881.6650.0271166.4515.04100005.44—11.41.665.30.02521149.1217.28100000.1814.4912.01.665.60.02341123.225.92100000.2714.76△Sn"/S"=0.18/14.49=0.012<0.025设Zn=12m△Sn"/S"=0.27/14.76=0.027>0.025所以取Zn=12.0mEs=105.53×4×12×0.0234/14.76=8.02Mpaφs=1.0SBC=1.0×14.76=14.76mm基础沉降差△=SBC-SA=14.76-14.7=0.06mm[△]=0.003L=0.003×(7800+1200)=27mm>△(此处B.C柱为联合基础,应取两柱的中点作为计算参考点),所以沉降满座要求。7.4基础结构设计1.荷载设计值基础结构设计时,需按荷载效应基本组合的设计值进行计算。A柱:F=1253.97+11.82×4.5×1.2=1317.79kNM=20.9+11.82×4.5×1.2×0.1+0.7×9.87=34.19kN(B—C)柱:FB=FC=1468.59+11.82×4.5×1.2=1532.42kNMB=–MC=18.46+11.82×4.5×1.2×0.1+0.7×15.36=35.59kN·m2.A柱(1)基底净反力Pj=F/A=1317.798/(3.5×4.5)=83.67kPaPjmax=F/A+M/W=83.67+34.19/(3.5×3.5²/6)=88.45kPaPjmin=F/A-M/W=181.23-34.199/(3.5×3.5²/6)=78.89kPa基础剖面尺寸示意图见图8–3-101-
安徽工程大学毕业设计(论文)400300PjmaxPjmin800IPjIIIALIIII图7-3基础剖面尺寸示意图(2)冲切验算βhp=1.0at=400mm设h0=505mmat+2h0=1410mm基础高度满足要求。(3)配筋Pj1=124.47kPaMI=1/48(l–ac)[(Pjmax+Pj)(2b+bc)+(Pjmax–PI)b]=1/48(3.6–0.4)2[123.83+124.47)(2×3.0+0.4)+(123.56–124.47)×3.0]=481.86kN·m-101-
安徽工程大学毕业设计(论文)且大于0.2%满足最小配筋率选用(As=3054mm2)MII=1/48(Pjmax+Pjmin)(b–bc)2(2l+ac)=1/48(123.83+123.56)(3.0–0.4)2(2×3.6+0.4)=389.6kN·m选用(As=2545mm2)3.(B–C)柱基基础高度H=0.550m(等厚)(1)基底净反力(2)冲切验算(计算简图见下图7–4)要求Fl≤0.7βhpftumh0ac=bc=0.4mum=(ac+h0)×4=(0.4+0.505)×4=3.62mβhp=1.0,ft=1.43N/mm2Fl=Fβ–(ac+2h0)2pj=2020.16–(0.4+2×0.505)2×67.11=1886.74kN0.7βhpftumh0=0.7×1.0×1.43×3.62×505=1929.93kN>Fl所以满足要求(3)纵向内力计算bpj=3.6×67.11=288.57kN/m,弯矩和剪力的计算结果见图7–5(4)抗震验算柱边剪力:Vmax=834.76kNβhs=1.00.7βhsftbh0=0.7×1.0×1.43×3.6×505=2173.67kN>Vmax满足要求。-101-
安徽工程大学毕业设计(论文)h0ach0h0bch0lb2.4m1.31.3735.61515.981379.181489.101379.18M图V图MBFBFCMC图7-4冲切验算计算简图图7-5弯矩和剪力的计算结果(5)纵向配筋计算板底层配筋:选板顶层配筋:按构造配筋(6)横向配筋柱下等效梁宽为:ac+2×0.75h0=0.8+2×0.75×0.7=1.775m柱边弯矩:-101-
安徽工程大学毕业设计(论文)第8章建筑与结构设计说明8.1建筑相关说明1、建筑设计依据1)、芜湖市城市规划管理技术规定。2)、甲方提供的设计任务书及其资料。3)、《民用建筑设计防火规范》4)、《民用建筑设计通规》5)、《建筑专业标准规范大全》6)、国家、安徽省及芜湖市相关规范规定7)、芜湖市城市规划局相关文件2、工程概况1)主办单位:安徽工程大学建筑工程学院2)工程名称:某企业办公楼3)地理位置:芜湖市区4)工程性质:建筑主要为某企业的办公及会议用房3、设计构思1)总平面布局该建筑的设计以人为本,充分体现人文主义为基本出发点,建筑的南面设计为大楼主入口,同时也为人提供了一个短时间停留集聚的场所,为商业带来了繁荣。主建筑左右两侧设计了大会议室及活动中心,为大楼增加了色彩和活性。2)平面布局建筑采用比较规整的柱网设计,为商业和办公空间的灵活组合划分提供条件。3)造型设计在本项目的立面造型设计中,经过多方面的考虑,结合当地的地理特征和建筑环境,采用从周围建筑借建筑元素符号的方法来完成本设计的立面造型,使整栋建筑形成一种良性的协商关系,使之成为城市新规划中的一个亮点。4)建筑色彩色彩方面,建筑的上部用灰白色为主,群楼商业部分营造出商业营业的氛围,建筑主立面的玻璃幕墙主要为淡蓝色,营造出冷静的办公环境,使整座建筑的色彩既有对比,又统一协调。4、经济技术指标建设用地面积:1786.58m2总建筑面积:5054.4m2建筑占地面积:1030.8m2层数:6层建筑高度:23.5m5、建筑消防和人防1)、办公楼设两个疏散楼梯及相关消防设备。2)、在规划内部与市政道路沿建筑两长边形成消防车道。3)、满足消防要求和消防扑救面要求。4)、人防异地建设。8.2结构设计说明1、设计依据1)、工程设计采用的主要规范及规程:-101-
安徽工程大学毕业设计(论文)《建筑结构可靠度设计统一标准》(GB50068-2001)《建筑抗震设防分类标准》(GB50068-2001)《建筑抗震设计规范》(GB50011-2001)《高层建筑混凝土结构技术规程》(JGJ3-2001)《混凝土结构设计规范》(GB50010-2002)《建筑结构荷载规范》(GB50009-2001)《建筑地基基础设计规范》(GB50007-2002)2)、建筑及有关设备专业提供的图纸及技术资料2、结构设计根据本建筑使用功能及规模,建筑安全等级为二级,结构设计使用年限50年,建筑抗震设防类别按乙类进行结构设计。1)、结构选型:采用一般框架结构体系。本栋楼结构均平面规则,上下刚度变化均匀,高宽比满足要求,均是受力明确,传力直接,抗震性能良好的结构体系。2)、基础:埋深为2.1m的基础,具体见基础设计。3)、主要材料混凝土:C30钢筋:HPB300,HRB400-101-
