• 6.08 MB
  • 102页

沈阳市锦绣家园住宅楼设计——建筑与结构设计 毕业设计计算书

  • 102页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'前言土建类本科土木工程专业毕业设计是大学教学计划的最后一个重要环节,是学生综合素质与工程实践能力培养效果的全面检验。毕业设计的目的是培养学生综合应用所学基础课、专业课知识及相应技能的能力,解决土木工程设计问题的综合能力和创新能力,提高学生的综合素质和分析、处理问题的能力。本毕业设计题目为《朝阳市联合中学教学楼设计——建筑与结构设计》。在进行建筑方案设计前,我温习了《房屋建筑学》、《结构力学》、《钢筋混凝土结构设计原理》、《建筑结构抗震设计》、《土力学地基基础》等专业课程,并且阅读了《抗震规范》、《混凝土规范》、《荷载规范》等相关规范。在这次设计中,我尽量全面综合运用所学的基本理论、专业知识和基本技能以及实习时所见所闻的积累,进行建筑与结构设计并绘制施工图纸。在设计期间,得到了指导老师的热情指导及审批指正,使我圆满的完成了毕业设计任务,在此表示衷心的感谢。毕业设计的四个月里,在指导老师的热情帮助下,经过资料查阅、设计计算、计算说明撰写以及外文的翻译,加深了对新规范、规程、手册等相关内容的理解。巩固了专业知识、提高了综合分析、解决问题的能力。熟练掌握了AutoCAD、天正等绘图软件,从而从不同方面达到了毕业设计的目的与要求。框架结构设计的计算工作量很大,并且在计算过程中以手算为主,由于自己的知识结构还不够全面,在设计计算过程中难免有不妥和疏忽之处。101 1工程概况1.1设计基本资料该住宅(辽宁省沈阳市锦绣家园)为多层住宅,是钢筋混凝土框架结构,共六层,总建筑面积为5268.58㎡,呈一字型,宽度为12.3m,长度为71.39m,符合抗震规范要求。建筑方案确定,房间分为大、中户型。大户型房间为三室一厅一卫,大卧室尺寸4.2×4.8m,小卧室尺寸2.7×4.8m,厨房、餐厅为一室,尺寸4.2×4.8m,客厅尺寸4.2×4.8m,卫生间尺寸3.0×2.7m。小户型房间为两室一厅一卫,卧室尺寸3.3×4.8m,厨房、餐厅为一室,尺寸为3.3×4.8m,客厅为3.3×4.8m,卫生间尺寸2.1×2.7m。框架柱网3.3×4.8m、2.7×4.8m、4.2×4.8m,钢筋混凝土均采用现浇。本住宅地处沈阳市区内,地势较平坦,为沈阳市的中心地带。属寒温带大陆季风性气候,年平均气温12℃,基本风压取0.5kN/㎡,地面粗糙度为C类。设防烈度为7度,即基本地震加速度取值为0.1g。水平地震影响系数最大值,。根据烈度、结构类型和房屋高度,设计地震分组为第二组,地下水类型为上层滞水,水量不大,由水分析结果可见,地下水对钢筋和混凝土无腐蚀性。标准冻土深度为1.48m。根据勘察结果判定场地土为中软场土地,Ⅱ类建筑场地,地形较平坦,丙类建筑。图1-1建筑平面设计Figure1-1architecturalgraphicdesign101 2建筑设计2.1概述2.1.1设计依据本工程根据辽宁工程技术大学建筑工程学院土木工程专业毕业设计任务书的民用建筑——混凝土结构设计进行设计。2.2建筑平面设计2.2.1使用部分的设计⑴主要使用房间:卧室、客厅、厨房+餐厅根据使用房间平面设计的要求,本设计大户型卧室尺寸分为4.2×4.8m,2.7×4.8m,客厅尺寸为4.2×4.8m,厨房+餐厅尺寸4.2×4.8m;小户型卧室尺寸3.3×4.8m,客厅尺寸为3.3×4.8m,厨房+餐厅尺寸3.3×4.8m,形状均为矩形。⑵辅助使用房间:卫生间根据使用房间平面设计的要求,本设计大户型卫生间尺寸为3.0×2.7m,小户型卫生间尺寸为2.1×2.7m。卫生间设备主要有坐式大便器、洗手盆、淋浴器。2.2.2交通联系部分的设计楼梯:本设计楼梯形式为双跑楼梯,踏步宽280mm,高175mm,共16阶,一层长跑10阶,短跑6阶,其它层每跑各8阶。2.3建筑剖面设计2.3.1房屋的高度和剖面形状的确定建筑剖面图是表示建筑物在垂直方向房屋各部分的组合关系。根据设计任务书的要求,本设计标准层层高2.8米,由于采光通风的要求,室内单侧采光,采用塑钢窗落地窗,门高2100mm。101 2.3.2房屋层数的确定根据任务书的要求,该住宅为6层,总高度为17.75m。2.4建筑立面设计2.4.1体型设计体型和立面是建筑统一体的相互联系不可分割的两个方面,在建筑外形设计中,可以说体型是建筑的雏形,而立面设计则是建筑物体型的进一步深化,因此将二者作为一个有机的整体考虑才能获得完美的建筑形象。2.4.2立面装饰一栋建筑物的体型和立面最终是以它们的形状、材料质感和色彩等多方面的综合,给人们留下一个完整、深刻的外观形象。2.5建筑构造概论2.5.1墙体构造设计本住宅设计中的框架外填充墙墙厚390mm,采用混凝土空心小砌块(390×190×190)、11.8kN/㎡,内墙墙厚250mm,采用水泥空心砖(300×250×110)、10.3kN/㎡。墙面装饰采用抹灰,外墙采用10mm厚1:3水泥砂浆打底、10mm厚1:2.5水泥砂浆抹面,用白水泥砂浆粉刷墙面,内墙采用15mm厚1:3水泥砂浆打底、10mm厚1:2水泥砂浆抹面,喷内墙涂料。2.5.2楼板层设计楼面是房屋建筑中水平承重构件,本住宅设计中采用现浇钢筋混凝土楼板,板厚为100mm,其中具体做法如下:木地板25mm泵龙骨50×50@400玻璃棉快80×80@1500钢筋混凝土楼板100mm厚101 2.5.3地坪构造设计,具体做法如下:木地板20mm泵龙骨50×50@400玻璃棉快80×80@1500钢筋混凝土楼板100mm厚10mm厚C15细石混凝土垫层素土夯实2.5.4上人屋面构造设计30mm细石混凝土保护层高聚物改性沥青防水卷材(八层做法,三毡四油铺小石子)20mm厚1:3水泥蛭石砂浆保温层(兼找坡)40mm厚1:8水泥膨胀珍珠岩20mm厚1:3水泥砂浆找平100mm厚钢筋混凝土楼板20mm厚板下混合砂浆抹面2.5.5散水构造设计15mm厚1:2.5水泥砂浆抹面70mm厚C10混凝土素土夯实(设置3%的排水坡)2.5.6墙身防潮构造设计室内地面垫层采用100mm厚细石混凝土,防潮层设在垫层范围内,低于室内地坪60mm处,防潮层采用60mm厚的细石混凝土带,内配3根Φ6的钢筋。2.5.7勒脚构造设计为使墙角更加坚固耐久,防潮勒脚采用表面抹灰,具体做法:采用20mm厚1:3水泥砂浆抹面。2.5.8踢脚构造设计踢脚线材质采用木质踢脚线,高度为100mm。101 2.5.9楼梯构造设计人造大理石面层板底20厚纸筋抹灰扶手采用900高白钢扶手101 3结构设计3.1结构布置及计算简图根据该房屋的使用功能及建筑设计的要求,该住宅主体结构共六层,层高为2.8m,共17.75m,室内外高差0.45m。框架结构计算简图如图3-1.梁截面高度按梁跨度的1/121/8估算,混凝土强度等级采用C35(,)。梁尺寸选取:由挠度、烈度控制h=(1/121/8)L;b=(1/31/2)h故:纵向框架梁截面尺寸:横向框架梁截面尺寸:过道梁截面尺寸:图3-1框架结构计算简图DiagramofFigure3-1framestructurecalculation101 图3-2结构平面布置图Figure3-2structureofafloorplan柱截面尺寸可根据公式、估算。由于本框架结构的抗震等级为三级,其轴压比限值,各层的重力代表值近似取13kN/m²,由结构平面布置图可知边柱及中柱的负荷面积分别为4.2×2.4m²和4.2×3.75m,则柱截面面积为:边柱:中柱:取柱截面为正方形,则边柱和中柱截面边长分别为261mm和320mm。基础采用桩基础,底层柱高度从基础顶面取至一层板底。101 4重力荷载计算4.1屋面及楼面的永久荷载和可变荷载计算4.1.1永久荷载屋面(上人):30厚细石混凝土保护层0.3×22=0.66高聚物改性沥青防水卷材(八层做法,三毡四油铺小石子,先刷冷底子油一道)0.420mm厚1:3水泥蛭石砂浆保温层(兼找坡)6×0.02=0.1240mm厚1:8水泥膨胀珍珠岩0.04×10=0.420mm厚1:3水泥砂浆找平20×0.02=0.4100mm厚钢筋混凝土楼板25×0.1=2.520mm厚板下混合砂浆抹面17×0.02=0.34合计:4.82屋面恒载标准值为870.84×4.82=4197.52~6层楼面:硬木地板25mm0.025×0.2=0.005100厚现浇钢筋混凝土楼板25×0.1=2.5合计2.505楼面恒载标准值870.84×2.505=2181.54.1.2可变荷载上人屋面均布活荷载标准值2.0厨房+餐厅4.0浴室+厕所2.0101 楼梯2.0阳台2.5风压0.55雪压0.5卧室2.0客厅2.04.2梁、柱、墙、窗、门重力荷载计算4.2.1梁、柱重力荷载标准值(1)横梁自重:0.25×0.5×25=3.1粉刷:0.02×(0.5-0.1)×2×17=0.272合计:3.372纵梁自重:0.25×0.5×25=3.1粉刷:0.02×(0.5-0.1)×2×17=0.272合计:3.372过道梁自重:0.25×0.3×25=1.88粉刷:0.02×(0.3-0.1)×2×17=0.136合计:2.016(2)柱:自重:0.4×0.4×25=4粉刷:0.02×2.8×4×17=3.8合计:7.84.2.2墙、窗、门重力荷载标准值(1)墙:外墙自重:0.39×11.8=4.602抹面:0.045×20=0.9合计:5.502内墙自重:0.25×10.3=2.575101 抹面:0.05×20=1.0合计:3.575女儿墙自重:0.25×10.3=2.575抹面:0.04×20=0.8合计:3.375(2)窗:0.4(3)门:木门:0.2钢门:0.44.3重力荷载代表值4.3.1顶层即第六层的重力荷载代表值屋面恒载:4197.5kN女儿墙:(71.39+12.3)×0.9×3.375=254.2kN横梁:(4.8×2×9+12.3×2+2.7)×3.372=383.4kN纵梁:71.39×2×3.372=481.5kN过道梁:2.7×8×2.016=43.5kN半层柱:44×2.8÷2×7.8=480.5kN半层外横墙:(2.8÷2-0.5)×12.3×5.502×2=121.8kN半层外纵墙:(2.8÷2-0.5)×56.39×5.502=279.2kN半层内横墙:(2.8÷2-0.5)×(4.8×2×9+2.7×3)×3.575=304.1kN半层内纵墙:(1.4-0.5)×(3.3×4+2.7×2+4.2×2)×3.575=304.1kN外墙窗洞口:-(1.4-0.5)×(2.4×6+3×8)×5.502=-190.1kN外墙窗:(1.4-0.5)×(2.4×6+3×8)×0.4=13.8kN内墙门洞口:-(2.1-2.8÷2)×0.9×14×3.575=-31.5kN内墙木门:(2.1-2.8÷2)×0.9×10×0.2=1.26kN内墙钢门:(2.1-2.8÷2)×0.9×4×0.4=1.0kN阳台:(2.8÷2×3.3×2+2.8÷2×4.2×2)×4.82=101.2kN101 合计:6528.26kN4.3.2二~五层的重力荷载代表值楼板:71.39÷2×12.3×2.505=1099.8kN横梁:(4.8×2×9+12.3×2+2.7)×3.372=383.4kN纵梁:71.39×2×3.372=481.5kN过道梁:2.7×8×2.016=43.5kN柱:2.8×44×7.8=961kN外横墙:(2.8-0.5)×12.3×2×5.502=311.3kN外纵墙:(2.8-0.5)×56.39×2×5.502=713.6kN内横墙:(2.8-0.5)×(4.8×2×9+2.7×3)×3.575=777.0kN内纵墙:(2.8-0.5)×(3.3×4+2.7×2+4.2×2)×3.575=222.0kN外墙窗洞口:-(2.8-0.5)×(2.4×6+3×8)×5.502=-485.9kN外墙窗:(2.8-0.5)×(2.4×6+3×8)×0.4=35.3kN内墙门洞口:-2.1×0.9×14×3.575=-94.6kN内墙木门:2.1×0.9×10×0.2=3.78kN内墙钢门:2.1×0.9×4×0.4=3.02kN阳台:2.8×2×(3.3+4.2)×2.505=105.2kN合计:4559.9kN4.3.3底层的重力荷载代表值楼板:1099.8kN横梁:383.4kN纵梁:481.5kN过道梁:43.5kN柱:961kN外横墙:311.3kN外纵墙:713.6kN内横墙:777.0kN内纵墙:222.0kN外墙窗洞口:-485.9kN101 外墙窗:35.3kN外墙门洞口:-(2.1-2.8÷2-0.45)×2.7×5.502=-3.7kN外墙门:(2.1-2.8÷2-0.45)×2.7×0.4=0.27kN内墙门洞口:-94.6kN内墙木门:3.78kN内墙钢门:3.02kN阳台:105.2kN合计:4556.47kN综上有:恒载+0.5×活载:图4-1质点重力荷载值Figure4-1Thequalitiesorderthegravitylotustocarrythevalue101 5框架侧移刚度计算5.1横向框架梁柱侧移刚度计算5.1.1梁线刚度梁线刚度计算梁柱混凝土标号均为,。在框架结构中,现浇楼面或预制楼板但只有现浇层的楼面,可以作为梁的有效翼缘,增大梁的有效刚度,减少框架侧移。考虑这一有利作用,在计算梁的截面惯性矩时,对现浇楼面的边框架梁取,对中框架梁取,梁的线刚度ib=EcIB/l。表5-1横梁线刚度计算表Table5-1FrameBeamStiffnessCalculation类别边框梁中框梁边横梁3.151042505002.610948003.91092.610102.610103.41010过道梁3.151042503000.5610927001.121091.310100.9810101.310105.1.2柱的线刚度柱的线刚度,其中为柱的截面惯性矩,h为框架柱的计算高度。表5-2柱的线刚度计算表Table5-2StiffnessCalculationofframecolumn层次137503.151044004002.131091.7910102~628003.151044004002.131092.41010101 5.1.3计算边框架柱的侧移刚度柱的侧移刚度D计算公式:式中为柱侧移刚度修正系数,为梁柱线刚度比。