• 741.50 KB
  • 33页

8.7万m3d自来水厂计算书

  • 33页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'一、设计原始资料1.源水水质资料:编 号  名     称单  位 分 析 结 果 1水的嗅和味级二类水体 2浑浊度度(NTU) 3色度度 4总硬度毫克/升 5PH值 6碱度15毫克/升 7溶解性固体毫克/升 8水的温度:最高温度度     最低温度度 9细菌总数个/毫升10大肠菌群个/升2.石英砂筛分曲线:筛孔直径(毫米)0.30.40.50.60.751.01.21.5通过砂量所占的百分比(%)3045566273818893d3.厂区地形图(1:500)a=130m,b=170m,水厂所在地区为粘土地区,厂区地下水位深度4.41米,地面标高175.3m,主导风向西南风。城市自来水厂规模为8.8万m3/d。 二、设计规模与工艺流程1.设计规模城市自来水厂规模为8.7万m3/d,水厂的自用水量按日用水量的5%算,则水厂设计水量为:Q0=1.05Qd=1.05×87000=91350m3/d一级泵站、配水井、加药间、药库、加氯间、氯库、二级泵站、土建工程均一次建成。2.水厂处理工艺流程框图(构筑物):一级泵站↓配水井↓管式静态混合器←投加混凝剂(硫酸铝)↓栅条絮凝池↓斜管沉淀池↓V型滤池↓←投加消毒剂(液氯)清水池↓吸水井↓二级泵站 三、配水井设计计算1.配水井设计规模为3806.25m3/h=1.06m3/s。配水井水停留时间采用2~3min,取T=2.5min取,则配水井有效容积为W=QT=3806.25×2.5/60=168.6m3。2.进水管管径D1=1100mm,v=1.13m/s,在1.0m/s-1.2m/s范围内。进水从配水井底中心进入,经等宽度堰流入2个水斗再由管道接入2座后续处理构筑物。每个后续处理构筑物的分配水量为q=1.06/2=0.53m3/s。配水采用矩形薄壁溢流堰至配水管。3.堰上水头H:因单个出水溢流堰的流量为q=0.53m3/s=530L/s,一般大于100L/s采用矩形堰,小于100L/s采用三角堰,所以本设计采用矩形堰(堰高h取0.5m)。矩形堰的流量公式为:式中——矩形堰的流量,m3/s;——流量系数,初步设计时采用m=0.42;——堰宽,,取堰宽b=6.28m;——堰上水头,m。则有:H=0.1m4.堰顶宽度根据有关试验资料,当B/H<0.67时,属于矩形薄壁堰。取B=0.05m,这时B/H=0.5(在0~0.67范围内),所以,该堰属于矩形薄壁堰。5.配水管管径D2=900mm,v=0.84m/s,在0.8m/s-1.0m/s范围内。配水井外径为6m,内径为4m,井内有效水深H0=5.9m,考虑堰上水头和一定的保护高度,取配水井总高度为6.2m。四、混合工艺设计及计算1.混合器设计: 混合采用管式混合,设水厂进水管投药口至絮凝池的距离为50m,设计流量为Q0=1.05Qd=91350m3/d=1.06m3/s,进水管采用两条钢管,每条钢管流量为1903m3/h,直径DN900,设计流速为0.83m/s,1000i=0.899m,混合管段水头损失h=iL=50×0.899/1000=0.045m,小于管道内水头损失要求0.3-0.4m,故在进水管内安装管道混合器,本设计采用管式静态混合器。采用玻璃钢管式静态混合器2个,每个混合器处理水量为0.53m3/s,水厂进水管投药口至絮凝池的距离为10m。1.进水管流速v=0.83m/s,满足设计要求0.8-1.0m/s。2.孔板孔径d2d2/d1=0.75d1=900mm,d2=0.75×900=675mm3.孔板处流速v’=v×(d1/d2)2=0.83×(900/675)2=1.48m/s符合设计要求1.0-1.5m/s4.孔板水头损失h’=ξv’2/(2g)=2.66×1.482/(2×9.81)=0.3mH2O式中ξ为孔板阻力系数,当d2/d1=0.75时,ξ=2.665.混合时间静态混合器采用2节,混合单元数取N=2,则混合器长度:L=1.1×D×N=1.1×0.9×2=1.98m混合时间:T=L/v=1.98/0.83=2.39s1.加药间的设计计算已知计算水量Q=91350=3806.25/h混凝剂采用精制硫酸铝,混凝剂最大投药量u=30mg/L,药溶液的浓度b=10%,混凝剂每日配制次数n=3次。设计计算过程如下:2.1溶液池溶液池容积:取10溶液池设置两个,每个容积为=5。 