安徽工程大学毕业设计(论文)结论与展望毕业设计是学生在学习阶段的最后一个环节,是对所学基础知识和专业知识的一种综合应用,是一种综合的再学习、再提高的过程。这一过程对学生的学习能力和独立工作能力也是一个培养,同时毕业设计的水平也反映了本科教育的综合水平,因此毕业设计对我们来说是很重要的。通过这段时间的毕业设计,总的体会可以用一句话来表达,纸上得来终觉浅,绝知此事要躬行。以往的课程设计都是单独的构件或建筑物的某一部分的设计,而毕业设计则不一样,它需要综合考虑各个方面的工程因素,诸如布局的合理,安全,经济,美观,还要兼顾施工的方便。这是一个综合性系统性的工程,因而要求我们分别从建筑,结构等不同角度去思考问题。在设计的过程中,遇到的问题是不断的。前期的建筑方案由于考虑不周是,此后在杨老师及同学们的帮助下,通过参考各种相关设计资料,使我的设计渐渐趋于合理。在计算机制图的过程中,我更熟练AutoCAD、天正建筑等建筑设计软件。在此过程中,我对制图规范有了较为深入地了解,对平、立、剖面图的内容、线形、尺寸标注等问题上有了更为清楚地认识。对手绘图有了更深的认识和熟练。中期进行对选取的一榀框架进行结构手算更是重头戏,对各门专业课程知识贯穿起来加以运用,比如恒载,活载与抗震的综合考虑进行内力组合等。开始的计算是错误百出,稍有不慎,就会出现与规范不符的现象,此外还时不时出现笔误,于是反复参阅各种规范,设计例题等,把课本上的知识转化为自己的东西。后期的计算书电脑输入,由于以前对各种办公软件应用不多,以致开始的输入速度相当的慢,不过经过一段时间的练习,逐渐熟练。大部分对毕业设计比较重视,老师对学生能认真对待毕业设计的态度也较满意。设计期间,我们都自觉独立进行设计,有问题时就同学之间进行讨论或找老师进行询问和研讨。通过这种方式,我们也都获得了很大收益。通过毕业设计,我们普遍都感觉到自己的基础知识和专业知识及解决问题的能力有了很大的提高。毕业设计结束了,我们也即将离开学校。这不是结束,而是我们自己人生的开始,未来的路很长,我们要以此为根本,在人生的道路上不断提高自己。-101-
安徽工程大学毕业设计(论文)致谢弹指一挥间,我已在安徽工程大学度过了两个年头。这是我人生中非常重要的两年,我有幸能够接触到这些不仅传授我知识、学问,而且从更高层次指导我的人生与价值追求的良师。他们使我坚定了人生的方向,获得了追求的动力,留下了大学生活的美好回忆。感谢安徽工程大学两年来的培养,在此,我真诚地向我尊敬的老师们和母校表达我深深的谢意!随着毕业日子的到来,毕业设计也接近了尾声。经过几周的奋战,毕业设计终于完成了。在没有做毕业设计以前觉得毕业设计只是对这几年来所学知识的单纯总结,但是通过这次做毕业设计发现自己的看法有点太片面。毕业设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。通过这次毕业设计使我明白了自己原来知识还比较欠缺。自己要学习的东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低。通过这次毕业设计,我们才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。在这次毕业设计中也使我和同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法,方便我更好的理解知识,所以在这里非常感谢帮助我的同学、室友。在此要感谢我们的指导老师吴桢对我们悉心的指导,同时感谢索小永老师在设计过程中给我提供的帮助。在设计过程中,通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了动手的能力,使我们充分体会到了在创造过程中探索的艰难和成功时的喜悦。虽然这个设计做的也不太好,但是在设计过程中所学到的东西是这次毕业设计的最大收获和财富,使我终身受益。最后,再次衷心感谢所有老师对我的栽培、支持和鼓励,感谢所有朋友的关心和帮助。向在百忙中抽出时间对此论文进行评审并提意见的各位专家老师表示衷心的感谢。作者:年月日-101-
安徽工程大学毕业设计(论文)参考文献[1]李廉锟主编.结构力学(上册),第五版.[M].北京:高等教育出版社,2010.7.[2]同济大学建筑制图教研室,陈文斌、章金良主编建筑工程制图[S],第三版.上海:同济大学出版社,1996.[3]东南大学编著.建筑结构抗震设计[S].北京:中国建筑工业出版社,1998.[4]赵津明主编.土木工程施工.天津:天津大学出版社,2001.[5]梁兴文、史庆轩主编.土木工程专业毕业设计指导[S].北京:科学出版社,2002.[6]中华人民共和国建设部主编.建筑结构荷载规范[M].北京:中国建筑工出版社,2002.[7]赵西安编著,高层结构设计.北京:中国建筑科学研究院,1995.[8]干洪.计算结构力学[M].合肥:合肥工业大学出版社,2004.8.[9]范钦珊,蔡新.材料力学[M].北京:清华大学出版社,2007.[10]梁兴文,史庆轩主编.混凝土结构设计原理[M].北京:中国建筑工业出版社,2008.[11]张宇鑫,刘海成,张星源主编.PKPM结构设计应用[M].上海:同济大学出版社,2006.[12]BuildingCodeRequirementsforStructuralconcreteandCommmentary(ACI318M-08).Detroit:AmericanConcreteInstitute,2008.[13]中华人民共和国建设部主编.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.[14]沈蒲生、苏三庆主编.高等学校建筑工程专业毕业设计指导[S].北京:中国建筑工业出版社,2000.6.[15]王祖华主编.混凝土及砌体结构[M].华南理工大学出版社,1993.[16]邵全,韦敏才编著.土力学与基础工程[M].重庆大学出版社出版,1997.[17]龙驭球,包世华.结构力学教程[M].北京:高等教育出版社,2000.[18]JGJ67-89,办公建筑设计规范[S].北京:中国建筑工业出版社,2007.1.-101-
安徽工程大学毕业设计(论文)附录附录A:外文参考文献及中文翻译:外文原文buildingmaterialsMaterialsforbuildingmusthavecertainphysicalpropertiestobestructurallyuseful.Primarily,theymustbeabletocarryalocalorweight,withoutchangingshapepermanently.Whenaloadisappliedtoastructuremember,itwilldeform:thatisawirewillstretchorabeamwillbend.However,whentheloadisremoved,thewireandthebeamcomebacktotheoriginalpositions.Thismaterialpropertyiscalledelasticity.Ifamaterialwerenotelasticandadeformationwerepresentinthestructureafterremovaloftheload,repeatedloadingandunloadingeventuallywouldincreasethedeformationtothepointwherethestructurewouldbecomeuseless.Materialsusedinarchitecturalstructures,suchasstoneandbrick,wood,steel,aluminum,reinforcedconcrete,andplastics,behaveelasticallywithinacertaindefinedrangeofloading.Iftheloadingisincreasedabovetherange,twotypesofbehaviorcanoccur:brittleandplastic.Intheformer,thematerialwillbreaksuddenly.Inthelatter,thematerialbeginstoflowatacertainload(yieldstrength),ultimatelyleadingtofracture.Asexamples,steelexhibitsplasticbehavior,andstoneisbrittle.Theultimatestrengthofamaterialismeasuredbythestressatwhichfailure(fracture)occurs.Asecondimportantpropertyofabuildingmaterialisitsstiffness.Thispropertyisdefinedbytheelasticmodulus,whichistheratioofthestress(forceperunitarea),tothestrain(deformationperunitlength).Theelasticmodulus,therefore,isameasureoftheresistanceofamaterialtodeformationunderload.Fortwomaterialsofequalareaunderthesameload.theonewiththehigherelasticmodulushasthesmallerdeformation.Structuralsteel,whichhasanelasticmodulusof30millionpoundspersquareinch(psi),or2,100,000kilogramspersquarecentimeter,is3timesasstiffasaluminum,10timesasstiffasconcrete,and15timesasstiffaswood.MasonryMasonryconsistsofnaturalmaterials,suchasstoneormanufacturedproduct,suchasbrickandconcreteblocks.Masonryhasbeenusedsinceancienttimes;mudbrickswereusedinthecityofBabylonforsecularbuildings,andstonewasusedforthegreattemplesoftheNileValley.TheGreatPyramidinEgypt,standing481feet(147meters)high,isthemostspectacularmasonryconstruction.Masonryunitsoriginallywerestackedwithoutusinganybondingagent,butallmodemmasonryconstructionusesacementmortarasabondingmaterial.Modernstructuralmaterialsincludestone,brickofburntclayorslate,andconcreteblocks.Masonryisessentiallyacompressivematerial:itcannotwithstandatensileforce,thatis,apull.Theultimatecompressivestrengthofbondedmasonrydependsonthestrengthofthemasonryunitandthemortar.Theultimatestrengthwillvaryfrom1,000to4,000psi(70to280k/cm2),dependingontheparticularcombinationofmasonryunitandmortarused.-101-
安徽工程大学毕业设计(论文)TimberTimberisoneoftheearliestconstructionmaterialsandIoneofthefewnaturalmaterialswithgoodtensileproperties.Hundredsofdifferentspeciesofwoodarefoundthroughouttheworld,andeachspeciesexhibitsdifferentphysicalcharacteristics.Onlyafewspeciesareusedstructurallyasframingmembersinbuildingconstruction.IntheUnitedStates,forinstance.outofmorethan600speciesofwood,only20speciesareusedstructurally.Thesearegenerallytheconifers,orsoftwoods,bothbecauseoftheirabundanceandbecauseoftheeasewithwhichtheirwoodcanbeshaped.ThespeciesoftimbermorecommonlyusedintheUnitedStatesforconstructionareDouglasfir,Southernpine,spruce,andredwood.Theultimatetensilestrengthofthesespeciesvariesfrom5,000to8,000psi(350to560kg/cm").Hardwoodsareusedprimarilyforcabinetworkandforinteriorfinishessuchasfloors.Becauseofthecellularnatureofwood,itisstrongeralongthegrainthanacrossthegrain.Woodisparticularlystrongintensionandcompressionparalleltothegrain.Andithasgreatbendingstrength.Thesepropertiesmakeitideallysuitedforcolumnsandbeamsinstructures.Woodisnoteffectivelyusedasatensilememberinatress,howeverbecausethetensilestrengthofatrussmemberdependsupconnectionsbetweenmembers.Itisdifficulttodeviseconnectionswhichdonotdependsontheshearortearingstrengthalongthegrain,althoughnumerousmetalconnectorshavebeenproducedtoutilizethetensilestrengthoftimbers.SteelSteelisanoutstandingstructuralmaterial.Ithasahighstrengthonapound-for-poundbasiswhenComparedtoothermaterials,eventhoughitsvolume-for-volumeweightismorethantentimesthatofwood.Ithasahighelasticmodulus,whichresultsinsmalldeformationsunderload.ItcanbeformedbyrollingintovariousstructuralshapessuchasI-beams,plates,andsheets;italsocanbecastintocomplexshapes;anditisalsoproducedintheformofwirestrandsandropesforuseascablesinsuspensionbridgesandsuspendedroofs,aselevatorropes,andaswiresforprestressingconcrete.Steelelementscanbejoinedtogetherbyvariousmeans,suchasbolting,riveting,orwelding.Carbonsteelsaresubjecttocorrosionthroughoxidationandmustbeprotectedfromcontactwiththeatmospherebypaintingthemorembeddingtheminconcrete.Abovetemperaturesofabout700F(371℃),steelrapidlylosesitsstrength,andthereforeitmustbecoveredinajacketofafireproofmaterial(usuallyconcrete)toincreaseitsfireresistance.Theadditionofalloyingelements,suchassiliconormanganese,resultsinhigherstrengthsteelswithtensilestrengthsupto250,000psi(17,500kg/cm2)②.Thesesteelsareusedwherethesizeofastructuralmemberbecomescritical,asincaseofcolumnsinaskyscraper.AluminumAluminumisespeciallyusefulasabuildingmaterialwhenlightweight,strength,andcorrosionresistanceareallimportantfactors.Becausepurealuminumisextremelysoftandductilealloyingelementssuchasmagnesiumsilicon,zincandcopper,mustbeaddedtoitto-101-
安徽工程大学毕业设计(论文)impartthestrengthrequiredforstructuraluse.Structuralaluminumalloysbehaveelastically.Theyhaveanelasticmodulusonethirdasgreatitssteelandthereforedeformthreetimesasmuchasstealunderthesameload.Theunitweightofanaluminumiinumalloyisonethirdthatofsteel,andthereforeanaluminummemberwillbelighterthanasteelmemberofcomparablestrength.Theultimatetensilestrengthofaluminumalloysrangesfrom20,000to60,000psi(1,400to4,200kg/cm2).Aluminumcanbeformedintoavarietyofshapes;itcanbeextrudedtoformI-beamsdrawntoformwireandrods,androlledtoformfoilandplates.Aluminummemberscanbeputtogetherinthesamewayassteelbyriveting,bolting,and(toalesserextent)bywelding.Apartfromitsuseforframingmembersinbuildingsandprefabricatedhousing,aluminumalsofindsextensiveuseforwindowframesandfortheskinofthebuildingincurtain-wallconstruction.ConcreteConcreteisamixtureofwater,sandandgravel,andportlandcement,Crushedstone,manufacturedlightweightstone,andseashellsareoftenusedinlieuofmuralgravel.Portlandcement.Whichisamixtureofmaterialscontainingcalciumandclay,isheatedinakilnandthenpulverized.Concretederivesitsstrengthfromthefactthatpulverizedportlandcement,whenmixedwithwater,hardensbyaprocesscalledhydration.Inanidealmixture,concreteconsistsofaboutthreefourthssandandgravel(aggregate)byvolumeandonefourthcementpaste.Thephysicalpropertiesofconcretearehighlysensitivetovariationsinmixtureofthecomponents,soaparticularcombinationoftheseingredientsmustbecustom-designedtoachievespecifiedresultsintermsofstrengthorshrinkage.Whenconcreteispouredintoamoldorform,itcontainsfreewater,notrequiredforhydration,whichevaporates.Astheconcretehardens,itreleasesthisexcesswateroveraperiodoftimeandshrinks.Asaresultofthisshrinkage,finecracksoftendevelop.Inordertominimizetheseshrinkagecracks,concretemustbehardenedbykeepingitmoistforatleast5days.Thestrengthofconcreteincreasesintimebecausethehydrationprocesscontinuesforyears;asapracticalmatter,thestrengthat28daysisconsideredstandard.Concretedeformsunderloadinanelasticmanner.Althoughitselasticmodulusisonetenththatofsteel,similardeformationwillresultsinceitsstrengthisalsoaboutonetenththatofsteel.Concreteisbasicallyacompressivematerialandhasnegligibletensilestrength.ReinforcedconcreteReinforcedconcretehassteelbarsthatareplacedinaconcretemembertocarrytensileforces.Thesereinforcingbars,whichrangeindiameterfrom0.25inch(0.64cm)to2.25inches(5.7cm),havewrinklesonthesurfacestoensureabondwiththeconcrete.AlthoughReinforcedconcretewasdevelopedinmanycountries,itsdiscoveryusuallyisattributedtoJosephMourner,aworkablebecausesteelandconcreteexpandandcontractequallywhenthetemperaturechange.Ifthiswerenotthecase,thebondbetweenthesteelandconcretewouldbebrokenbyachangeintemperaturesincethetwomaterialswouldresponddifferently.Reinforcedconcretecanbemoldedintoinnumerableshapes,suchasbeams,columnsslabs.andarches,andisthethereforeeasilyadaptedtoaparticularformofbuilding.-101-