对于一般层:对于底层:表5-3边框架柱侧移刚度D计算表Table5-3sideframecolumnlateralstiffness层次层高(m)柱根数N/mm13.75边柱41.4530.566864672772中柱42.00.62595472~62.8边柱40.5420.213782471264中柱40.7460.27299925.1.4中框架柱表5-4中框架柱侧移刚度D计算表Table5-4Columnslateralstiffness层次层高(m)柱根数N/mm13.75边柱181.8990.6159394354960中柱182.6260.676103262~62.8边柱180.7080.2619588390132中柱180.9790.329120865.1.5层间侧移刚度计算101 将上述不同层框架侧移刚度相加,即得框架各层层间侧移刚度ΣDi表5-5框架层间侧移刚度Table5-5lateralstiffnessbetweenlayers层次边框中框层间1727723549604277322~671264390132461396由表可知,>0.7,故该框架为规则框架,满足竖向规划建筑的要求。5.2横向水平地震作用下框架结构的内力和侧移计算5.2.1横向自振周期计算对于质量和刚度沿高度分布比较均匀的框架结构,基本自振周期可按下式来计算:式中为结构基本自振周期考虑非承重砖墙影响的折减系数,对于框架结构取0.6~0.7,这里取0.7。表5-6横向框架顶点位移计算表Tab5-6Theimaginationdisplacementofthesummitpinnacleofthestructureiscalculated层数67077.17077.14613960.01530.260855027.412104.54613960.02620.245545027.417131.94613960.03710.219335027.422159.34613960.04800.182225027.427186.44613960.05890.134215023.9832210.684277320.07530.0753s5.2.2水平地震作用及楼层地震剪力计算101 本设计中,建筑结构主体高度小于40m,质量和刚度沿高度分布比较均匀,变形以剪切为主,因此可用底部剪力法来计算水平地震作用。在Ⅱ类场地,7度近震区,结构的特征周期s,地震影响系数。结构总水平地震作用标准值由式计算,即:=0.55×27379.1=1505.85由于1.4=1.4×0.4=0.56s<=0.61s,所以应考虑顶点附加地震作用。顶部附加地震作用系数,则。各质点的水平地震作用按公式计算,楼层地震剪力按公式计算。表5-7各层地震作用及楼层地震剪力Table5-7floorsandfloorearthquaketheseismicforce层次/617.757077.11256190.348461.78461.78514.955027.4751600.208276.01737.79412.155027.4610830.169224.26962.0539.355027.4470060.13172.51134.5526.555027.4329290.091120.751255.313.755023.98188400.05269.001324.3360637各质点水平地震作用及楼层地震剪力沿房屋高度的分布见下图:101 图5-1水平地震作用下的剪力图(kN)Figure5-1underhorizontalseismicsheardiagram(kN)5.2.3水平地震作用下的位移验算水平地震作用下框架结构的层间位移和顶点位移分别按公式、计算。计算过程见下表,层间弹性位移角。表5-8横向水平地震作用下的位移验算Tab5-8Displacementcheckingcomputationsunderhorizontalearthquake层数6461.784613961.012.9728001/28005737.794613961.611.9728001/17504962.054613962.0910.3728001/134031134.554613962.468.2828001/113821255.34613962.725.8228001/102911324.34277323.103.1037501/1210由表可见,最大层间弹性位移角发生在第二层,其值为1/1029<1/550,满足要求,其中限值。101 5.2.4水平地震作用下框架内力计算将层间剪力分配到该层的各个柱子,即求出柱子的剪力,再由柱子的剪力和反弯点高度来求柱上、下端的弯矩。柱端剪力按下式来计算:柱上、下端弯矩、按下式来计算:式中:—i层j柱的侧移刚度;h为该层柱的计算高度;y-反弯点高度比;—标准反弯点高比,根据上下梁的平均线刚度,和柱的相对线刚度的比值,总层数,该层位置查表确定。—上下梁的相对线刚度变化的修正值,由上下梁相对线刚度比值及查表得。—上下层层高变化的修正值,由上层层高对该层层高比值及查表。—下层层高对该层层高的比值及查表得。是根据表:倒三角形分布水平荷载下各层柱标准反弯点高度比查得。各层柱端弯矩及剪力计算:表5-9边柱(中框)Table5-9edgethecolumn(inbox)层数62.80.7080.300000.8452.80.7080.400001.1242.80.7080.4040001.1332.80.7080.450001.2622.80.7080.50001.413.751.8990.560002.1101 表5-10中柱(中框)Table5-10inthecolumn(inbox)层数62.80.9790.350000.9852.80.9790.400000.9642.80.9790.450001.2632.80.9790.450001.2622.80.9790.50001.413.752.6260.550002.06表5-11边柱(中框)Table5-11edgethecolumn(inbox)层数62.846139695880.0208461.789.610.848.0718.8452.846139695880.0208737.7915.351.1217.1925.7942.846139695880.0208962.0520.011.1322.6133.3932.846139695880.02081134.5523.601.2629.7436.3422.846139695880.02081255.326.111.436.5536.5513.7542773293940.02201324.329.132.161.1748.06表5-12中柱(中框)Table5-12inthecolumn(inbox)层数62.8461396120860.0262461.7812.100.9811.8622.0252.8461396120860.0262737.7919.330.9618.5632.4742.8461396120860.0262962.0525.211.2631.7638.8232.8461396120860.02621134.5529.731.2637.4645.7822.8461396120860.02621255.332.891.446.0546.0513.75427732103260.02411324.331.922.0665.7640.22101 梁端弯矩、剪力及柱轴力分别按下式来计算:表5-13梁端弯矩、剪力及柱轴力计算Tab5-13Squareofroofbeamend,strengthandaxisofacylindercalculated层数边梁过道梁柱轴力边柱N中柱N618.8415.934.87.246.096.092.74.51-7.242.73533.8632.074.813.7412.2612.262.79.08-20.987.39450.5841.514.819.1915.8715.872.711.76-40.1714.82358.9556.094.823.9721.4521.452.715.89-64.1422.9266.2960.414.826.423.123.12.717.11-90.5432.19184.6162.414.830.6323.8623.862.717.67-121.1745.15101 图5-2地震作用下的框架弯矩图Fig5-2Thesqareofframeunderearthquake101 图5-3地震作用下的框架梁端剪力及柱轴力图Fig5-3Thestrenghofbeamandaxisofpillarunderearthquake5.3横向风荷载作用框架结构内力和侧移计算5.3.1风荷载标准值基本风压ω0=0.5KN/m²,µs=0.8(迎风面),µs=-0.5(背风面),C类地区,H/B=17.75/12.3=1.44<1.5,且建筑高度为17.75,小于30m,所以风振系数,对于矩形平面建筑当H/B≦4时,风荷载体形系数为1.3,则垂直于建筑物表面上的风荷载按下式计算。式中,——风荷载标准值——高度Z处的风振系数——风荷载体形系数101 ——风压高度变化系数——基本风压()将风荷载换成作用于框架每层节点上的集中荷载,如下表:表5-14风荷载计算Table5-14ShearWindLoads层数Z(m)V(KN)61.01.317.750.800.59.664.834.8351.01.314.950.740511.765.8810.7141.01.312.150.740.511.765.8816.5931.01.39.350.740.511.765.8822.4721.01.36.550.740.511.765.8828.3511.01.33.750.740.513.766.8835.23其中,A为一榀框架各层节点的受风面积,取上层的一半和下层的一半之和,顶层取到女儿墙顶,底层只取到下层的一半。顶层:中间层:底层:图5-4等效节点集中风荷载计算简图(kN)Fig5-4Theconcentrationwindloadingsofequivalentnode101 5.3.2风荷载作用下的水平位移验算根据水平荷载,计算层间剪力,再依据层间侧移刚度,计算出各层的相对侧移和绝对侧移。表5-15风荷载作用下框架层间剪力及侧移计算Tab5-15Cutstrengthandsidemoveamongtheframelayerunderthefunctionofloadingofwind层次64.834.83433480.112.801/2545555.8810.71433480.252.691/1120045.8816.59433480.382.441/736835.8822.47433480.522.061/538525.8828.35433480.651.541/430816.8835.23394400.890.891/3146注:风荷载作用下框架的最大层间位移角为1/3146,小于1/550,满足规范要求。5.3.3风荷载作用下框架结构内力计算计算方法与地震作用下的相同,都采用D值法。表5-16边柱(中框)Table5-16edgethecolumn(inbox)层次y62.84.834334895881.070.7080.32.10.952.810.714334895882.370.7080.43.982.6542.816.594334895883.670.7080.4046.124.1532.822.474334895884.970.7080.457.656.2622.828.354334895886.270.7080.58.788.7813.7535.233944093948.391.8990.5613.8417.62101 表5-17中柱(中框)Table5-17inthecolumn(inbox)层次y62.84.8343348120861.350.9790.352.461.3252.810.7143348120862.990.9790.45.023.3542.816.5943348120864.630.9790.457.135.8332.822.4743348120866.260.9790.459.647.8922.828.3543348120867.90.9790.511.0611.0613.7535.2339440103269.222.6260.5515.5619.02注:表中弯矩单位为KN.M,剪力单位为KN。梁端弯矩、剪力、柱轴力计算公式与地震作用时相同。表5-18梁端弯矩、剪力及柱轴力计算Tab5-18Squareofroofbeamend,strengthandaxisofacylindercalculated层次边梁走道梁柱轴力边柱N中柱N62.11.784.80.810.680.682.70.5-0.810.3154.884.594.81.971.751.752.71.3-2.780.3648.777.584.83.412.92.92.72.15-6.190.9311.811.194.84.794.284.282.73.17-10.980.72215.0413.714.85.995.245.242.73.88-16.971.39122.6219.264.88.737.367.362.75.45-25.71.89101 图5-5风荷载作用下的框架弯矩图Fig5-5Thesqareofframeunderwindloadings101 5-6风荷载作用下的框架梁端剪力及柱轴力图Fig5-6Thestrenghofbeamandaxisofpillarunderwindloadings101 6.竖向荷载作用下框架结构的内力计算6.1横向框架内力计算6.1.1计算单元取6轴线横向框架进行计算,计算单元宽度为4.2m,如图所示,由于房间内布置有次梁,故直接传给该框架的楼面荷载如图中的水平阴影线所示,计算单元内的其余楼面荷载则通过次梁和纵向框架梁以集中力的形式传给横向框架,作用于各节点上。图6-1横向框架计算单元Fig6-1Thecomputingelementofcrossframe101 6.1.2荷载计算图6-2各层梁上作用的恒荷载Fig6-2Permanentloadofeachbeam1)恒载的计算、代表横梁自重,为均布荷载形式,对于第六层:,和分别为房间和走道板传给横梁的梯形荷载和三角形荷载:、分别为由边纵梁、中纵梁直接传给柱的荷载.它包括梁自重、楼板重和女儿墙等的自重荷载,计算过程如下:对1~5层,q1包括梁自重和其上横梁自重,为均匀荷载。