形状采用矩形,尺寸为B×L×H=2.0×2.0×(1.25+0.3)m,超高0.3m溶液池池底设DN200的排渣管一根,溶液池采用钢筋混凝土池体,内壁衬以聚乙烯板(防腐)2.1溶解池溶解池容积:溶解池池体尺寸为B×L×H=1.0×1.5×(1.0+0.2)m(池顶高出地面0.2m)溶解池的放水时间采用t=10min,则放水流量查水力计算表得放水管管径=50mm,相应流速=1.34m/s溶解池底部设管径d=100mm排渣管一根每池设搅拌机一台,选用ZJ-700型折桨式搅拌机,功率为4KW,转速为85r/min。2.2投药管投药管流量:查表得投药管管径d=20mm,相应流速为0.31m/s2.3投药计量设备采用计量加药泵,泵型号JZ-800/10,选用3台,两用一备2.4石灰投量1)碱度为15mg/L=0.15mmol/L,市售精制硫酸铝含Al2O3约16%,投量35mg/L,石灰市售纯度为50%。2)投药量折合Al2O3为35mg/L×16%=5.6mg/L,Al2O3分子量为102,投药量相当于5.6/102=0.055mmol/L,剩余碱度取0.385mmol/L,则[CaO]=3×0.055-0.15+0.385=0.4mmol/L。CaO分子量为56,则市售石灰投量为0.4×56/0.5=44.8mg/L 1.药剂仓库的计算3.1混凝剂为精制硫酸铝,每袋质量是40Kg,每袋规格为0.5m×0.4m×0.2m,投药量为30mg/L,水厂设计水量为3806.25m3。药剂堆放高度为1.5m,药剂储存期为30d。3.2设计计算硫酸铝的袋数:有效堆放面积:药剂仓库与加药间应连在一起,储存量一般按最大投药期间1-2个月用量计算。仓库内应设有磅秤,并留有1.5m的过道,尽可能考虑汽车运输的方便,应有良好通风条件,并防止受潮。2.加氯间的设计计算4.1已知参数计算水量Q=87000×1.05=91350m3/d=3806.25m3/h=1.06m3/s预氯化最大投加量为1.5mg/L,清水池最大投加量为1mg/L。4.2设计计算预加氯量为:清水池加氯量:为保证氯消毒时的安全和计量正确,采用加氯机投氯,并设校核氯量的计量设备。选用LS80-3转子真空加氯机5台,3用2备。3.液氯仓库5.1已知参数水量Q=3806.25m3/h,预氯化最大投加量为1.5mg/L,清水池最大投加量为1mg/L。5.2设计计算仓库储备量按15d最大用量计算,则储备量为选用1t的氯瓶4个。 五、絮凝工艺:栅条絮凝池的设计与计算1、设计参数絮凝池分两组,每组2个,则每个池的设计水量为22837.5m3/d絮凝时间:t=12min絮凝池分三段:前段放密栅条,过栅流速v1栅=0.25m/s,竖井平均流速v1井=0.12m/s中段放疏栅条,过栅流速v2栅.=2m/s,竖井平均流速v2井.=12m/s末端不放栅条,竖井平均流速v井=12m/s2、计算2.1每个絮凝池的设计水量:Q=837.5m3/d=951.56m3/h264m3/s2.2絮凝池容积:w=Qt/60=951.56×12/60=190.312m32.3絮凝池平面面积A絮凝池池深取4.3m2.4絮凝池单个竖井的平面面积取竖井长=1.5m,宽B=1.5m,单个竖井实际平面面积=1.5×1.5=2.25m22.5竖井个数n个取n=20个2.6选用栅条选用栅条材料为钢筋混凝土,断面为矩形,厚度为50mm,宽度为50mm,预制拼装。2.7竖井内栅条的布置2.7.1.前段设置密栅后:竖井过水面积:竖井中栅条面积:=2.25-1.06=1.19单栅过水断面面积:=1.5×0.05=0.075 所需栅条数为:根取=16根两边靠池壁各放置栅条1根,中间放置14根,过水缝缝隙数为15个平均过水缝宽实际过栅流速2.7.2中段设置疏栅后:竖井过水面积:竖井中栅条面积:=2.25-1.20=1.05单栅过水断面面积:=1.5×0.05=0.075所需栅条数为:根取=14根两边靠池壁各放置栅条1根,中间放置12根,过水缝缝隙数为13个平均过水缝宽实际过栅流速2.1絮凝池总高和排泥絮凝池有效水深为4.3m,取超高0.3m,池底设泥斗及快开排泥阀排泥,泥斗深度0.60m,池总高H:H=4.3+0.3+0.60=5.2m2.2絮凝池长、宽絮凝池布置如图所示,图中各个格左下角数字为水流依次流过竖井的编号顺序,“上”“下”表水竖井隔墙的开孔位置,上孔上缘在最高水位以下,下孔下缘与排泥槽齐平,Ⅰ、Ⅱ、Ⅲ、表示每个竖井中的栅条数,单竖井池壁厚为200mm。 2.1水头损失hh-总水头损失,m;h1-每层栅条的水头损失,m;h2-每个孔洞的水头损失,m;ξ1-栅条阻力系数,前段取1.0,中段取0.9;ξ2-孔洞阻力系数,取3.0;v1-竖井过栅流速,m/s;v2-各段孔洞流速,m/s。