安徽工程大学毕业设计(论文)Reinforcedconcretewithultimatetensilestrengthsinexcessof10,000psi(700kg/cm2)ispossible,althoughmostcommercialconcreteisproducedwithstrengthsunder6,000psi(420kg/cm2).PlasticsPlasticsarerapidlybecomingimportantconstructionmaterialsbecauseofthegreatvariety,strength,durability,andlightness.Aplasticisasyntheticmaterialorresinwhichcanbemoldedintoanydesiredshapeandwhichusesanorganicsubstanceasabinder.Organicplasticsaredividedintotwogeneralgroups:thermosettingandthermoplastic.Thethermosettinggroupbecomesrigidthroughachemicalchangethatoccurswhenheatisapplied:onceset,theseplasticscannotberemolded.Thethermoplasticgroupremainssoftathightemperaturesandmustbecooledbeforebecomingrigid;thisgroupisnotusedgenerallyasastructuralmaterial.Theultimatestrengthofmostplasticmaterialsisfrom7,000to12,000psi(490to840kg/cm2),althoughnylonhasatensilestrengthupto60,900psi(4,200kg/cm2).TextBTextingofMaterialsThemostcommontestofbuildingmaterialsisthestrengthtesttodestruction.Thisispartlybecausestrengthisaveryimportantpropertyofabuildingmaterial,evenamaterialina"non-load-bearing"partofthebuilding;partlybecausestrengthtestsarecomparativelysimpletocarryout;andpartlybecausetheyofferaguidetootherproperties,suchasdurability.Thestrengthofaductilematerialsuchassteel,aluminum,orplasticsisusuallydeterminedbyapplyingatensileload.Acompressiontestisusedforbrittlematerialssuchasconcrete,stone,andbrickbecausetheirtensilestrengthislowandthushardertomeasureaccurately.ThemethodoftestingandthedimensionsofthetestpiecesarelaiddownintheappropriatestandardspublishedbytheAmericanSocietyforTestingMaterials(ASTM),theBritishStandardsInstitution(BSI),theStandardsAssociationofAustralia(SAA),etc.Thesizeandshapeofthetestspecimenareparticularlyimportantforbrittlematerialsbecausetheyinfluencethenumberofflawsthatarelikelytooccurinthetestspecimen.Forconcretetests,thestandardAmericanandAustraliantestspecimen-acylinder150mmindiameterand300mmlong-givesalowerresultthanthestandardBritishtestspecimen-a150mmcube-becausetheformercontainsmoreconcrete.Thespeedoftestingisalsospecified.Apassageoftimeisrequiredforbothplasticdeformationandtheformationofcracks,andafasterrateoftestingthusgivesahigherresult.andtheformationofcracks,andafasterrateoftestingthusgivesahigherresult.Fortestsonconcreteandtimber,itisnecessarytospecifymoisturecontentbecausethisthestrength.Atestonasinglespecimenisunreliablebecausewedonotknowwhetheritisanaveragespecimenorwhetherithasfewerormorethantheaveragenumberofminuteflaws.Standardspecificationslaydownhowmanyspecimensshallbetestedandhowtheyaretobeselected.-101-