其它荷载计算方法同第6层,结果为:101 ,,2)活荷载计算活荷载作用下,各层框架梁上的荷载分布如图所示:图6-3各层梁上作用的活荷载Fig6-3Theliveloadofeachbeam对于第六层,屋面活荷载为2.0,101 雪荷载取值为0.5KN/m:,对于1~5层,楼面活荷载取2.0,,2)住的自重计算:底层:29.25KN2~6层:21.84KN将上述结果汇总,见下表:表6-1横向框架恒载汇总表Tab6-1Summaryinpermanentyearofthehorizontalframe层次q1KN/mq1´KN/mq2KN/mq2´KN/mP1KNP2KN63.3722.01610.12213.01456.5353.041~56.5552.0165.2616.76440.965.61表6-2横向框架活载汇总表Tab6-2Summaryinlivingyearofthehorizontalframe层次q2,KN/mq2´,KN/mP1,KNP2,KN64.2(1.05)5.4(1.35)12.29(3.07)16.13(4.03)1~54.25.412.2916.13101 4)内力计算:梁端、柱端弯矩采用弯矩二次分配法计算,由于结构和荷载均对称,故计算时可用半框架,弯矩计算过程如下图所示,所得弯矩如下图。梁端剪力可根据梁上竖向荷载引起来的剪力与梁端弯矩引起的剪力相叠加而得。柱轴力可由梁端剪力和节点集中力叠加而得到。计算柱底轴力还需要考虑柱的自重。101 图6-4恒荷载作用下横向框架的二次分配法,kN·mFig6-4SeconddistributionFranceofthecrossframeunderdeadload101 6-5活荷载作用下横向框架的二次分配法,kN·mFig6-5SeconddistributionFranceofthecrossframeunderliveload101 图6-6竖向恒荷载作用下框架弯矩图,kN·mFig6-6Thesquareofframeunderverticaldeadload101 图6-7竖向活荷载作用下框架弯矩图,kN·mFig6-7Thesquareofframeunderverticalliveload101 表6-3恒载作用下梁端剪力(KN)Tab6-3Thestrengthofbeamendunderthepermanentload层数由荷载产生由弯矩产生总剪力柱子轴力AB跨BC跨AB跨BC跨AB跨BC跨A柱B柱VA=VBVB=VCVA=-VBVB=VCVAVBVB=VC627.0711.51-1.14025.9328.2111.5182.46104.381.25103.09525.67.29-0.36025.2425.967.29170.44192.28194.66216.5425.67.29-0.44025.1626.047.29258.34280.18308.15329.99325.67.29-0.44025.1626.047.29346.24368.08421.64443.48225.67.29-0.43025.1726.037.29434.15455.99535.12556.96125.67.29-0.57025.0326.177.29521.92551.17648.74677.99柱两侧的梁端剪力、节点集中力及柱轴力相叠加即得柱轴力。表6-4活载作用下梁端剪力(KN)Tab6-4Thestrengthofbeamendunderthelivingload层数由荷载产生由弯矩产生总剪力柱子轴力AB跨BC跨AB跨BC跨AB跨BC跨A柱B柱VA=VBVB=VCVA=-VBVB=VCVAVBVB=VCN顶=N底N顶=N底67.8756.48-0.3607.5158.2356.4819.8124.3757.8756.48-0.207.6758.0756.4827.4935.4547.8756.48-0.2107.6658.0856.4835.1543.5337.8756.48-0.2107.6658.0856.4842.8251.2627.8756.48-0.2107.6658.0856.4850.4859.717.8756.48-0.2807.5958.1556.4858.0867.86101 7.横向框架内力组合7.1结构抗震等级本框架为三级抗震等级7.2框架梁内力组合本设计考虑了四种内力组合,即、、、,此外,对于本工程,这种内力组合与考虑地震作用的组合相比一般比较小,对结构设计不起控制作用,故不予考虑。各层梁的内力组合结果见下表,表中SGk、SQk两列中的梁端弯矩M为经过调幅后的弯矩(调幅系数取0.8)。表7-1梁端控制截面内力标准值Tab7-1controlsectionofinternalforceofthegirderendsstandardvalues层次截面恒载内力活载内力柱轴线处柱边缘处柱轴线处柱边缘处115.5325.0310.5222.765.667.5954.146.8318.2626.1713.0323.96.988.1555.357.395.407.293.956.041.666.480.365.81217.5625.1712.5322.96.427.6654.896.719.6426.0314.4323.767.438.0855.817.325.077.293.616.042.496.481.195.81317.4425.1612.4122.896.387.6654.856.719.5726.0414.3623.777.418.0855.797.325.087.293.626.042.496.481.195.81101 417.4425.1612.4122.896.387.6654.856.719.5726.0414.3623.777.418.0855.797.325.087.293.626.042.496.481.195.81518.225.2413.1522.976.587.6755.053.6319.9225.9614.7323.697.528.0755.917.315.027.293.566.042.476.481.175.81613.8825.938.6923.44.697.5153.196.7519.3628.2113.7225.686.448.2354.797.478.4611.516.169.882.826.481.525.805表7-2梁端控制截面内力标准值Tab7-2controlsectionofinternalforceofthegirderendsstandardvalues层次截面风载内力地震荷载内力柱轴线处柱边缘处柱轴线处柱边缘处122.628.7320.878.7384.6130.6378.4830.6319.265.4518.175.4562.4117.6758.8817.677.365.456.275.4523.8617.6720.3317.67215.045.9913.845.9966.2926.461.0126.413.713.8812.933.8860.4117.1156.9917.115.243.884.463.8823.117.1119.6817.11311.84.7910.844.7958.9523.9754.1623.9711.193.1710.563.1756.0915.8952.9115.894.283.173.653.1721.4515.8918.2715.8948.773.418.093.4150.5819.1946.7419.197.582.157.152.1541.5111.7639.1611.762.92.152.472.1515.8711.7613.5211.76101 54.881.974.491.9733.8613.7431.1113.744.591.34.331.332.079.0830.259.081.751.31.491.312.269.0810.449.0862.10.811.940.8118.847.2417.397.241.780.51.680.515.934.5115.034.510.680.50.580.56.094.515.194.51注:在竖向荷载作用下:,在风荷载及水平地震作用下:,101 表7-3框架梁内力组合表Tab7-3Theframesetsaroofbeaminplacetheinternalforcemakesformsup层数截面内力1M-8.42-3.3120.8778.4812.02-40.5767.45-85.59-14.68-14.7462.28V22.766.838.7330.6324.9246.92-7.1560.5437.5636.87M-10.42-4.2818.1758.88-40.795.0-68.7146.1-18.35-18.5V23.97.395.4517.6744.8631.1247.678.6239.6639.03M-3.16-0.296.2720.333.74-10.3516.85-22.8-4.56-4.221.28V6.045.815.4517.677.721.44-10.428.6513.9615.38跨间32.7311.061.6811.155.3351.0945.2623.6155.2554.7629.340.670.62001.591.590.880.881.521.672M-10.02-3.91-3.9113.8461.010.49-29.7741.85-70.26-17.44-17.540.53V22.96.75.9926.428.3743.47-2.455.9537.6236.86M-11.54-4.6512.9356.99-31.43-3.42-68.0443.11-20.23-20.36V23.767.323.8817.1142.6232.8546.8710.6639.438.76M-2.89-0.954.4619.680.95-8.8816.16-29.62-4.85-4.822.73V6.045.813.8817.119.6819.46-9.7811.5113.9615.38跨间间32.7311.060.672.9454.0652.3737.331.5755.2554.7624.360.670.26001.131.130.720.721.161.17101 层数截面内力3M-9.93-3.8810.8454.16-3.15-30.4642.12-63.49-17.29-17.3538.99V22.896.74.7923.9729.8741.950.2853.2537.636.85M-11.49-4.6310.5652.91-32.93-6.32-64.0139.16-20.14-20.27V23.777.323.1715.8941.7433.7545.5410.4239.4138.77M-2.9-0.953.6518.27-0.08-9.2814.78-20.85-4.87-4.8120.87V6.045.813.1715.8910.5718.56-8.4326.6813.9615.38跨间32.7311.060.311.4353.652.8235.8333.0455.2554.7624.050.670.26001.131.130.720.721.161.174M-9.93-3.888.0946.74-6.61-2734.89-56.25-17.29-17.3534.61V22.896.73.4119.1931.6140.215.5647.9737.636.85M-11.49-4.637.1539.16-28.63-10.61-50.6125.76-20.14-20.27V23.777.322.1511.7640.4639.6940.9714.9839.4138.77M-2.9-0.952.4713.52-1.56-7.7910.14-21.63-4.87-4.8121.03V6.045.812.1511.7611.8617.28-4.5526.0213.9615.38跨间间32.7311.060.64.5453.9752.4638.8630.0155.2554.7624.70.670.26001.131.130.720.721.161.17101 层数截面内力5M-10.52-4.044.4931.11-12.06-23.3719.05-55.49-18.24-18.2831.79V22.973.631.9713.7429.6634.6210.140.4634.6432.65M-11.78-4.734.3330.25-25.55-14.64-42.2216.76-20.63-20.76V23.697.311.39.0839.283637.9317.8639.2938.66M-2.85-0.941.4910.44-2.73-6.487.19-7.19-4.79-4.7417.97V6.045.811.39.0812.9316.21-0.9119.1613.9615.38跨间32.7311.060.150.953.453.0235.3133.5655.2554.7623.940.670.26001.131.130.720.721.161.176M-6.95-2.551.9417.39-9.11-149.55-24.36-11.93-11.9142.6V23.46.750.817.2435.5637.6119.3135.3138.3437.53M-10.98-3.831.6815.03-20.12-15.89-26.263.05-18.65-18.54V25.687.470.54.5139.639.634.9930.3142.1441.27M-4.93-1.220.585.19-6.72-8.180.07-13.4-7.88-7.6237.84V9.885.810.54.5118.5519.818.0618.0219.1519.99跨间间36.3711.060.21.4657.8357.3339.1336.2960.1659.1343.310.790.26001.281.280.720.721.331.31101 