竖井隔墙孔洞尺寸竖井编号过孔流速v(m/s)孔洞面积h(m)孔洞尺寸(宽×高)10.300.881.42×0.6220.300.881.42×0.6230.270.981.42×0.6940.241.11.42×0.7750.221.21.42×0.8560.201.321.42×0.9370.191.391.42×0.9880.191.391.42×0.9890.181.471.42×1.04100.171.551.42×1.09110.161.651.42×1.16120.151.761.42×1.24130.141.891.42×1.33140.132.031.42×1.43150.122.21.42×1.55160.112.41.42×1.69170.102.640.66×4.0第一段数据如下:a)竖井数6个,单个竖井栅条层数3层,共计18层b)ξ1=1.0c)过过栅流速v1栅=0.25m/sd)竖井隔墙6个孔洞 第二段数据如下:a)竖井数6个,单个竖井栅条层数2层,共计12层b)ξ1=0.9c)过过栅流速v2栅=0.22m/sd)竖井隔墙6个孔洞第三段计算数据如下:水流通过的孔数为52.1各段停留时间第一段t=v1/Q=1.52×4.3×6/0.264=219.886s=3.66min第二段t=v2/Q=1.52×4.3×6/0.264=219.886s=3.66min第三段t=v3/Q=1.52×4.3×8/0.264=293.182s=4.89min2.2G值当T=20℃时,u=1×10-3Pa·s第一段第二段第三段平均速度梯度,在20-70s-1之间,符合水力计算。在10000-100000之间,符合水力要求。 六、沉淀工艺:斜管沉淀池的设计与计算斜管沉淀池采用上向流式,水流从下向上流,颗粒则聚沉于众多斜管底部,而后自动滑下。原水经过絮凝池转入斜管沉淀池下部。水流自下向上流动,清水在池顶用穿孔集水管收集;污泥则在池底也用穿孔排泥管收集,排入下水道。其构造如下图所示:1.设计参数设计用两组斜管沉淀池,每组流量Q=Q0/2=45675m3/d=1903.125m3/h=0.529m3/s斜管材料采用厚0.4mm塑料板热压成正六角型管,内切圆直径d=25mm,长L=1m液面上升速度v=3mm/s颗粒沉降速度u0=0.4mm/s斜管水平倾角为6002.设计计算2.1清水区面积:A=Q/v=0.529/0.003=176.3m2采取沉淀池尺寸为9.3m×19m=176.7m22.2进水方式为使配水均匀,沉淀池进水由边长L=19m的一侧流入,该边长度与絮凝池相同。2.3清水区净出口面积在9.3m的长度中扣去无效长度后得B=9.3-1cos60°=8.8m斜管支承系统采用钢筋混凝土柱、小梁及角钢架设斜管结构系数1.03则清水区净出口面积A’=8.8×19/1.03=162.3m2 2.1池高H斜管高度h=1×sin60°=0.87m采用保护高0.3m,清水区高度采用1.0m,配水区高度采用1.3m,穿孔排泥槽高采用0.80m。有效池深H’=0.87+1.0+1.3=3.17m池子总高H=H’+0.8+0.3=4.27m2.2核算水力半径R=d/4=25/4=6.25mm=0.625cm当水温t=20℃时,水的运动粘度v=0.01cm2/s,则管内流速V=Q/(A’sin60°)=0.529/(162.3sin60°)=0.0038m/s=0.38cm/s雷诺数Re=RV/v=0.625×0.38/0.01=23.75斜管中沉淀时间T=l/v0=1000/3.8=263.16s=4.4min均符合设计要求2.3进口配水絮凝池与沉淀池之间采用穿孔布水墙,墙距进水端池壁的距离不少于1~2m孔口总面积A=0.529/0.2=2.65m²每个孔口尺寸定为ω=15cm×8cm=120cm²=0.012m²孔口数n=2.65/0.012=221个实际穿孔流速V=0.529/(221×0.012)=0.2m/s2.4集水系统集水槽个数N=16个集水槽中心距a=B/N=19/16=1.19m槽中流量q0=Q/N=0.529/16=0.033m3/s考虑池子的超载系数为20%,则槽中流量实为1.2q0=0.040m3/s槽中水深H:槽宽b=0.9q00.4=0.9×0.0400.4=0.25m起点槽中水深H1=0.75b=0.75×0.25=0.19m终点槽中水深H2=1.25b=1.25×0.25=0.31m为便于施工,槽中水深统一按H2=0.31m计槽的高度H3:集水方法采用淹没式自由跌落,淹没深度取5cm,跌落高度取5cm,槽的超高取0.15m,则集水槽总高度为H3=H2+0.05+0.05+0.15=0.56m 孔眼计算:1)所需孔眼总面积ω由得式中:q0-集水槽流量,m³/su-流量系数,取0.62h-孔口淹没水深,取0.05m所以ω=0.033/(0.62×(2×9.8×0.05)2)=0.055m22)单孔面积ω0孔眼直径采用d=30mm,则单孔面积ω0=πd2/4=3.14×0.032/4=0.00071m23)孔眼个数n=ω/ω0=0.055/0.00071=77.5个,取78个4)集水槽每边孔眼个数n’=n/2=78/2=39个5)孔眼中心距离S0=L沉/n’=20.2/39=0.518m6)落水斗:出水管直径d=200mm,出水管的喇叭口直径d=300mm2.1排泥系统采用穿孔排泥,V型槽边与水平成45°,沿池宽19m横向铺设,共设8个槽,槽高80cm排泥管上装快开闸门。