安徽工程大学毕业设计(论文)Testsoffactory-madematerialscarriedoutbythemanufacturerareusuallyacceptedbytheuserofthebuildingmaterialunlesshehasreasontodoubttheirveracity.Sinceconcreteismadeonthebuildingsiteorbroughtfromaready-mixconcreteplant,itstestingbecomestheresponsibilityofthebuildingcontractor.ThisisthereforeamorefrequenttestingactivitythanthatforothermaterialConcretecylindersorcubesarenormallytestedinahydraulicpress,whichmaybeusedexclusivelyforthispurpose.Auniversalmachinebasedonthesameprinciple.Timberdiffersfromotherbuildingmaterialsinthatitisproducedfromgrowingtreesandisthusmovevariable.Cuttimberfromvirginforestersmayconsistofavarietyofdifferentspecies.Eventimbercutfromaplantedforestcontainingtreesofthesamespeciesallplantedatthesametimemayshowappreciablevariationbetweenpiecesbecauseofknots,orotherflaws.Asubstantialproportionoftimberisusedondomesticconstructionwhereitisnothighlystressed;insuchcases,"visualgrading"(thatismerelylookingatit)maybesufficient.Becauseoftheimperfectionsinindividualpieces,"stressgrading"isusuallymorereliablethanevenaccuratetestingofselectedtestpieces.Astressgradingmachinetestseveryindividualpieceoftimberbyamethodthatisveryfastandrelativelycheap.Themachineisbasedonanempiricalrelationbetweenthestrengthandthedeflectionoftimber.Eachpieceoftimberisdeflected(butnotstressedtoitslimit)atseveralpointsalongitslength,andthedeflectioncategorymarkedbymeansofaspotofdye.Thetimberisthenclassifiedvisuallybyitscolormarkings.Thestrengthofmetalsisreducediftheyarerepeatedlyloadedalternatelyintensionandincompression.Thisiscalledrepeatedloadingifitisappliedseveralhundredorthousandsoftimes,andfatigueloadingifitisappliedmillionsoftimes.Fatigueloadingisamajorprobleminmachinesbutrarelyinbuildings.Windloads,however,cancauserepeatedloadinginroofstructures.Therearespecialmachinesfortestingthestrengthofmaterialsunderrepeatedloading.Otherspecialtestsareforductilityandforhardness.Ductilityistestedbybendingabararoundapinoverawideangle.Hardnessistestedbyindentationwithadiamondorahardenedsteelball.Thehardnesstestiscarriedoutonlyifanaccurateresultisrequiredbecausethereisagoodcorrelationbetweenthetensilestrengthtestandthevarioushardnesstestsforthemetals.Ifthetensilestrengthhasbeentested,thenthehardnessofthemetalcanbededucedfromthatwithreasonabletolerance.Thetoughnessofametalcanalsobededucedfromthetensiontest.Toughnessisdefinedastheenergyrequiredtobreakamaterial.Energyisforcemultipliedbydistance,thatis,theintegralofforceinrelationtolength,ortheareacontainedunderaforce-deformationcurve.Stressisforceperunitarea,andstrainisdeformationperunitlength,sothattheareacontainedunderthestress-straindiagramrepresentstheenergyperunitvolume.Thegreatertheareacontainedunderastress-straincurveuptofailure,thegreaterthetoughnessofthematerial.-101-
安徽工程大学毕业设计(论文)中文翻译建筑材料建筑材料必须有一定对结构有用的物理属性。最主要的是,他们必须能够局部或整体承重而不发生较大的变形。当荷载应用到一个结构构件上,它会发生变形:金属钢丝会拉伸而梁会弯曲。然而,当荷载移除时,钢丝和梁的变形会回到原来的位置。材料的这种属性称为弹性。如果材料移除荷载后在弹性变形没有完全恢复时就再次施加荷载,这样反复装卸最终会使材料变形增加到一定程度,结构将破坏。建筑结构使用的材料,如石头和砖、木、钢、铝、钢筋混凝土、塑料、在一定范围内加荷载具有弹性。如果加荷载超过极限范围,可能发生这两种方式的破坏:脆性和塑性。前者,材料会突然破坏。而后者,材料开始能承受一定的荷载(屈服强度),但最终也会发生断裂。例如,钢材具有塑性,石头是脆性的。材料测试时的应力达到极限强度而发生失效(断裂)。第二个重要属性是建筑材料的刚度。这个属性是由弹性模量定义的,指使材料发生单位面积长度的变形所需要的外力即为弹性模量。,因此,是建筑材料在载荷作用下发生变形的指标。两等面积的材料在相同荷载作用下。弹性模量高的变形小。钢结构的弹性模量达3000万磅每平方英寸(psi),或2100000公斤/平方厘米,是铝的3倍、混凝土的10倍,木材的15倍。砌体砌体包括天然材料、石头或制成品,如砖和混凝土块。砌体自古以来一直在使用,很久前泥砖就用于巴比伦市的世俗建筑,石头用于来尼罗河流域的大寺庙。埃及的大金字塔,高达481英尺(147米),是最壮观的砌体建筑。早期的砌体砌筑不使用任何粘结剂,而现代的砌体结构都使用水泥砂浆作为粘结挤。现代砌体材料包括石头、烧粘土砖和混凝土块。砌体本质上是一种受压材料:它的受拉承载力很低。砌体的最终抗压强度取决于砌筑砂浆和其本身的强度和。最终的强度变化从1000磅到4000磅(70到280kg/cm2),这取决于砌体和砌筑砂浆的混合比例。木材木材是最早的建筑材料和为数不多具有良好的抗拉性能的天然材料。数百种不同种类的木材遍布世界,每种木材具有不同的物理特性。只有少数种类木材用作结构构件在建筑中使用。在美国,例如。超过600种木材中,只有20种在建筑中使用。这些通常是针叶树或软木,因为这些树种的产量丰富且容易加工制作成构件。美国建筑常用的木材种类包括道格拉斯冷杉,云杉、南部松树和红杉。这些木材的极限抗拉强度从5000到8000磅不等(350到560公斤/厘米)。其中硬木主要用于细木家具和室内装饰如地板。-101-