表7-4横向框架A柱内力组合表Tab7-4ThecurvedsquareofhorizontalframeApostandaxlestrengthassociation层数截面内力6柱顶M13.884.692.118.8419.9225.21-3.7732.9723.4323.2232.97-3.7723.43N82.4619.810.817.24122.89124.9376.0790.19131.13126.6990.1976.07131.13柱底M-10.02-3.530.98.07-15.34-17.61-2.74-18.47-17.06-16.97-18.47-2.74-17.06N104.319.810.817.24149.1151.1495.73109.84160.62152.89109.8495.73160.625柱顶M8.23.043.9825.798.6618.69-17.4936.1514.1114.0936.15-17.4914.11N170.44427.492.7820.98235.66242.67154.99198.64257.58243.01198.64154.99257.58柱底M-8.73-3.192.6517.19-11.15-17.837.97-34.74-14.98-14.94-34.747.97-14.98N192.2827.492.7820.98261.87268.88175.96219.6287.07269.22219.6175.96287.074柱顶M8.733.196.1233.396.7822.21-24.8144.6414.9814.9444.64-24.8114.98N258.3435.156.1940.17346.5362.1223.1306.66383.91359.22306.66223.1383.91柱底M-8.73-3.194.1522.61-9.27-19.7213.6-33.43-14.98-14.94-33.4313.6-14.98N280.1835.156.1940.17363.57388.3244.07327.62413.39385.43327.62244.07413.39101 3柱顶M8.733.197.6536.344.8624.13-27.8859.6314.9814.9459.63-27.8814.98N346.2442.8210.9864.14455.61483.28286.24419.65510.24475.44419.65286.24510.24柱底M-8.64-3.166.2629.74-6.46-22.2421.12-40.74-14.82-14.94-40.7421.12-14.82N368.0842.8210.9864.14481.82509.48307.2440.62539.73501.64440.62307.2539.732柱顶M8.943.168.7836.553.6525.77-27.9148.1115.2315.1548.11-27.9115.23N434.1550.4816.9790.54563.2605.97346.85535.18636.58591.65535.18346.85636.58柱底M-10.27-3.758.7836.55-5.99-28.1126.35-49.67-17.61-17.57-49.6726.35-17.61N455.9950.4816.9713.8490.54589.41632.18367.82556.1455.97666.07617.86556.1455.97367.82666.071柱顶M5.281.9113.8448.066.3426.18-43.9955.979.049.0155.97-43.999.04N521.9258.0825.7121.2667.1731.87402.9654.94762.67707.62654.94402.9762.67柱底M-2.64-0.9617.6261.1717.82-26.5860.62-66.61-4.52-4.51-66.6160.62-4.52N551.1758.0825.7121.2702.2766.96430.98683.02802.16742.72683.02430.98802.16101 表7-5横向框架B柱内力组合表Tab7-5ThecurvedsquareofhorizontalframeBpostandaxlestrengthassociation层数截面内力6柱顶M-10.9-3.632.4622.02-20.75-14.55-32.9110.03-18.35-18.1610.03-32.91-18.35N81.2524.370.312.73127.82128.681.4386.75134.06131.61886.7581.43134.06柱底M7.92.681.3211.8614.5211.1919.88-3.2513.3513.23-3.2519.8813.35N103.0924.370.312.73154.03154.81101.09106.41163.54157.83106.41101.09163.545柱顶M-6.99-2.385.0232.47-17.71-5.06-41.6225.92-11.82-11.7225.92-41.62-11.82N194.6635.450.367.39277.81278.71196.2211.58298.24283.22211.58196.2298.24柱底M7.242.463.3518.5616.017.5727.43-11.1712.2312.13-11.1727.4312.23N21.6535.450.367.39304.01304.92217.17232.54327.73309.43232.54217.17327.734柱顶M-7.24-2.467.1338.82-20.77-2.8-48.532.24-12.23-12.1332.24-48.5-12.23N308.1543.530.914.82423.49425.76301.31332.13459.53430.72332.13301.31459.53柱底M7.242.465.8331.7619.134.4441.16-24.912.2312.13-24.941.1612.23N329.9943.530.914.82449.7451.97322.27353.1489.02456.93353.1322.27489.02101 3柱顶M-7.24-2.469.6445.78-23.930.36-55.7439.48-12.23-12.1339.48-55.74-12.23N421.6451.620.7222.9570.1571.92405.74453.37620.83578.24453.37405.74620.83柱底M7.192.447.8937.4621.641.7647.03-30.8812.1512.04-30.8847.0312.15N443.4851.620.7222.9596.31598.12426.7474.33600.99604.44474.33426.7600.992柱顶M-7.37-2.511.0646.05-25.931.94-56.1739.62-12.45-12.3439.62-56.17-12.45N535.1259.71.3932.19715.61719.12508.89575.85782.11725.72575.85508.89782.11柱底M8.412.8611.0646.0527.63-0.2457.34-86.3414.2114.1-86.3457.3414.21N556.9659.71.3932.19741.82745.33529.86596.82811.6751.93596.82529.86811.61柱顶M-7.44-1.5115.5640.22-30.448.78-49.749.7-11.55-11.0449.7-49.7-11.55N648.7467.861.8945.15861.61866.37608.41702.32943.66873.49702.32608.41943.66柱底M2.220.7619.0265.7627.59-20.3470.89-65.893.763.73-65.8970.893.76N677.9967.861.8945.15896.79901.48636.49730.4983.15908.59730.4636.49983.15101 表7-6横向框架A柱剪力组合(KN)Tab7-6ThecurvedsquareofhorizontalframeApostandaxlestrengthassociation层数内力6V-8.53-2.941.079.61-12.59-15.290.42-24.49-14.46-14.35-24.490.42-14.465V-6.05-2.232.3715.35-7.08-13.069.65-24.27-10.4-10.38-24.279.65-10.44V-6.24-2.283.6720.01-5.74-14.9917.16-29.64-10.7-10.68-29.6417.16-10.73V-6.2-2.274.9723.6-4.04-16.5618.6-33.56-10.64-10.62-33.5618.6-10.642V-6.86-2.476.2726.11-3.44-3.4420.59-37.11-11.73-11.69-37.1120.59-11.731V-2.11-0.578.3929.137.32-13.8229.75-34.63-3.42-3.33-34.6329.75-3.42101 表7-7横向框架B柱剪力组合(KN)Tab7-7ThecurvedsquareofhorizontalframeBpostandaxlestrengthassociation层数内力6V6.712.251.3512.112.599.1915.35-11.3911.3111.2-11.3915.3511.315V5.081.732.9919.3312.044.5127.42-15.38.598.52-15.327.428.594V5.171.764.6325.2114.262.5934.03-21.698.748.67-21.6934.038.743V5.151.756.2629.7316.270.538.99-26.718.78.63-26.7138.998.72V10.371.917.932.8924.84.947.89-24.7915.9115.12-24.7947.8915.911V2.580.619.2231.9215.48-7.7538.21-32.334.093.95-32.3338.214.09101 8框架结构的配筋计算8.1框架梁配筋计算8.1.1截面尺寸边跨:梁端跨中(按跨度考虑)(按梁间跨考虑)>0.1(不考虑)故取梁内纵筋选用HRB335级钢筋()下部跨中截面按单筋T形截面计算:则=1180.88大于任一层的跨中弯矩,属于第一类T形截面中跨:梁端跨中同上取梁内纵筋选用HRB335级钢筋()下部跨中截面按单筋T形截面计算:101 则=623.75大于任一层的跨中弯矩,属于第一类T形截面8.1.2材料强度混凝土等级C35,,钢筋等级:纵向受力筋HRB335,箍筋HPB235,8.1.3配筋率纵向受力筋:支座截面和中的较大值箍筋:沿梁全长:加密区:应满足规范要求8.1.4抗弯承载力计算表8-1六层框架梁纵筋Table8-1six-storyframebeamlongitudinalreinforcement计算公式边跨中跨左端跨中右端左(右)端跨中24.3660.1626.2613.41.330.0270.0020.0290.0150.0040.0270.0020.0290.0150.0040.9870.9990.9860.99250.9981774321919710实配钢筋面积612612612612612679679679679679101 表8-2五层框架梁纵筋Table8-2five-storyframebeamlongitudinalreinforcement计算公式边跨中跨左端跨中右端左(右)端跨中55.4955.2542.227.191.170.0610.010.0470.0080.00040.0630.010.0480.0080.00040.9690.9950.9760.9960.9998411398310528实配钢筋面积612612612612612679679679679679表8-3四层框架梁纵筋Table8-3four-framebeamlongitudinalreinforcement计算公式边跨中跨左端跨中右端左(右)端跨中56.2555.2550.6121.631.170.0620.010.0560.0240.00040.0640.010.0580.0240.00040.9680.9950.9710.9880.99984173983741578实配钢筋面积612612612612612101 679679679679679表8-4三层框架梁纵筋Table8-4three-framebeamlongitudinalreinforcement计算公式边跨中跨左端跨中右端左(右)端跨中63.4955.2564.0120.851.170.070.010.070.0230.00040.0730.010.0730.0230.00040.9640.9950.9640.9890.99984723984761518实配钢筋面积612612612612612679679679679679表8-5二层框架梁纵筋Table8-5two-framebeamlongitudinalreinforcement计算公式边跨中跨左端跨中右端左(右)端跨中70.2655.2568.0429.621.170.0780.010.0750.0330.00040.0810.010.0780.0340.0004101 0.960.9950.9610.9830.99985253985082168实配钢筋面积612612612612612679679679679679表8-6一层框架梁纵筋Table8-6one-framebeamlongitudinalreinforcement计算公式边跨中跨左端跨中右端左(右)端跨中85.5955.3340.7922.81.670.0950.010.0450.0250.00050.10.010.0460.0250.00050.950.9950.9770.9880.999864639929916512实配钢筋面积6126126126126126796796796796798.1.5框架梁抗剪计算框架梁抗剪计算中,设计剪力取组合和调整剪力,计算:101 式中:;;表8-7框架梁箍筋Tab8-7Framegirderstirrup六层五层边跨中跨边跨中跨左端右端左(右)端左端右端左(右)端组合38.3442.1419.9940.4639.2919.16调整42.642.637.8431.7931.7917.97388.28388.28388.28388.28388.28388.28<0<0<0<0<0<0实配箍筋双肢8@100双肢8@100双肢8@100双肢8@100双肢8@100双肢8@100四层三层边跨中跨边跨中跨左端右端左(右)端左端右端左(右)端组合47.9740.9726.0253.2545.5426.68101 调整34.6134.6121.0338.9938.9920.87388.28388.28388.28388.28388.28388.28<0<0<0<0<0<0实配箍筋双肢8@100双肢8@100双肢8@100双肢8@100双肢8@100双肢8@100二层一层边跨中跨边跨中跨左端右端左(右)端左端右端左(右)端组合55.9546.8719.4660.5447.6728.65调整40.5340.5322.7362.2862.2821.28388.28388.28388.28388.28388.28388.28<0<0<0<0<0<0实配箍筋双肢8@100双肢8@100双肢8@100双肢8@100双肢8@100双肢8@100备注:(1)梁端加密区长度为600mm(2)梁跨中箍筋为8@2008.2框架柱配筋计算8.2.1截面尺寸8.2.2材料强度101 混凝土等级C35,,钢筋等级:纵向受力筋HRB335箍筋HPB2358.2.3框架柱配筋计算1)偏压计算公式:①大偏心受压构件()式中:为轴向力至手拉钢筋合理点的距离。