七、过滤工艺:V型滤池的设计与计算本设计采用V型滤池,V型滤池在反冲洗时滤层不膨胀,在整个滤层在深度方向粒径分布基本均匀,不发生水力分级现象,滤层含污能力提高,气水反冲再加上横向表面扫洗,冲洗效果好,冲洗水量大大减少。1.设计参数:设计水量(包括5%水厂自用水量)为:Q0=91350m³/d=1.057m³/s滤速采用v=12m/h,强制滤速v、≤17m/h滤池采用单层石英砂均粒滤料,冲洗方式采用:先气冲洗,再气-水同时冲洗,最后再用水单独冲洗。1.1冲洗强度:第一步气冲冲洗强度15L/(s·m2);第二步气-水同时反冲洗,空气强度15L/(s·m2),水冲洗强度4L/(s·m2); 第三步水冲洗强度5L/(s·m2)。1.1冲洗时间:第一步气冲洗时间t气=3min第二步气-水同时反冲洗时间t气水=4min单独水冲时间t水=5min,冲洗时间共计为:t=12min=0.2h;冲洗周期T=48h,反冲洗横扫强度为20L/(s·m2)。1.设计计算:2.1池体设计:①滤池工作时间t′(式中未考虑排放初滤水)。②滤池总面积FF=Q/vt′=91350/(12×23.9)=318.5③滤池分格:为节省用地,选双格V型滤池,池底板用混凝土,单格宽B单=3.5m,长L单=11.5m,面积40m2,共四座,每座面积F=80m2,总面积320m2.④校核强制滤速:满足17m/h的要求⑤滤池的高度确定:滤池超高H6=0.3m滤层上水深H5=1.5m承托层厚度H4=0.1m滤层厚度H3=1.1m滤板厚参考滤板用0.05m厚预制板,上浇0.08m混凝土层,故取H2=0.13m滤板下布水区高度取H1=0.9m滤池的总高度为H:H=H1+H2+H3+H4+H5+H6=0.9+0.13+0.1+1.1+1.5+0.3=4.03m⑥水封井的设计:滤池采用单层加厚均粒滤料,粒径0.95-1.35mm,不均匀系数1.2-1.6。取d10=0.9,不均匀系数K60=1.2 滤料筛选曲线均粒滤料清洁滤料层的水头损失按下式计算:式中:20℃时为0.0101;所以根据经验,滤速为9-10m/h时,清洁滤料层水头损失一般为30-40cm,计算值比经验值低,取经验值的底限30cm为清洁滤料层的过滤水头损失。正常过滤时,通过长柄滤头的水头损失,忽略其他水头损失,则每次反冲洗后刚开始过滤时的水头损失为:。 为保证滤池正常过滤时池内的液面高出滤料层,水封井出水堰顶标高与滤料层相同,设计水封井平面尺寸2m×2m,堰底板比滤池底板低0.3m。水封井出水堰总高为:因为每座滤池的过滤水量:。所以水封井出水堰上水头由矩形堰的流量公式计算得:h水封=(Q单/1.84b)2/3=(0.27/(1.84×2))2/3=0.18m则反冲洗完毕,清洁滤料层过滤时滤池液面比滤料层高0.18+0.52=0.7m。2.1反冲洗管渠系统:①反冲洗水量按水洗强度最大时计算。单独水洗时反洗强度最大,为5L/(s.m2)。V型滤池反冲洗时,表面扫洗同时进行,其流量:②反冲洗配水系统的断面计算:配水干管进口流速一般≤1.5m/s,配水干管(渠)的截面积:。反冲洗配水干管选用钢管,DN600,流速为1.37m/s,1000i=3.81,反冲洗水由反洗配水干管输送到气水分配渠,由气水分配渠底侧的布水方孔配水到滤池底部布水区。反冲洗水通过配水方孔的流速按反冲洗配水支管的流速取值。配水支管或孔口的流速为1-1.5m/s左右,取。则配水支管(渠)的截面积:此即配水方孔总面积,沿渠长方向两侧各布置20个配水方孔,共40个,孔中心间距0.55m。每个孔口面积为0.4/40=0.01m2,每个孔口尺寸取0.1m×0.1m。 ①反冲洗用气量的计算:反冲洗用气流量按气冲强度最大时的空气流量计算,这时气冲的强度为15L/(s·m2)②配气系统的断面计算:配气干管(渠)进口流速一般≤5m/s,则配气干管(渠)的截面积:反冲洗配气干管用钢管,DN600,流速为4.75m/s,反冲洗用空气,由反冲洗配气干管输送至气水分配渠,由气水分配渠两侧的布气小孔到滤池底部布水区,布气小孔紧贴滤板下缘,间距与布水方孔相同,共计40个,反冲洗用空气通过配气小孔的流速按反冲洗配气支管的流速取值。反冲洗配气支管流速或孔口流速应为10m/s左右,则配气支管的截面积为:。