安徽工程大学毕业设计(论文)因为木材细胞的性质,它具有很强的顺纹比横纹。木材顺纹抗拉伸和压缩强度都很高。它也具有很高的抗弯强度。这些特性使得它非常适用于结构的柱和梁。木材是不能有效地用在应力拉伸构件中,由于桁架构件的拉伸强度取决于节点之间的连接件。很难设计出不取决于剪切或撕裂强度的顺纹木材连接件,虽然众多的金属连接生产利用木料的拉伸强度。钢钢是一种性能优秀的结构材料。相比其他的材料它的比强度很高,虽然其单位体积重量超过十倍的木材。它具有较高的弹性模量,结构在荷载作用下变形小。它可以通过轧制成各种结构形状,如梁,板,和薄钢板;也可以制作成复杂的形状;它也制作成线股、电缆和绳索形式应用于悬索桥、电梯的绳索,以及预应力混凝土的钢筋。钢材料可以通过各种方式连接在一起,如螺栓、铆钉、或焊接。碳素结构钢氧化会腐蚀,必须防止与大气接触就需要把它们埋入混凝土中或嵌入在混凝土。在约700f(371℃)温度以上时,钢迅速失去强度,因此它必须被耐火材料覆盖保护(通常是混凝土),以增加其耐火性。添加合金元素,如硅或锰,可使其抗拉强度高达250000psi(17500公斤/平方厘米)。这些钢材结构构件的尺寸是至关重要的,比如高层大楼的柱子。铝铝是特别有用的建筑材料,重量轻,强度,和耐腐蚀性都是重要的因素。由于纯铝是极软,因而铝含有合金元素才具有韧性,如镁、硅、锌和铜,必须用到它所能承受强度的结构中。结构铝合金具有弹性。他的弹性模量是钢的三分之一,因此相同荷载下是刚变形的三倍,单位重量的铝合金是钢的三分之一,因此铝合金与钢构件的比强度相同。铝合金的极限抗拉强度从20000到60000磅(1400到4200公斤/平方厘米)。铝可以形成各种各样的形状,它可以挤压形成梁,卷形成箔和板。铝可以放在一起以同样的方式作为构件通过铆接、螺栓或通过焊接(在较小时)。除了用于框架构件在建筑和预制房屋使用,铝在门窗和建筑幕墙施工中广泛使用。混凝土混凝土是由水、沙子和砾石,波特兰水泥、碎石组成,其中人工轻质石头、贝壳常常用来代替碎石。波特兰水泥是含有钙和粘土的混合物,在窑炉加热,粉碎生产而成。混凝土的强度取自于水化反应,波特兰水泥粉与水混合的过程称为水化。合理比例的混合物,按体积包括约四分之三砂和砾石(骨料)和四分之一水泥浆。混凝土的物理性质对混凝土中混合物的组成高度敏感,所以必须专门设计这些成分的组合来实现强度和收缩等各方面达到指定的结果。当混凝土倒入模具或成形时,它含有游离水,水化后多余的水会蒸发。随着混凝土的硬化,经过一段时间凝结收缩它会释放出多余的水。这种收缩会产生细微的裂缝。为了减少这些收缩裂缝,混凝土必须保持至少5天湿润。混凝土强度增加,由于水化过程会持续很多年,实际规定第28天度时是标准强。混凝土在荷载下的弹性变形方式。它的弹性模量是钢的十分之一,相同的变形强度也约为钢的十分之一。混凝土属于抗压材料,其抗拉强度可以忽略。钢筋混凝土放置在混凝土构件内的钢筋是用于抵抗构件拉力。这些钢筋,直径范围从0.25英寸(0.64厘米)到2.25英寸(5-101-
安徽工程大学毕业设计(论文).7cm),表面有皱纹,以保证其与混凝土的粘结。钢筋混凝土在许多国家应用,它的发现者是约瑟夫,钢筋与混凝土可以共同工作是因为当温度变化时钢筋和混凝土的膨胀和收缩相同。否则,钢筋和混凝土之间的粘结将会失效,因为温度变化时自两种材料会有不同变形。钢筋混凝土可以浇捣成无数形状,如梁、柱板。和拱门,能够适应一个特定形式的建筑。尽管大多数商品混凝土在6000psi(420公斤/平方厘米),而钢筋混凝土极限抗拉强度超过10000psi(700公斤/平方厘米)是可能的。塑料塑料正迅速成为重要的建筑材料,由于巨大的品种、强度、耐久性和轻盈。塑料是合成材料或树脂,可以制作成任何想要的形状,使用有机物作为粘结剂。有机塑料分为两类:热固性和热塑性塑料。热固性塑料通过化学变化时发生的热应用:成形后,这些塑料不能重塑。热塑性塑料是在高温成形后和迅速冷却成为固态;这种一般不作为结构材料使用。大多数塑料的极限强度从7000到12000psi(490到840公斤/平方厘米),而尼龙的抗拉强度高达60900psi(4200公斤/平方厘米)。TextB材料强度破坏试验是对建筑材料最常用的测试。因为强度是建筑材料非常重要的属性之一,即使材料作为建筑的“非承重”部分,一方面是因为进行强度试验比较简单,另一方面是因为实验提供了其他属性,比如耐久性等。钢铁,铝塑性材料的强度,塑料强度通常取决于施加的拉伸载荷。压缩试验用于脆性材料,但混凝土,石材,砖,因为它们的抗拉强度很低,很难准确地测量。测试试件尺寸的方法是由美国材料试验学会制定发布规定的标准(ASTM),英国标准协会(BSI),澳大利亚标准协会(SAA),等。脆性材料试样的尺寸和形状尤其重要,因为他们影响缺陷的存在数量,可能发生在测试标本中。混凝土试验,美国和澳大利亚的标准试验直径150毫米和300毫米长方体,英国测试标准150毫米的立方体结果较低,因为前者包含更具体。测试的速度也是指定的。一段时间的延迟都可能形成塑性变形和裂缝,需要很快的速度测试,从而才能得到较精确的结果。对于测试混凝土和木材时,需要指定含水率。对一个样本的测试是不可靠,因为我们不知道它是否是一个平均试样。标准规格放多少标本用于试验和它们是如何被选择都需要事先考虑。工厂预制材料测试时由建筑承包商接受的建筑材料,除非建筑承包商有理由怀疑其真实性。因为混凝土是由在建筑工地或从预拌混凝土厂运送来的,它是建筑承包商的责任。因此这是一个比其他材料混凝土圆柱体或立方体测试更频繁的测试工作,可能需要专门用于这一目的材料测试。基于同样的原理。木材不同于其他建筑材料,它是树木生长而成的,因此需要搬运。从原始森林砍伐的木材可能是各种不同的物种。甚至相同物种的木材切割下来发现存在差异。相当大一部分木材用于国内建设的地方不被重视;在这种情况下,“视觉分级”(这仅仅是看着它)可能就足够了。因为在个体的缺陷,“压力分级”通常是比选试验件更可靠的精确检测。应力分级机是非常快速和相对廉价的测试每块木材的方法。该机是基于强度和木材的变形之间的经验关系。每一块木材是偏离的(但不是强调其限制)在几个点沿其长度,通过少量的染料偏转类别标记。木材是通过它视觉上的颜色进行分类标记。-101-
安徽工程大学毕业设计(论文)如果他们被反复交替的张拉和压缩,降低金属的强度。这被称为重复加载如果是应用几百或几千次,疲劳加载如果是应用数百万倍。疲劳载荷是一个主要的问题在机器但很少在建筑物。风荷载,然而,会造成重复加载在屋顶结构。有特殊的机器测试材料强度在重复加载。其他特殊的测试是对延性和硬度。延性是测试通过绕销杆弯曲的酒角度。硬度试验是钻石或淬硬钢球的压痕。硬度试验是进行一个准确的结果只有如果是必需的,因为有一个很好的相关性拉伸强度测试和各种硬度测试为金属。如果抗拉强度测试,那么硬度的金属可以推导出,在合理的公差。金属的韧性也可以推导出张力测试。韧性是定义是材料破坏所需要的能量。能量是力乘以距离,即力与长度的积分,或包含一个力-变形曲线下面积。压力是单位面积上的力,应变是单位长度变形,所以荷载下应力-应变图代表了单位体积的能量。面积越大,应力-应变曲线包含能力越大,材料的韧性越大。因此,延性材料的塑性变形比,脆性材料的塑性变形,大得多。-101-