②小偏心受压构件():式中:为远离轴向力一侧钢筋的应力③相对受压区高度的计算:④轴向力至受压钢筋合理点的距离的计算:式中:初始片偏心距轴向力对截面中心的偏心距附加偏心距偏心距增大系数101 其中:小偏心受压构件截面曲率修正系数偏心受压构件长细比对截面曲率的修正系数⑤最小配筋率:全截面每侧⑥抗震折减系数:顶层=0.75其他层=0.8⑦最不利内力选取原则:大偏心受压柱,弯矩尽可能大(取组合弯矩和调整弯矩的大值),轴力尽可能小;小偏压柱,弯矩尽可能大,轴力尽可能大。表8-8框架柱配筋Tab8-8framecolumnreinforcement层数柱位内力(m)(mm)(mm)(mm)(mm)ξ(mm2)实配钢筋M(kNm)N(kN)6边柱32.9790.193.520365.6385.61.006547.870.03617362017.06160.63.520106.2126.21.018288.480.019294620中柱10.0386.753.520118.7138.71.017301.090.01116362013.35163.53.52081.63101.61.023263.970.015299620101 5边柱36.15198.63.520181.9201.91.011364.210.0436962014.98287.13.52052.1872.181.032234.490.016533620中柱25.92211.63.520122.5142.51.016304.790.02839662012.23327.73.52037.3257.321.04219.610.0136086204边柱44.64306.73.520145.6165.61.014327.890.04957462014.98413.43.52036.2456.241.014218.550.016766620中柱32.24332.13.52097.07117.11.02279.410.03562062012.23489.03.52025.0145.011.051207.310.0139056203边柱59.63419.73.520142.1162.11.014324.360.06579462014.82539.73.52027.4647.461.049209.790.016997620中柱39.48453.43.52087.08107.11.022269.440.04384562012.15600.93.52020.2240.221.057202.510.01311106202边柱48.11535.23.52089.89109.91.021272.20.05399562017.61666.13.52026.4446.441.05208.760.0191231620中柱39.62575.93.52068.888.81.026251.110.043107262014.21811.63.52017.5137.511.062199.840.01614926201边柱55.97654.93.752085.46105.51.022267.780.06112256204.52802.23.75205.6325.631.09187.940.005147762049.7702.33.752070.7790.771.025253.040.0541310620101 中柱3.76983.23.75203.8223.821.097186.130.00418126202)轴心受压验算:由,查表得=2884.61>983.15验算满足要求8.2.4框架柱抗剪计算表8-9框架柱箍筋Table8-9framecolumnreinforcement六层五层边柱中柱边柱中柱上端下端上端下端上端下端上端下端组合131.13160.62134.06163.54243.01269.22298.24327.73调整24.4924.4915.3515.3524.2724.2727.4227.42494.32494.32494.32494.32494.32494.32494.32494.32<0<0<0<0<0<0<0<0四层三层边柱中柱边柱中柱上端下端上端下端上端下端上端下端组合383.91413.39459.53489.02510.24539.73620.83604.44调整29.6429.6434.0434.0433.5633.5638.9938.99494.32494.32494.32494.32494.32494.32494.32494.32<0<0<0<0<0<0<0<0二层一层边柱中柱边柱中柱上端下端上端下端上端下端上端下端101 组合636.58666.07782.11811.6762.67802.16943.66983.15调整37.1137.1147.8947.8934.6334.6338.2138.21494.32494.32494.32494.32494.32494.32494.32494.32<0<0<0<0<0<0<0<0备注:(1)由计算可知,框架柱截面抗剪均为构造配筋(2)柱加密区实配普通四肢箍筋8@100(3)柱非加密区实配普通四肢箍筋8@2009.现浇楼板设计对下图所示各区格编号,共分10类,示于图中:ABCEFGHIJKABCEF9.1荷载设计值9.1.1活荷载楼面活荷载:2.0,取活载分项系数为1.4,则厨房+餐厅:4.0,浴室+厕所、楼梯、卧室:2.0,阳台和客厅:2.5,9.1.2恒荷载101 楼面:2.505,取恒载分项系数为1.2,则故楼面:厨房+餐厅:浴室+厕所、楼梯、卧室:阳台和客厅:取:;9.2弯矩计算1)G、H、I、J、K区格:2)A区格:101 ,B区格:,C区格:,E区格:101 ,F区格:,表9-1按弹性理论设计的截面配筋Tab9-1designedbyelastictheoryreinforcementsection截面配筋实配跨中A区格805.172276@100283702.951486@100283B区格804.592016@100283702.351186@100283C区格803.451516@100283701.4706@100283101 E区格805.682496@100283704.42216@100283F区格806.052656@100283705.112566@100283G区格805.232296@100283705.232626@100283H区格805.232296@100283705.232626@100283I区格805.232296@100283705.232626@100283J区格805.232296@100283705.232626@100283K区格805.232296@100283705.232626@100283支座A-B80-0.057236@100283A-G80-0.099246@100283B-C80-0.057136@100283B-H80-0.077436@100283C-E80-0.056336@100283C-I80-0.081446@100283E-F80-0.056336@100283101 E-J80-0.066336@100283F-K80-0.077636@10028310.板式楼梯设计楼梯踏步尺寸175mm×280mm,采用C35混凝土,板采用HPB235级钢筋,梁采用HRB335级钢筋。楼梯上均布活荷载标准值为。10.1梯段板设计板式楼梯由梯段板、平台板和平台梁三种构件组成。(1)梯段板数据板倾斜角,取1m宽板带进行计算。(2)确定板厚板厚要求:,取70mm。(3)荷载计算恒荷载:20mm厚水泥砂浆面层:踏步重:混凝土斜板:板底抹灰:101 恒荷载标准值:恒荷载设计值:活荷载:活荷载标准值:2.0活荷载设计值:荷载总计:荷载设计值:(2)内力计算跨中弯矩:(3)配筋计算板保护层15mm,有效高度选配10@180,,另外每踏步配一根6分配钢筋。10.2平台板设计(1)确定板厚板厚取,板跨度,取1m宽板带进行计算。(2)荷载计算恒荷载:20mm厚水泥砂浆面层:平台板:板底抹灰:恒荷载标准值:101 恒荷载设计值:活荷载:活荷载标准值:活荷载设计值:荷载总计:荷载设计值:(3)内力计算跨中弯矩:(4)配筋计算板保护层15mm,有效高度则选配6@300,10.3平台梁设计(1)确定梁尺寸梁宽取b=200mm,高取h=350mm梁跨度取较小者(2)荷载计算梯段板传来:平台板传来:平台梁自重:平台梁粉刷重:101 荷载设计值:(3)内力计算弯矩设计值:剪力设计值:(4)配筋计算平台梁截面按倒L形计算:梁有效高度:经判断截面属于第一类T形截面选用38()可以按构造配筋,箍筋选用8@200。101 11.基础设计11.1荷载设计值1)外柱基础承受的上部荷载框架柱传来:2)内柱基础承受的上部荷载框架柱传来:该工程框架层数不多,地基土较均匀,可选择独立柱基础,取基础混凝土的强度等级为C20,查表得,;。11.2边柱独立基础的计算11.2.1确定基础底面尺寸选择基础的埋深(大于建筑物高度的1/15),地基承载力对深度修正,根据设计资料提供,基底以下为中砂,查表知承载力修正值:,。重度计算:杂填土,101 中砂则基础底面以上土的加权平均重度:(先不考虑对基础宽度进行修正)先按照中心荷载作用下计算基底面积:但考虑偏心荷载作用应力分布不均匀,故将计算出的基底面积增大1.2~1.4,取1.2。选用矩形:满足要求,地基承载力不必对宽度进行修正。11.2.2地基承载力验算基础底面的抵抗矩:基础及台阶上的土重:作用于基底中心的弯矩轴力分别为:基础底面边缘的压力设计值:101 故承载力满足要求。11.2.3基础剖面尺寸的确定采用台阶式独立柱基础。构造要求:一阶台阶宽高比,二阶台阶宽高比。阶梯形每阶高度宜为300mm~500mm,当时,采用三阶,阶梯的水平宽度和阶高尺寸均为100mm的倍数。基底垫层在底板下浇筑一层素混凝土,垫层的厚度为100mm,两边伸出基础底板宽度为100mm。初步选择基础高度,从下至上分450mm,300mm两个台阶。h0=700mm,h1=400mm。11.2.4土的净反力Fl的计算基础底面边缘的最大压力设计值:(不包括基础及回填土自重)1)基础顶抗冲切验算:2)破坏锥面上的承载力设计值[Fl]按《规范》法计算:1)变阶处抗冲切验算:101 2)破坏锥面上的承载力设计值[Fl]按《规范》法计算:11.2.5基础底面配筋计算选用HPB235钢筋,,在基础上部结构传来的荷载与土壤净反力的共同作用下,可把它倒过来视为一均部荷载作用下支承于柱上的悬臂板。基础顶截面:1)基础长边方向柱边截面的净反力:2)悬臂部分净反力平均值:3)弯矩值:变阶处截面:1)基础长边方向柱边截面的净反力:2)悬臂部分净反力平均值:101 3)弯矩值:由以上计算结果可得:比较应按配筋,实际配,。基础短边方向:因该基础受单向偏心荷载作用,所以,在基础短边的基底反力可按均匀分布计算,取,与长边配筋计算方法相同,可得Ⅱ-Ⅱ截面及Ⅳ-Ⅳ截面(边柱)的计算配筋值。由以上计算结果可得:比较,应按配筋,实际配,。11.3中柱独立基础的计算11.3.1确定基础底面尺寸选择基础的埋深(大于建筑物高度的1/15),地基承载力对深度修正(同边柱)。先按照中心荷载作用下计算基底面积:选用矩形:101 满足要求,地基承载力不必对宽度进行修正。11.3.2地基承载力验算基础底面的抵抗矩:基础及台阶上的土重:作用于基底中心的弯矩轴力分别为:基础底面边缘的压力设计值:故承载力满足要求。11.3.3基础剖面尺寸的确定采用台阶式独立柱基础。构造要求:一阶台阶宽高比,二阶台阶宽高比。阶梯形每阶高度宜为300mm~500mm,当时,采用三阶,阶梯的水平宽度和阶高尺寸均为100mm的倍数。基底垫层在底板下浇筑一层素混凝土,垫层的厚度为100mm,两边伸出基础底板为100mm.初步选择基础高度,从下至上分450mm,300mm两个台阶。h0=700mm,h1=400mm。11.3.4土的净反力Fl的计算基础底面边缘的最大压力设计值:101 (不包括基础及回填土自重)1)基础顶抗冲切验算:2)破坏锥面上的承载力设计值[Fl]按《规范》法计算:1)变阶处抗冲切验算:2)破坏锥面上的承载力设计值[Fl]按《规范》法计算:11.3.5基础底面配筋计算选用HPB235钢筋,,在基础上部结构传来的荷载与土壤净反力的共同作用下,可把它倒过来视为一均部荷载作用下支承于柱上的悬臂板。基础顶截面:1)基础长边方向柱边截面的净反力:2)悬臂部分净反力平均值:101 3)弯矩值:变阶处截面:1)基础长边方向柱边截面的净反力:2)悬臂部分净反力平均值:3)弯矩值:由以上计算结果可得:比较应按配筋,实际配,。基础短边方向:因该基础受单向偏心荷载作用,所以,在基础短边的基底反力可按均匀分布计算,取,与长边配筋计算方法相同,可得Ⅱ-Ⅱ截面及Ⅳ-Ⅳ截面(中柱)的计算配筋值。101 由以上计算结果可得:比较,应按配筋,实际配,。11.4基础梁用C30混凝土,HRB335级钢筋,梁截面取梁计算跨度:墙体计算高度:墙梁计算高度:内力臂系数:弯矩分配系数:(非承重梁)按大偏心受拉配筋:B柱:所以,按构造配筋:纵筋:318箍筋:Φ8@150。其他梁与此梁计算方法相同。101 结论本人设计的是沈阳市锦绣家园住宅楼设计——建筑与结构设计。通过指导教师的细心指导和自己翻阅规范手册的资料调研,顺利地完成了设计计算及绘图内容,通过毕业设计将所学知识做了一次全面的融会贯通,达到了理论与实际相结合的目的,并使我对土木工程专业有了更深一步的了解。通过本设计,得出结论如下:1)对五到六层建筑物结构计算中的荷载进行计算时,水平地震作用采用底部剪力法计算、竖向荷载作用采用弯矩二次分配法是可行的,其计算结果与工程实践所采用的结果基本一致。2)通过与实际工程中的施工图和计算结果对比,并参照规范的相关规定,本设计构件尺寸的选取、荷载统计分析、内力计算组合及配筋计算等结果均在合理范围之内,说明设计所采用的方法正确,计算结果准确。