每个布气小孔面积:孔口直径:d=(4×0.003/3.14)1/2=0.062m每孔配气量:③气水分配渠的断面设计:对气水分配渠断面面积要求的最不利条件发生在气水同时反冲洗时,亦即气水同时反冲洗时要求气水分配渠断面面积最大,因此气水分配渠的断面设计按气水同时反冲洗的情况设计,气水同时反冲洗时反冲洗水量为:Q反气水=q水f=4×80=320L/s=0.32m3/s气水同时反冲洗时,反冲洗时用空气的流量:Q反气=q气f=15×80=1200L/s=1.2m3/s气水分配渠的气水流速均应按相应的配气配水干管流速取值,则气水分配干渠的断面积:A气水=Q反气水/v水干+Q反气/v气干=0.32/1.5+1.2/5=0.45m22.1滤池管渠的布置(1)反冲洗管渠: ①气水分配渠:气水分配渠起端宽取0.4m,高取1.5m,末端宽取0.4m,高取1.0m,则起端截面积0.6m2,末端截面积0.4m2。两侧沿程各布置20个配气小孔和20个布水方孔,孔间距0.55m,共40个配气小孔和40个配水方孔。气水分配渠末端所需最小截面积0.45/40=0.01125m2<末端截面积0.4m2,满足要求。②排水集水槽:排水集水槽顶端高出滤料层顶面0.5m,则排水集水槽起端槽高:H起=H1+H2+H3+H4+0.5-1.5=0.9+0.13+1.1+0.1+0.5-1.5=1.23m排水槽末端高度为:H未=H1+H2+H3+H4+0.5-1=0.9+0.13+1.1+0.1+0.5-1=1.73m底坡:i=(1.73-1.23)/11.5=0.0435③排水集水槽排水能力校核:由矩形断面暗沟(非满流,n=0.013)计算公式校核集水槽排水能力。设集水槽超高为0.3m,则槽内水位高h排集=1.23-0.3=0.93m,槽宽b排集=0.4m湿周:X=b+2h=0.4+2×0.93=2.26m水流断面:A排集=0.4×0.93=0.372m2水力半径:R=0.372/2.26=0.165m水流速度:v=R2/3i1/2/n=0.1652/3×0.04351/2/0.013=4.83m/s过流能力:Q排集=A排集v=0.372×4.83=1.8m3/s实际过水量:Q反=Q反水+Q表水=0.4+0.16=0.56m3/s<过流能力Q排集满足要求。排水系统布置示意(2)进水总渠:①进水总渠:四座滤池,分成独立的两组,每组进水总渠过水流量按强制过滤流量计,滤速为0.8-1.2m/s,取V=1.0m/s。 强制过滤流量Q强=91350×2/3=60900m3/d=0.705m3/s进水总渠水流断面积:A总进=Q强/v=0.705m2进水总渠宽1m,高0.8m,考虑超高及施工方便,进水总渠高与配水渠高相同,故取1.0m。②每座滤池的进水孔:每座滤池由进水侧壁开3个进水孔。两侧进水孔口在反冲洗时关闭.中间进水孔孔口设手动调节闸板,在反冲洗时不关闭,供给反冲洗表扫用水。孔口面积按孔口淹没出流公式计算.其总面积按滤池强制过滤水量计,孔口两侧水位差取0.1m,中间孔面积及表面扫洗水量的计算:孔口宽B中孔=0.13m,高H中孔=1m两个侧孔口设闸门,采用橡胶囊充气阀,每个侧孔面积:A侧=(A孔-A中孔)/2=(0.63-0.14)/2=0.25m2孔口宽B侧孔=0.5m,高H侧孔=0.5m③每座滤池内设的宽顶堰:为保证进水的稳定性,进水总渠引来的浑水经过宽顶堰进入每座滤池内的配水渠,再经滤池内的配水渠分配到两侧的V型槽。宽顶堰堰宽,宽顶堰与进水总渠平行设置,与进水总渠侧壁相距0.5m。堰上水头由矩形堰的流量公式得,④每座滤池的配水渠:进入每座滤池的浑水经过宽顶堰溢流至配水渠,由配水渠两侧的进水孔进入滤池内的V型槽.滤池配水渠宽 ,渠高为1.0m,渠总长等于滤池总宽.则渠长.当渠内水深时,流速(进来的浑水由分配渠中段向渠两侧进水孔流去,每侧流量为):基本满足滤池进水管渠流速在0.8-1.2m/s的要求。⑤配水渠过水能力校核:配水渠的水力半径:配水渠的水力坡降:渠内水面降落量:因为配水渠最高水位(渠高)所以配水渠的过水能力满足要求(3)V型槽的设计:V型槽槽底设表扫水出水孔,直径取dv孔=0.025m,间隔0.15m,每槽共计80个,则单侧V型槽扫水出水孔总面积A表孔=(3.14×0.0252)/4×80=0.04m2表扫水出水孔低于排水集水槽堰顶0.15m,即V型槽槽底的高度低于集水槽堰顶0.15m。据潜孔出流公式,其中Q应为单格滤池的表扫水流量。则表面扫洗时V型槽内水位高出滤池反冲洗液面反冲洗时排水集水槽的堰上水头由矩形堰的流量公式求得,其中b=L排槽=11.5m,Q为单格滤池反冲洗流量Q反单=Q反/2=0.56/2=0.28m3/s 所以V型槽倾角45°,垂直高度1m,壁厚0.05m反冲洗时V型槽顶高出滤池内液面的高度为:1-0.15-h排槽=1-0.15-0.06=0.79m反冲洗时V型槽顶高出槽内液面的高度为:1-0.15-h排槽-v液=1-0.15-0.06-0.28=0.51m(4)冲洗水的供应:可选用冲洗水泵或冲洗水箱供水,本设计采用冲洗水泵。