安徽工程大学毕业设计(论文)附录B:主要参考文献题录及摘要:1.[书名]混凝土结构设计原理[作者]梁兴文,史庆轩[作者单位]西安建筑科技大学[出版社]中国建筑工业出版社[摘要]混凝土结构设计原理是土木工程专业的专业基础课程,是一门理论性和实践性都很强的专业课。笔者根据当前土木工程专业的培养计划,针对混凝土结构设计原理课程的特点和难点,探索一条适合本课程的教学模式。《混凝土结构设计原理》各章节按混凝土结构构件的受力性能和特点划分,便于根据不同的教学要求对内容进行取舍。在叙述方法上,考虑学生从基础课到专业课的认识规律,由浅入深,循序渐进,力求对基本概念及基本原理论述清楚、重点突出,使读者能较容易地掌握结构构件的力学性能及理论分析方法,对结构构件的设计计算和设计步骤力求做到具体、实用。[关键词]土木工程;混凝土;教学方法2.[书名]建筑工程制图[作者]陈文斌、章金良[作者单位]同济大学建筑制图教研室[出版社]同济大学出版社[摘要]本书在编写上力求理论联系实际,密切结合专业,图文结合,深入浅出,便于自学。主要内容有:制图规格及基本技能,视图、剖面图和断面图的画法及尺寸标注,房屋建筑施工图及结构施工图的有关内容、绘制方法与识读,建筑给水排水工程图的内容、绘制方法与识读等。在机械图部分,介绍了标准件和常用件、零件图和装配图等的画法以及机械图和房屋图在图示方式上的异同点等。本书可作为高等工业院校、电视大学、函授大学等土建专业建筑工程制图课程的教材,也可供工程技术人员参考或有关人员自学。[关键词]房屋建筑;结构施工图;剖面图3.[书名]混凝土及砌体结构[作者]王祖华[作者单位]华南理工大学[出版社]华南理工大学出版社[摘要]本书是根据我国高等技术教育“建筑工程”专业的教学要求,同时结合国家最新颁布的《混凝土结构设计规范》(GB50010-2002)和《砌体结构设计规范》(GB-101-
安徽工程大学毕业设计(论文)5003-2001)等编写而成的。全书内容共16章,分为混凝土与砌体结构两大部分,除了绪论,材料的物理力学性能、结构构件的概率理论为基础的极限状态设计方法,以及受弯构件、轴心受力构个、偏心受力构件、受扭构件、预应力混凝土构件的受力性能要析、设计计算和构造措施外,不定期包括混凝土梁板结构设计、单层工业厂房、多层与高层房屋结构基本知识以及混合结构房屋设计等基本内容。为便于自学理解,每章后面还附有小结、思考题或习题等内容。 [关键词]结构构件;梁板结构;砌体结构4.[书名]土力学与基础工程[作者]邵全,韦敏才[作者单位]重庆大学[出版社]重庆大学出版社出版[摘要]《土力学与基础工程》是一本供土木工程专业所开设的“土力学与基础工程”课程或“土力学”和“基础工程”课程用的教科书。本书系统阐述了土的性质及工程分类、地基的应力和沉降计算、土的抗剪强度、土压力以及挡土墙和土坡稳定分析;重点讨论了浅基础、桩基础的常规设计计算;简要介绍了我国目前常用的各种软土地基处理技术;并对区域性地基、地震区地基以及滑坡等进行了讨论。本书由浅入深、概念清楚、层次分明、重点突出、理论联系实际,并适当吸取了国内外比较成熟的新理论、新技术,既可作为高等学校土木工程专业的教材,又可供土木工程(包括建筑工程、公路桥梁工程等)技术人员阅读参考。[关键词]基础工程;土压力;沉降计算;桩基础5.[书名]结构力学教程[作者]龙驭球,包世华[作者单位]清华大学[出版社]高等教育出版社[摘要]《结构力学教程(下册)》是根据教育部批准试行的《高等工业学校结构力学教学基本要求》和当前课程教学实践及土木工程学科关于教材系列的规划而编写的,可作为工业与民用建筑、土建结构、桥梁与隧道、水工结构、地下建筑、防灾减灾与防护、铁道及公路工程等专业的结构力学教材,也可供土建类其他各专业及有关工程技术人员参考使用。内容包括:绪论、平面体系的几何组成分析、静定结构的内力分析、静定结构的影响线、静定结构的位移计算、力法解超静定结构等。下册内容包括:位移法解超静定结构、渐近法和超静定结构的影响线、结构矩阵位移法、结构动力学、结构的极限荷载、弹性结构的稳定计算等。[关键词]静定结构;超静定结构;极限荷载6.[书名]计算结构力学[作者]干洪[作者单位]安徽建筑大学[出版社]合肥工业大学出版社-101-
安徽工程大学毕业设计(论文)[摘要]《计算结构力学》系统讲述了计算结构力学基础,平面、空间问题有限元法,等参数单元,混合元、杂交元与拟协调元,薄板、薄壳弯曲元,薄壁杆单元,边界元法,结构动力学问题,结构非线性问题,结构稳定性问题,断裂力学问题,流固耦合问题,基于结构分析的应用软件及计算结构力学的内容及进展。[关键词]有限元;结构动力学;非线性7.[书名]材料力学[作者]范钦珊,蔡新[作者单位]清华大学[出版社]清华大学出版社[摘要]《材料力学》是根据国家教育部高等学校工科材料力学课程(中、少学时)的基本要求编写的。全书内容包括绪论、轴向拉伸与压缩、截面图形的几何性质、扭转、弯曲内力、弯曲应力、梁的位移、应力状态分析和强度理论、组合变形、压杆的稳定性、动荷载。[关键词]拉伸;压缩;扭转;弯曲应力8.[书名]高等学校建筑工程专业毕业设计指导[作者]沈蒲生[作者单位]湖南大学[出版社]中国建筑工业出版社[摘要]本书以我国高等院校建筑工程专业本科毕业设计中广泛采用的有代表性的题目为对象,详细地介绍了其建筑、结构、地基和施工组织设计方法。全书分为多层与高层框架房屋设计、高层剪力墙结构房屋设计、高层框架-剪力墙结构房屋设计、钢网架屋盖结构体育馆设计,以及轻钢结构单层房屋设计五个部分。对每一类型的房屋都有配有一个详细的设计实例,有的例题中还针对学生在设计过程中经常了出现的错误以及评分标准作了介绍。[关键词]结构;剪力墙;框架-剪力墙9.[书名]高层结构设计[作者]赵西安[作者单位]中国建筑科学研究院[出版社]中国建筑科学研究院[摘要]《高层建筑结构设计》是在1992年出版的“多层及高层建筑结构设计”基础上修订的。本书是全国高等学校土木工程专业指导委员会的规划推荐教材之一。本书内容主要包括:高层建筑结构概述;高层建筑结构体系与布置;高层建筑结构的荷载;高层建筑结构的设计要求;框架、剪力墙、框架-剪力墙结构的近似计算方法及设计概念;钢筋混凝土框架构件设计;钢筋混凝土剪力墙构件设计;高层建筑结构的空间计算及设计概念等。[关键词]高层建筑;框架结构;钢筋混凝土10.[书名]PKPM结构设计应用[作者]张宇鑫,刘海成,张星源[作者单位]同济大学[出版社]同济大学出版社-101-
安徽工程大学毕业设计(论文)[摘要]本书是为高等院校土木工程专业建筑结构设计程序应用课程编写的教科书,重点介绍了中国建筑科学研究院PKPM系列程序(2008版)在工程中的应用,书中内容均执行最新版的国家标准和行业规范。本书共分7章,内容包括PMCAD结构平面计算机辅助设计软件、SATWE多层及高层建筑结构空间有限元分析与设计软件、绘制混凝土结构墙梁柱施工图、JCCAD基础工程计算机辅助设计软件、TAT多层及高层建筑结构三维分析与设计软件、PK框排架计算机辅助设计软件和SLABCAD复杂楼板有限元分析与设计软件。本书可作为高等院校本科土木工程专业建筑结构设计程序应用课程的教材和教学参考书,,也可作为广大土木工程设计人员的参考书。[关键词]计算机辅助;有限元分析;三维分析-101-'
您可能关注的文档
- 青岛黄金岁月商务公寓(a)给水排水工程 毕业设计说明计算书
- 西安长丰园5#商住楼设计-土木工程本科毕业设计计算书
- 综合楼框架结构 毕业设计计算书
- 建筑专业毕业设计计算书 顺风研发中心结构设计
- 30m预应力溷凝土简支t梁计算书
- 模板专项施工方案(安全性性计算书)
- 现浇箱梁贝雷支架计算书
- 天津大学土木建筑办公楼设计-毕业设计计算书
- xx办公楼 土木工程毕业设计计算书
- 毕业设计 某六层框架办公楼结构毕业设计计算书
- 土建--综合办公楼(毕业设计)某科技开发公司综合办公楼设计计算书
- 土木毕业设计办公楼计算书 广源集团办公楼设计
- 土木工程办公楼毕业设计计算书 某办公楼设计
- 土木工程办公楼毕业设计计算书 某市劳动局行政办公楼毕业设计
- 土木工程毕业设计办公楼计算书 工程大学教学楼设计
- 土木工程专业毕业设计计算书 某工矿企业行政办公大楼设计
- 毕业设计 预应力混凝土公路桥梁通用图设计成套技术35米箱计算书(26m-30度标准图)
- 道路毕业设计计算书 伊嘉公路(汤旺河至青山段)施工图设计