101 致谢经过四个多月的忙碌和工作,本次毕业设计已经接近尾声,作为一个本科生的毕业设计,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有指导老师的督促指导,想要完成这个设计是难以想象的。本论文从选题到完成,每一步都是在指导孙芳锦老师的指导下完成的,谨向孙老师表示崇高的敬意和衷心的感谢!在此次设计过程中,同时也得到了其他老师和同学的帮助,在此致以诚挚的谢意!在本次设计的编写过程中,我虽力求系统性、准确性和科学性,但由于水平有限,设计中不妥之处在所难免,恳请各位老师批评指正,这里,我要感谢辽宁工程技术大学老师们对我的培育。您们的谆谆教导使我茁壮成长,不断走向成熟,我将永远铭记这段难忘的经历!最后,衷心祝愿各位老师工作顺利!再次感谢您们!陈冲2012年6月10日101 参考文献[1]《建筑制图标准》GB50104-2010.北京:中国建筑工业出版社[2]《混凝土结构设计规范》GB50010-2010.北京:中国建筑工业出版社[3]《建筑结构荷载规范》GB50009-2001.北京:中国建筑工业出版社[4]《建筑抗震设计规范》GB50011-2010.北京:中国建筑工业出版社[5]《建筑设计防火规范》GB50016-2006.北京:中国建筑工业出版社.[6]《建筑地基基础设计规范》GB5007-2002.北京:中国建筑工业出版社[7]《建筑结构可靠度设计统一标准》GB50068-2001.北京:中国建筑工业出版社.[8]《民用建筑设计通则》GB50352-2005.北京:中国建筑工业出版社[9]李廉锟.结构力学[M].1995.北京:高等教育出版社[10]李必瑜.房屋建筑学[M].2000.武汉:汉理工大学出版社[11]周国行.房屋结构毕业设计指南[M].1996.北京:中国建筑工业出版社[12]严正庭.混凝土结构实用构造手册[M].1997.北京:中国建筑工业出版社101 附录A建筑物的结构设计平面布局框架的平面布局依据所提供的空间的功能要求,以及房屋居住者的使用而定。其中建筑构思和整个房屋建造的经济问题将起控制作用。塑性设计的设计原则与容许应力法的设计原则相同。荷载体系的确定结构框架要确定的荷载体系与容许应力法选择的荷载体系相同。通常,某一地区建筑规范将会规定最小荷载。当没有地区建筑规范时,工程师通常选择几个可以借鉴的建筑规范。平面框架的荷载体系分布塑性设计与容许应力设计相同的另一控制条件是平面框架的付载体系分布。只要找到了所有荷载传给地面的某种途径,荷载体系的分布便可以分为如下几种:1)楼板的恒荷载和活荷载以均匀或集中的形式作用于每个排架上。2)均匀于托梁上的外墙恒荷载,在托梁与框架相交处,以集中荷载的形式作用于每个排架。3)在主梁高度处,外部横向风荷与地震荷载以集中荷载形式作用于每个排架。101 4)作用于某些无支撑排架的横向荷载可能通过楼板系统的横隔板作用分布于抗侧移排架上。无支撑排架承受的横向荷载的形式与抗侧移排架的横向荷载相叠加。当相似构件的刚度相差很大时,需谨慎地自行假定框架的荷载分布。例如,有许多无支撑排架及抗侧移排架组成的房屋,如果排架的刚度非对称分布,那么它的荷载形式将远非所假定的均布情况。结构设汁建筑物的结构设计是建筑物得到足够强度、刚度和韧性的一个过程。这里,“足够”的含义是个施加自然或人为的付载或运动时,在适用期内,建筑物可以为它的房书和居住者提供满意的服务。进行这种设计,要通过结构荷载分析来确定各种荷载或荷载组合在结构上所产生的效应。然后,把荷载效应与结构承载能力相比较,以便确定结构或构件的充足性。结构设计的初始部分足与设计组的其他成员(包括建筑师、规划师、机械师、电器及音响等方面的工程帅)合作的结果,以便形成结构体系的优化形式。对各方面的需求给予适当考虑,对于建筑物的结构性能至关紧要。结构设计工程师要确定川于荷载分析与构件强度分析(即适当的结构模型)的近似值标准。这个标准的变化取决于所设计的特定结构。通常只需作出最粗略的估算,这对工程费用几乎没有影响(如果有的话影响也不大)。随着建筑物规模和作刚的增加,或如果许多构件都相同的活,就要适当地、更详细地分析荷载和强度。因而,尽管人部分结构分析教材都强调复杂而详细的分析步骤,然而理解结构的近似值估算方法及其局限性,恰恰也同样重要。确定所要求的精确度常常是设计者所要做出的最重要的决定。初步结构设计的一个重要部分足选择结构体系,同时考虑它与建筑经济学的关系。要把材料、制作、安装所需要的成本与所用的时间、安装速度、贷款偿还计划以及结构使用期间的维修费用联系起来,以便选用最佳体系。弹性设计步骤设计经验表明,利用完全弹性的应力-应变关系的设计为确定结构体系的荷载效应应分布、构件和连接的强度分析提供了最简单的方法。基于这些假设而导出的线性方程的使用不仅简单,而且还能对不同加载条件进行独立分析并使用直接迭加形成荷载组合。遗憾的是,没有哪种材料能精确地以弹性方式变形,而且结构体系中构件的强度往往大大超过用弹性方法所预测的强度。这样,为了准确估价结构体系的性能,人们发现有必要改进设计假设。近年来,正式这些改进带来了许多附加的设计复杂性,受到设计同行们的诋毁,这类修正的例子有:101 连续构件:(如钢梁和混凝土板)的弯矩重新分布,钢构件的塑性强度、混凝土受弯构件的非线性几力分布以及在木结构中基于荷载持续I时间的容计应力修正。在设计中,累加逐个构件的附属付载,往往可得到在结构体系内用于确定构件效应的荷载分布。二维框架分析常用于复杂的结构体系,如多层建筑的抗弯框架用于抵抗侧向荷载。计算机的应用已经实现了相对复杂的建筑结构的三维框架弹性分析。重要的是,要考虑这些弹性分析的局限性,以便恰当地改变薄弱之处或在适当之处重新分布荷载效应。下部结构的类别和作用下部结构或基础通常是设置在地面以下,并将荷载传递给下面土壤或岩石的结构部分。所有土壤在受荷载作用时明显受到压缩,引起所支撑的建筑物沉降:在基础设计中有两个基本要求,一是结构物总的沉降要限制到尽量小的程度:二是要尽可能消除结构各部分的不均匀沉降:就建筑物被破坏的可能性而言,避免不均匀沉降,即避免同一建筑物内的沉降差值,比限制均匀的总沉降生为重要。为了限制上述沉降,(1)必须把建筑物的荷载传递到有足够强度的土层:(2)把荷载分布在该上层足够大的面积上,以减少支撑压力。如果建筑物下就近找不到合适的土层,必须采用深基础,例如桩或沉箱,以便把荷载传递到较深的坚实土层上,如果正好在建筑物的下面就有良好的土层,仅需要刚基础或其他手段来扩散荷载。这样的下部结构叫做扩展式基础,我们要讨论的正是这种基础。选择某个结构的基础体系要随结构的尺寸、重要性及用途、场地的地下状况、结构的设计以及基础体系的造价而定。这些因素互相关联,但往往有一种因素左右其选则。如果基础的底座打在岩石上,造价不高的基础就可以很容易的支撑荷载量很大的高楼。同一建筑物若建在粘土地基上,则需要桩支撑:如果建筑物在用途上需要建造深层地下室,或者深层地下室有好处,人们可能会发现建在板式基础上最省钱。如果建筑物在设计上有少数负荷显很大的支柱,而达到有足够承载能力的岩层且经济上也可行,用该种建筑物就可以使用打在岩石或硬岩层的钻孔墩,或者用钻入岩石的沉箱支承。如果建在软弱十质地区的低矮建筑物为很重要的结构,如博物馆或会议中心,它也可能需要深基础。然而,如果它是柔性钢框架库房结构,用底脚基础支承发生可容许的沉降可能是适当的。浅基础101 浅基础可定义为以位于建筑物底部正下方的土壤或岩石获得支承的基础,无论共建筑物有—层地下室,还是多层地下室,均如此。就浅基础而言,地下室或地平面以下基础的深度(D)对基础最小宽度(B)之比通常约小于1.0。底脚基础底脚基础通常分(1)支撑单根柱的独力基础,(2)支撑多根柱的组合基础,或者(3)支撑一面墙的条形基础。,它们常用钢筋混凝土灌筑,并按照规定尺寸建造,以便将柱荷载扩散到具有不会产生承压破坏或过分沉降的接触压力的下伏材料。当某种结构底脚基础的总面积约超过建筑物平面面积的50%时,从造价的角度看,考虑以底板基础或筏式基础代替底脚基础往往是有利的。底板基础底板基础覆盖建筑物的整个面积,而业在必要的情况下可延展超出建筑物墙壁的界限。它有好几个优点1。底板基础比一组独立的底脚基础刚度好,使基础面之下局部软弱土层在一定程度上得以桥接,从而减少均匀沉降。2.同底脚基础相比,底板基础支承面积的增加可减少均接触压力,从而减少位于基础下方材料的压缩有关的沉降。正是基础面以下的材料最易引起过市的建筑物不均匀沉降现象。3.地下室的挖掘可能会(或者可能被迫)挖山等于其建筑物重量的土方,因此建筑物的沉降量即为挖掘过程中材料起量的再压缩。但是对于深地下室下面底脚基础之下的土层。情况却不是这样。基础通常会产生超过挖掘材料平均重量的土壤接触压力。这种应力在基础下随着深度而减弱,会造成底脚基础正下方的土壤压缩(固结)而导致均匀沉降。4.如果建筑物的地下室需要用“压力平板”来承受向上的静水压力,有时建造比压力平板稍厚—些的底板基础要比建造以压力平板覆盖的独守基础更经济。压力平板必须在每个柱或其他贯穿位胃设计阻水片,结果造成施工的困难(阻水片并非总是安装的很妥当),因此长出现渗漏现象。深基础101 深基础的作用是将建筑荷载从被认为(无论原因如何)不能令人满意的一层材料传到下面能令人满意的承重层。当基础深度(D)对最小宽度(B)之比约超过2又1/2~5时,该基础被视为深基础:对于人多数深基础来说,这个比值实际超过10。同一般认识相反的是:尽管建在深基础上的建筑物的沉降量几乎总可以预定比建在浅基础上的同样的建筑物小,但还是会沉降的。深地基包括川多种多样方法安装的墩、沉箱和桩,它们之间无法区分得很清楚(且无必要分清)例如:钻孔沉箱与钻孔墩通常没有区别,往往钻孔沉箱或墩与英国人所谓的钻孔机只是在直径上有微小的差别。墩墩大多立在有支撑的、人工挖掘或机械挖掘的延伸至浅承重层的小基坑里面。在芝加哥和其他一些地方已经使用了很深的人工挖掘墩。然而,它们需要人们操作时十分细心,并且需要有良好的地下条例:,从承重层到地下室的某个水平面,墩只有一个不变的横断面。柱支撑在墩上。在良好的条件下,在承重层上墩的底部加宽一些或使其成上-窄下宽形都是可行的。墩的深度(D)对宽度(B)之比通常在2又1/2-5之间:及平面尺寸为4英尺X4英尺的墩时常建立在地下室之下深度为10~20英尺(3—6米)的地方。可是,就人—工挖掘墩而言,D对B之比可达10或10以上。墩用来将结构荷载从接近地面的一层不合适的承重材料传到下面有足够承载能力的地层。和具他基础体系比较,人工挖掘墩的造价会很高,因为需要有支撑的挖掘和控制地下水。在浇注混凝土时,模板和支撑物通常被留在地下。美国的大部分地区不常使用人上挖掘墩,而用钻孔墩或沉箱取而代之。影响混凝土基础设计的因素在一般建筑物中,墙或柱上的荷载竖直地传递给基础,并由基础下面向上的土的压力所支承。如果荷载对称于支撑面积,支承压力可假设为均匀分布。人家知道仅仅是近似的:埋置在粗颗粒土中的基础中心处较大,并向周边渐减。因为粗颗粒中个别颗粒多少可以滑动,使接近周边的受荷土能稍稍向着土应力低的方向移动。与此相反,在粘土中,靠近基础周边处的压力比基础中心处高。因为在粘性土中,荷载在基础周边引起抗剪切力,从而增加向上的土压力。人们习惯于不考虑这些不均匀性,因为(1)它们的数量值难以确定,而且由于土质不同变化很大:101 (2)不均匀性对基础内弯矩和剪力数值的影响较小。在压缩性土上,基础应中心加载,以避免由于基础一边的支承压力比另—边大得多而产生倾斜。这意味着单独基础应与柱相对,墙基应与墙对中,而复式基础的基底形心应与柱荷载和力重合。偏心荷载的基础可用于较密实的十层和岩石之上由此可见,只有当土层良好,且基础是按柱荷载和约束力矩设计时,才能考虑单独基础约束柱的转动。即使在这种情况下,也不能认为基础是完全嵌固的,除非基础位于岩石之上。精确地确定应力,特别是对单柱式基础来说,引:非切实可行,因为相当大的块体朝四个方向伸出柱外。在均匀向上的压力作用下,基底变成碗形,这将使精确的应力分析大为复杂化。因此,目前这种基础的设计方法,几乎完全基于两项广泛的试验研究结果,这两项试验都是在伊利诺斯大学完成的。这些实验现已被最新估价,特别足以剪切和斜拉方而的更新的强度理论观点,进行了重新评价。恒载恒裁定义为固定的、不可移动的、永久性的荷载。它可分为两类:(1)结构自重,(2)附加的恒载。结构自重包括所有主梁、次梁、柱、墙、支撑及任何其它结构构件。典刑的混凝土框架体系比钢框架体系重。从风力倾覆的角度考虑,这是有利的,但是从基础及抗震角度考虑这是不利的。附加的恒载包括隔墙、顶棚、悬挂的设备或电器的荷载(如喷淋设备、灯等),特殊的楼板填充饰面、立面重量及除结构自重以外的其它荷载。很多建筑规范规定楼板上的隔墙荷载必须考虑有相当于20psf(1kN/平方米)的裕量,除非根据隔墙布置及重量计算证明较小的荷载裕量是适宜的。活载活载实际上是非永久荷载,它随楼面的用图不同而不同。例如,很多建筑规范规定典犁办公室的最小设计活载为50psf(2·4kN/平方米)。初步设计中应当考虑在已知的专门使用区上增加活载,如大厅、餐馆、机械设备室、冷却塔、花草种植区、计算机房及人流集中的地方。在初步设计阶段,用于储存或大量堆放重物荷载的指定区域是未知的,所以必须在最后设计中考虑,必要时经常在施工:过程中或以后考虑。屋顶活荷载是整个重力荷载中的很小—101 部分。它包括:应试当考虑堆积的雪荷载,例如在女儿墙、屋顶房屋、贴墙的斜屋顶收缩处以及相邻结构的竖直面处。按照适当的建筑规范,在初步设计阶段,应当允许活荷载折减。风载在非强震区,风载对高层建筑设计影响最大。因此,简短概括确定风力的常用方法。初步设计中的风载是根据所使用的建筑规范规定的风压计算出来的。大部分建筑规范认为,作用于整体结构的风压与作用于结构立面或框架结构上的次要墙的风压不同。由于局部阵风效应及最小结构阻尼特性,后者值较大。—般作用于整体结构上的风荷载沿建筑物的高度逐步增加,离地越高,风压越大。所取的风荷载是垂直于建筑物竖直表面的,同时也要考虑侧向风荷载的效应。对于某些结构支承体系的布置,侧向风荷载比垂直风荷载更有威胁。常用的结构体系若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。确实,较好的高层建筑普遍具有构思简单、表现清晰的特点。这并不是,新奇的高层说没有进行宏观构思的余地。实际上,正是因为有了这种宏观的构思,新奇的高层建筑体系才得以发展。可能更重要的是:几年以前才出现的新概念在今天的技术中已经变得平常了。如果忽略一些与建筑材料密切相关的概念不谈,高层建筑里最为常用的结构体系便可分为如下几类:].抗弯矩框架。2.支撑框架,包括偏心支撑框架。3.剪力墙,包括钢板剪刀墙,4.筒式框架。5.筒中筒结构6.核心交互结构。