①冲洗水泵到滤池配水系统的管路水头损失反洗配水干管用钢管,DN600,管内流速为1.37m/s,1000i=3.81m,布置管长总计为50m。则反冲洗总管的沿程水头损失△hf=0.00381×50=0.191m主要配件及局部阻力系数见下表:配件名称数量/个局部阻力系数90º弯头2DN600闸阀2等径四通28.34△hf=ξv2/(2g)=8.34×1.372/(2×9.81)=0.80m则冲洗水泵到滤池配水系统的管路损失:△h1=△hf+△hf=0.191+0.80=0.991m②清水池最低水位与排水槽堰顶的高差③滤池配水系统的水头损失(a)气水分配渠的水头损失按最不利条件,即气水同时反冲洗时计算。此 时渠上部是空气,下部是反冲洗水,按矩形暗管(非满流,n=0.013)近似计算。气水同时反冲洗时,则气水分配渠内的水面高为:h反水=Q反气水/(v水干b气水)=0.4/(1.5×0.4)=0.53m水力半径:R反水=b气水h气水/(2h气水+b气水)=0.4×0.53/(2×0.53+0.4)=0.15m水力坡降:渠内的水头损失:△h反水=i反水l反水=0.005×11.5=0.058m(b)气水分配干渠底部配水方孔水头损失气水分配干渠底部配水方孔水头损失按孔口淹没出流公式,计算。其中为,A为配水方孔的总面积。由反冲洗配水系统的断面计算部分内容可知,配水方孔的实际总面积为A方孔=0.4m2。则△h方孔=(0.34/(0.8×0.4))2/2g=0.058m(c)查手册,反洗水经过滤头的水头损失△h滤≤0.22m(d)气水同时通过滤头时增加的水头损失△h增气水同时反冲洗时气水比,长柄滤头配气系统的滤帽缝隙总面积与滤池过滤总面积之比约为1.25%,则长柄滤头中的水流速度:v柄=Q反气水/(1.25%f)=0.32/(1.25%×80)=0.32m/s通过滤头时增加的水头损失:则滤池配水系统的水头损失△h2:△h2=△h反水+△h方孔+△h滤+△h增=0.058+0.058+0.22+0.067=0.4m④砂滤层的水头损失 滤料为石英砂,容重,水所谓容重为,石英砂滤料膨胀前的孔隙率,滤料层膨胀前的厚度。则滤料层的水头损失:⑤富裕水头△h4取1.5m。则反冲洗水泵的最小扬程为:H水泵=H0+△h1+△h2+△h3+△h4=5+0.991+0.4+0.97+1.5=8.86m选四台250S14单级双吸离心泵,三用一备。扬程为11米时,每台泵的流量为576m3/h。(5)反洗空气的供给①长柄滤头的气压损失气水同时反冲洗时,反冲洗用空气流量Q反气=1.2m3/s。长柄滤头采用网状布置,约55个/,则每座滤池共计安装长柄滤头每个滤头的通气量:1.2×1000/4620=0.26L/s根据厂家提供的数据,在该气体流量下的压力损失最大为:②气水分配渠配气小孔的气压损失反冲洗时气体通过配气小孔的流速v气孔=Q气孔/A气孔=0.03/0.003=10m/s压力损失按孔口出流公式计算式中:-孔口流量系数,=0.6;-孔口面积,;-压力损失,mm水柱;-重力加速度,; -气体流量,;-水的相对密度,1。则气水分配渠配气小孔的气压损失=1082/(2×36002×0.62×0.0032×9.8)=14.2mmH2O③配气管道的总压力损失(a)配气管道的沿程压力损失反冲洗空气流量1.2m3/s,配气干管用DN600钢管,流速4.75m/s,满足配气干管(渠)流速为为5m/s左右的条件。反冲洗空气管总长为50m,气水分配渠内的压力损失忽略不计。反冲洗管道内的空气气压计算公式式中,-空气压力,kPa;-长柄滤头距反冲洗水面的高度,m,。则反冲洗时空气管内的气体压力空气温度按30℃考虑,查表,空气管道的摩阻为。则配气管道沿程压力损失为(b)配气管道的局部压力损失主要配件及长度换算系数见下表配件名称数量/个长度换算系数KDN60090º弯头4DN600闸阀3等径三通26.21当量长度的换算公式: 式中:-管道当量长度,m;-管径,m;-长度换算系数。空气管配件换算长度则局部压力损失(c)配气管道的总压力损失:(d)气水分配室中的冲洗水水压P水压=(H水泵-△h1-△h反水-△h方孔)×9.8=(8.86-0.991-0.53-0.058)×9.81=71.4kPa本系统采用气水同时反冲洗,对气压的要求最不利情况发生在气水同时反冲洗时。此时要求鼓风机或贮气罐调压阀出口的静压为:式中-输气管道的压力总损失,kPa;-配气系统的压力损失,kPa,本设计;-气水冲洗室中的冲洗水水压,kPa;-富余压力,4.9kPa。所以,鼓风机或储气罐调压阀出口的静压为:P出口=+++=2.32+3.14+71.4+4.9=81.76kPa(e)设备选型根据气水同时反冲洗时反冲洗系统对空气的压力、风压要求选C90-1.5型离心鼓风机2台,一用一备。风量为90,风压为100kPa,电动机功率为110kw。 (6)回收水池及回收水泵将滤池反冲洗排水集中排入回收水池,经回收泵送回原水配水井中再次进行处理。(a)回收水池回收水池容积为:W=Q反气水×t反气水+Q反水×t反水+Q表水×t=0.32×4×60+0.4×5×60+0.16×12×60=312m3回收水池尺寸:水池有效水深采用3.5m,超高0.35m,池长为10m,池宽为10m。(B)回收水泵设水泵工作时间为1h,则水泵的流量为:q=W/t=312/1=312m3/h水泵的扬程经粗略计算,确定为左右,选泵的型号为,两用一备。回收水泵房建于回收水池上。八、清水池设计1.清水池尺寸设计:清水池调节容积取设计水量的20%,则容积为:W=20%Q=0.1×91350=18270m3,设计两个,相互联通,每个清水池的为9135m3,有效水深取4m,超高0.5m,即清水池高度为4.5m,单个面积为2284m2,采用矩形平面布置。尺寸为:长×宽×高=76m×30m×(4+0.5)m2.进水管设计每条进水管流量:Q进=91350/(2×24×3600)=0.529m3/s滤池到清水池之间的连接管设计流速为0.8-1.2m/s,采用1.0m/s。进水管管径取800mm3.出水管设计Q出=6%Q=6%×91350/(2×3600)=0.76m3/s流速取:v出=1m/s 出水管管径取1000mm1.溢水管D溢=D进=800mm,管端为喇叭口,管上不设阀门,为了防止爬虫等进入,设网罩。2.排水管按2h内排空,按经验值取300mm,便于排空清水池,采用2%坡度并设排水集水坑。3.通气孔及检修孔通气孔共6个,分3排布置,每排2个。通气孔池外高度布置有参差,分别采用高出地面9.0米和1.4米,以利用空气自然对流。检修孔设3个,池的进水管、出水管、溢流管附近各设置一个。孔的直径为1600毫米,孔顶设防雨盖板。4.导流墙池内设置导流墙的目的是为了避免池内水的短流和满足加氯后的接触时间的需要。为清洗水池时的排水方便,在导流墙底部隔一定距离设置流孔,流水孔的底缘与池底相平,孔高150毫米,宽300毫米。九、净水厂总体布置设计计算1.工艺流程布置设计净水厂工艺流程布置时必须考虑下列主要原则:(1)流程力求最短,避免迂回重复,使净水过程中的水头损失最小。构筑物应尽量靠近,即沉淀池应尽量紧靠滤池,二级泵站尽量靠近清水池,但各构筑物之间应留出必要的施工和检修间距。(2)构筑物布置应注意朝向和风向。净水构筑物一般无朝向要求,但滤池的操作廊、二级泵站、加药间、化验室、检修间、办公楼等则有朝向要求,尤其散发大量热量的二级泵房对朝向和通风的要求更应注意,布置时应使符合当地最佳方位,尽量接近南北向布置。(3)考虑近远期协调。在流程布置时既要有近期的完整性,又要求有分期的协调性,布置时应避免近期占地过早过大。 本设计水厂常规处理构筑物的流程布置采用常见的直线型布置,依次为配水井、管式静态混合器、栅条絮凝斜管沉淀池、V型滤池、清水池。从进水到出水整个流程呈直线,这种布置具有生产管线短、管理方便、有利于日后逐组扩建等优点。1.平面布置设计当水厂的主要构筑物的流程布置确定以后,即可进行整个水厂的总平面设计,将各项生产和辅助设施进行组合布置。本设计本着按照功能分区集中,因地制宜,节约用地的原则,同时考虑物料运输、施工要求以及远期扩建等因素来进行水厂的总平面设计。将综合楼、传达室设置在进门附近,便于外来人员的联系,使生产系统少受外来干扰。将常规处理构筑物与水厂排泥水处理构筑物分开。这样便于管理。远期预留地作为绿化用地。水厂平面布置示意详见净水厂平面及净水构筑物高程布置图。十、水厂管线设计厂区管线一般包括:给水管线、排水(泥)管线、加药和厂内自用水管线、动力电缆、控制电缆等。后两者不属于本设计的设计范畴。1.给水管线给水管线包括原水管线、沉淀水管线、清水管线和排泥管线。给水管道采用钢管,布置方式为埋地式。2.厂内排水厂内生活污水与雨水采用分流制,雨水就近排入水体;污水排入城市下水道。沉淀池和絮凝池排泥水经排泥槽汇集排入排泥池进行泥处理;滤池反冲洗水集中排入回收水池,经回收泵送回原水配水井再次进行处理。3.加药管线加药、加氯管线做成浅沟敷设,上做盖板。加药管采用硬聚氯乙烯管;氯气管采用无缝钢管。4.自用水管线厂内自用水是指水厂生活用水、泵房、药间等冲洗溶解用水以及清洗水池用水。厂内自用水均单独成为管系,自二级泵房出水管接出。 十一、高程布置设计1.