7.框格体系或束筒体系。101 特别是由于最近趋向于更复杂的建筑形式,同时也需要增加刚度以抵抗风力和地震力,人多数高层建筑都具有由框架、支撑构架、剪力墙和相关体系相结合而构成的体系:而且,就较高的建筑物而言,大多数都是由交互式构{十组成三维阵列。将这些构件结合起来的方法正足尚层建筑设计方法的本质。其结合方式需要在考虑环境、功能和费用后再发展,以便提供促使建筑发展达到新高度的有效结构。这并不是说富于想象力的结构设计就能够创造出伟大的建筑。正相反,有许多例优美的建筑仅得到结构工程师适当的支持就被创造出来,然而,如果没有天赋甚厚的建筑师的创造力和指导,那么,得以发展的就只能是好的结构,并非是伟大的建筑。无论如何,要想创造出高层建筑真正非凡的设计,两者都需要最好的。101 附录B外文文献StructuraldesignofabuildingDimensionalLayoutDimensionallayoutofframeisbasedonfunctionalrequirementsofprovidingspaceandservicesforoccupantsofthebuilding.Architecturalconsiderationsandtheeconomyofthetotalbuildinginstallationwillcontrol.Philosophy"isthesameforplasticdesignasitisforallow-ablestressdesign.AssignmentofLoadSystemsLoadsystemstobeassignedtostructuralframewillbethesameloadsystemsassignedforanallowablestressdesign.Usuallyaregionalbuildingcodewilldefinetheminimumloadstobeconsidered.Intheabsenceofaregionalbuildingcode.theengineerwillusuallyelecttofollowoneofavailablerecommenduniformbuildingcodes.DistributionofLoadSystemstoPlaneFrameAnotherconditionhandledthesameforplasticdesignasitisforallowablestressdesignisthedistributionofloadsystemstotheplaneframe.Aslongassomepathisprovidedforallloadstobetransmittedtotheground,loadsystemsaybedistributedasfollows:l)Floordeadandliveloaddistributedthroughfloorsystemstoeachbentasuniformlydistributedorasconcentratedloads.2)Exteriorwalldeadloadsdistributedtoeachbentasconcentratedloadsonthebentatconnectionpointsofspandrelbeams.3)Lateralloadsofwindandearthquakedistributedconcentratedloadsatconnectionpointsofspandrelbeams.eachbent4)Lateralloadsappliedatcertain"unbraced"bentsmaybedistributedto101 sway-resistingbentsthroughdiaphragmactionofthefloorsystem..Thelateralloadsassignedtothe"unbraced"bentsareaddedtothelateralloadsonthesway-resistingbentsasconcentratedloads.Somecautionmustbeexercisedinassumingloadstobedistributedtotheframearbitrarilyincaseswherestiffnessesvaryconsiderablybetweensimilarmembers.Forinstance,buildingswithsomeunbracedandsomesway-resistingbentsmightshareloadinamannerquitedifferentfromtheuniformdistributionassumedifthestiffnessesofthebentsarearrangedunsymmetrically.Sincedesigninagivenmaterialmustconformtothelocalcode.andsuchcodesusually"requiredesigninaccordancewitha"Standard"asdevelopedbyarecognizednationalorganization,suchastheAmericanConcreteInstitute.TheAmericanInstituteofSteelConstruction.ortheNationalForestPorestAssociation.thedesignphilosophymustbeassetforthintheStandardSomeofcodes(specifications.)adoptedbylocalorstateordinanceprovidealternativephilosophiesofdesign,suchastheworkingstressmethodusingserviceloadsorthestrengthdesignmethodusingfactoredloads.Thesedesignphilosophiesaregivendifferentnamesbythenationalorganizations:however,theygenerallymaybedividedintothosetwocategories.StructuralDesignThestructuraldesignofabuildingistheprocessbywhichadequatestrength,rigidity,andtoughnessareobtained.Inthiscase"adequate"impliesthatthestructurethroughoutitsusablelifewillprovidesatisfactoryservicetoitsownersandoccupantswhennaturalormanmadeloadsormotionsareimposedonit.Inordertoperformthisdesign,theeffectsthatvariousloadsorcombinationofloadsproduceonthestructurearedeterminedbystructuralloadanalysisTheseloadeffectsarethencomparedtothecapabilityofthestructuresothattheadequacyofthestructureoritscomponentscanassessed.Theinitialpartofstructuraldesignisacollaborativeeffortwiththeothermembersofthedesignteam(architect.planner,andthemechanical,electrical.and101 acousticalengineers)todeveloptheoptimumformofthestructuralsystem..Dueconsiderationtotheseotherrequirementsisessentialtothestructuralperformanceofthebuilding.Thestructuraldesignengineerdeterminesthelevelofapproximation(i.e..theappropriatestructural"model")tobeusedintheloadanalysisandalsointhememberstrengthanalysis.Thislevelvariesdependingontheparticularstructurebeingdesigned.Frequently.thecrudestapproximationsareallthatareneededwithlittle,ifany.effectontheoverallcostoftheproject.Asthebuildingincreasesinsizeandimportance,orifmembersarerepetitive,itbecomesappropriatetoanalyzebothloadsandstrengthinmoredetail.Thuswhilemoststructuralanalysistextbooksemphasizethecomplexanddetailedanalyticalprocedures,ilisjustasimportanttounderstandthemethodsandlimitationsofapproximations.Thedeterminationoftheprecisionrequiredtomake.Animportantpartofpreliminarystructuraldesignistheselectionofthestructuralsystemwithconsiderationgiventobeitsrelationshiptoconstructioneconomics.Material.fabrication,anderectioncostsneedtobecorrelatedwiththecostrelatedtothetimeandspeedoferection,loanrepaymentschedules.andthemaintenancecostduringthelif~ofthestructuresothattheoptimumsystemcanbechosen.ElasticDesignProceduresDesignexperiencehasshownthatdesignassumptionsusingacompletelyelasticstressstrainrelationshipprovidethesimplestmeansofdeterminingthedistributionofloadeffectsonthestructuralsystemandforanalyzingthestrengthofmembersandconnections.Useofthelinearequationsresultingfromtheseassumptionsnotonlyissimplebutitalsopermitstheindependentanalysisofdifferentloadingconditionswithdirectsuperpositionforloadcombinations.Unfortunatelynomaterialdeformspreciselyinanelasticmannerandthestrengthsofthemembersinthestructuralsystemareoftensignificantlyinexcessofthosethatwouldbepredictedbyelasticmethods.Thusithasbeenfoundthatinordertoclosely101 assesstheperformanceofthestructuralsystem,.modificationstothedesigncomplexitiesdecriedb3thedesignprofessionsinrecentyears.Examplesofsomeofthesemodificationsareredistributionofmomentsincontinuousmember(suchassteelbeamsandconcreteslabs).plasticstrengthofsteelmembers,nonlinearcompressionstressdistributioninconcreteflexuralmembers,andallowablestressmodificationsbasedonloaddurationinwoodmembers.Indesign,thedistributionofloadstodeterminetheireffectonmemberswithinthestructuralsystemisusuallyperformedonamember-by-memberbasisusingthesummationofloadstributarytothememberunderdesignconsideration.Whenthestructuralsystembecomescomplex,suchaswhenmoment-resistingframesareusedtoresistlateralloadsinmultistorybuildings.elastictwo-dimensionalframeanalysesareoftenused.Theadventofthecomputerhasmadepracticalthree-dimensionalelasticanalysesofstructuralframesofbuildingsofmodestcomplexity.Itisimportanttoconsiderthelimitationoftheseelasticanalysessothatchangescanbemadetoeithercorrectweaknessesortoredistributeloadeffectswhereappropriate.TypesandFunctionofSubstructuresThesubstructure,orfoundation,isthatpartofastructurewhichisusuallyplacedbelowthesurfaceofthegroundandwhichtransmitstheloadtotheunderlyingsoilorrock.Allsoilscompressnoticeablywhenloadedandcausethesupportedstructuretosettle.Thetwoessentialrequirementsinthedesignor"foundationsarethatthetotalsettlementoftilestructureshallbelimitedtoatolerablysmallamountandthatdifferentialsettlementofthevariouspartsofthestructureshallbeeliminatedasnearlyaspossible.Withrespecttopossiblestructuraldamage,theeliminationofdifferentialsettlement,i.e..differentamountsofsettlementwithinthesamestructure,isevenmoreimportantthanlimitationsonuniformoverallsettlement.Tolimitsettlementsasindicated,itisnecessary"(I)totransmittheloadofthestructuretoasoilstratumofsufficientstrengthand(2)tospreadtheloadoverasufficientlylargeareaofthatstratumtominimizebearingpressure.Ifadequatesoilis101 