水头损失计算在处理工艺流程中,各构筑物之间水流应为重力流。两构筑物之间水面高差即为流程中的水头损失,包括构筑物本身、连接管道、计量设备等水头损失在内。水头损失应通过计算确定,并留有余地。1.1处理构筑物水头损失处理构筑物中的水头损失与构筑物的型式和构造有关,具体根据设计手册第3册表15-13(P866)进行估算估算结果如下表所示:构筑物名称水头损失(m)配水井0.12管式静态混合器0.4栅条絮凝池0.5沉淀池0.3V型滤池2.51.2连接管线水头损失连接管线水头损失(包括沿程和局部)应通过水力计算确定计算常用的公式为式中—沿程水头损失,;—局部水头损失,;—单位管长的水头损失;—连通管段长度,;—局部阻力系数;—连通管中流速,;—重力加速度,。A.配水井至絮凝池连接管线水头损失配水井至絮凝池连接管采用DN900钢管,管长l=25 m,设计流速为0.83m/s,1000i=0.899,考虑浊水因素n=0.015,按n=0.013则i=0.0009×(0.015/0.013)2=0.0012则沿程损失:hf=0.03m。管路中,进口1个,局部阻力系数ξ=0.50,闸阀1个,ξ=0.06,90º弯头1个,ξ=1.05,出口1个,局部阻力系数ξ=0.04,则hj=0.059m。总水头损失:h=hf+hj=0.089m。根据设计规范,取0.1m。A.絮凝池至沉淀池水头损失絮凝池与沉淀池合建,其损失取0.1m。B.沉淀池至V型滤池连接管线水头损失沉淀池至V型滤池连接管采用DN900钢管,管长l=10m,设计流速为0.83m/s,1000i=0.899,考虑浊水因素n=0.015,则i=0.0009×(0.015/0.013)2=0.0012则沿程损失:hf=0.012m管路中,进口1个,局部阻力系数ξ=0.50,闸阀1个,ξ=0.06,出口1个,局部阻力系数ξ=0.04,则hj=0.022m。总水头损失:h=hf+hj=0.034m根据设计规范,取0.3m。C.V型滤池至清水池连接管线水头损失V型滤池至清水池连接管采用DN800钢管,管长l=78m,设计流速为1.06m/s,1000i=1.65,则hf=0.129m。管路中,进口1个,局部阻力系数ξ=0.50,闸阀2个,ξ=0.06,90º弯头3个,ξ=1.05,出口1个,局部阻力系数ξ=0.04,hj=0.218m。h=hf+hj=0.34m。根据设计规范,取0.3m。D.清水池至吸水井连接管线水头损失清水池至吸水井连接管采用DN600钢管,管长L=10m,i=0.00748,则hf=0.07m管路中,进口1个,局部阻力系数ξ=0.75;出口1个,局部阻力系数ξ=1则hj=0.32m总水头损失:h=hf+hj=0.4m1.处理构筑物高程确定当各项水头损失确定以后,便可进行构筑物的高程布置。净水构筑的高程布置采用目前常用的高架式布置形式,因为高架式布置时,主要净水构筑物池底埋设地面下较浅,构筑物大部分高出地面,从而造价较低。 水厂地面标高为180.6m,各净水构筑物水位标高由计算确定计算结果如下表所示名称水头损失(m)水位标高(m)连接管段构筑物沿程及局部构筑物配水井0.12185.22配水井絮凝池0.1管式混合器0.4絮凝池0.5184.6絮凝池至沉淀池0.1沉淀池0.3184.0沉淀池至V型滤池0.3V型滤池2.5183.4V型滤池到清水池0.3清水池180.6清水池到吸水井0.4吸水井180.2十二、参考资料1《给水排水设计手册第1册常用资料》 中国市政工程西南设计研究院主编中国建筑工业出版社 2《给水排水设计手册第3册城镇给水》 上海市政工程设计研究院主编中国建筑工业出版社 3《给水排水设计手册第11册常用设备》 中国市政工程西北研究设计院主编中国建筑工业出版社 4《生活饮用水卫生标准》GB5749-2006 5《地表水环境质量标准》GHZB1-1999 6《给水排水制图标准》中华人民共和国建设部主编2001 7《给水工程》严熙世范瑾初主编中国建筑工业出版社第四版 设计总结在本周的管道课程设计实训中,绘图技巧在此次实训中得到进一步的提高,经过多次计算,专业知识更加牢固。这一周的确很疲劳,但感觉过得很充实。 过程是辛苦的,但是凭借着自己的努力和同学们,老师的指导,才得出设计结果后,感觉是痛快的,因为能将自己一个学期的努力实实在在地应用起来了,知道做工程的艰难和自己的不足。通过本次设计我也发现自己对CAD等与自身专业相关的软件的不熟悉。在日后学习中,不紧要注重课本知识,更重要要联系实际,去运用,去分析,去思考。在这次课程设计的过程中,我凭借着自己的努力和同学们,张刚老师的指导,才得出设计结果,如有错漏,请原谅。 给水处理厂课程设计学校:广州大学学院:土木工程学院专业:给水排水工程08级姓名:陈文杰学号:0817040065指导老师:张立秋'