notfoundimmediatelybelowthestructure,itbecomesnecessarytousedeepfoundationssuchaspilesorcaissonstotransmittheloadtodeeper,firmerlayers.Ifsatisfactorysoildirectlyunderliesthestructure,itismerelynecessarytospreadtheload.byfootingsorothermeas.Suchsubstructuresareknownasspreadfoundations,anditismainlythistypewhichwillbediscussed.Thefoundationsystemsselectedforaparticularstructuredependonthesize.importanceanduseofthestructure,thesubsurfaceconditionsatthesize.thedesignofthestructure,andthecostofthefoundationsystems.Thesefactorsareinterrelate,butoftenonewilldominatethechoice.Atallbuildingwithheavyloadscanreadilybesupportedoninexpensivefootingfoundationsiftheybearonrock.Thesamebuildingconstructedatasizeunderlainbyclaymayrequirepilesupportiftheclayissoft:itmaybefoundedmosteconomicallyonamatiftheuseofthebuildingnecessitatestheconstructionofdeepbasementsorifdeepbasementsarefoundadvantageous.Itmaybesupportedbydrilledpiersbearingonrockorahardstratumorbycaissonsdrilledintorockifthebuildingisdesignedwithssmallnumberofhighlyloadedmaincolumnsandcompetentrockiswithineconomicalreach.Alowbuildingfoundedinanareaofweaksoilsmayrequireadeepfoundationifitisanimportantstructure,suchasamuseumoraconventioncenter.However.ifitisaflexiblesteelframewarehousestructure,itmaybeappropriatetosupportitfootingsandtoallowtolerablesettlementtooccur.Abriefdescriptionofthefoundationsystemscommonlyconsideredassupportforbuildingisprovidedintheremainderofthissection.Someofthefactorsthatinfluencetheselectionofeachsystemarediscussed.ShallowFoundationsShallowfoundationsmaybedefinedasfoundationsthatobtaintheirsupportonsoilorrock.justbelowthebottomofthestructure,evenifthestructurehasoneormorebasements.NormallytheratioofthedepthDofthefoundationbelowbasementorgradetotheleastwidthBthefoundationislessthanabout1.0forshallowfoundations.101 FootingFoundationsFootingsarenormally(I)individualfoundationscarryingacolumn.(2)combinedfoundationscarryingmorethanonecolumn,or(3)stripfootingscarryingawall.Theyareusuallyconstructedofreinforcedconcreteandaresizedtodistributethecolumnloadstotheunderlyingmaterialsatcontactpressuresthatwillnotproducebearingfailureorexcessivesettlement.Whenthetotalareaoffootingfoundationsforaparticularstructureexceedsabout50%oftheplanareaofthebuilding,itisoftenadvantageous,fromacostviewpoint,toconsidersubstitutingamatorraftfoundationforthefootings.MatFoundationsAmatfoundationcoverstheentireplanareaofthebuildingandmay,ifnecessary,extendbeyondthelimitsofthewallsofthebuilding.Ithasseveraladvantages.1.Amatisstifferthanaseriesofthemat.ascomparedtofootings,reducestheaveragecontactpressure,therebyreducingthesettlementsassociatedwiththecompressionofmaterialsjustbelowfoundationlevel.Itisthematerialjustbelowfoundationlevelthatismos1likel3toproduceintolerabledifferentialbuildingdisplacements.2.Theincreasedbearingareaofthemat.ascomparedtofootings,reducestheaveragecontactpressure,therebyreducingthesettlementsassociatedwiththecompressionofmaterialsjustbelowfoundationlevel.Itisthematerialjustbelowfoundationslevelthatismost!ikel3toproduceintolerabledifferentialbuildingdisplacements.3.Theexcavationforbasementsmayremove(ormaybemadetoremove)aweightofsoilequaltotheweightofthebuilding,therebylimitingbuildingsettlementtotherecompressionofmaterialthatheavedduringtheexcavationprocess.Thisisnottruebeneathafootingfoundationestabcontactpressureexceedingtheaverageweightoftheexcavatedmaterial.Thisstress.Whichattenuateswithdepthbelowthefoundation,willcausecompression(consolidation)ofthesoildirectlybeneaththe101 footingsresultingindifferentialsettlements.4.Ifa"pressureslab"isrequiredinthebasementofabuildingtoresistupwardhydrostaticpressure,itissometimemoreeconomicaltoconstructamatofslightlygreaterthicknessthanthepressureslabthanitistoconstructindividualfootingscoveredbyapressureslab.Thepressureslabmustbedesignedwithwaterslopsateverycolumnorotherpenetrations,resultinginconstructiondifficulties(waterstopsarenotalwaysinstalledproperly)and.frequently,leakage.DeepFoundationsThefunctionofadeepfoundationistocarry,~buildingastratumofmaterialdeemedunsatisfactory(forwhateverreason)toasatisfactorybearingstratum.AfoundationisconsideredtobedeepwhentheratioofitsdepthDtoitsleastwidthBexceedsabout2.5to5:typically.thisratioactuallyexceeds10formostdeepfoundations.Contrarytopopularbelief,structuresondeepfoundationswillsettle,althoughthemagnitudeofthesettlementcanalmostalmostbeexpectedtobesmallerthanthatofthe~mestructurefoundedonashallowfoundation.Deepfoundationsincludepiers,caissons,andpilesinstalledinavarietyofways.andwithoutacleardistinctionpossible(ornecessary)amongthem.Forexample,thereisnormallynodifferencebetweenadrilledcaissonandadrilledpierand.mostoften,onlyamodestdifferenceindiameterbetweenadrilledcaissonorpier.andwhattheBritishcallaboredpile.PiersMostoftenpiersareinstalledinsmall,braced,hand-dugormachine-excavatedexcavationsextendingtoashallowbearingstratum.Verydeep.hand-dugpiershavebeeninstalledinChicagoandelsewhere.However.theyrequiregreatcareandfavorablesubsurfaceconditions.Piershaveaconstantcross-sectionfromthebearingstratumtosomelevelwithinthebasementofastructurewhereacolumnwillbearonthepier.Underfavorableconditions,somewideningorbellingof"thebottomofthepieratthebearingstratumispossible.TheratioofdepthDtowidthBforpiersgenerallyrangesbetween2.5and5;thatis,apier4X4ft(1.2X1.2m)inplan101 dimensionswillfrequentlybefoundedatdepthsofl0-20ft(3-6m)belowbasementlevel.However.theratioD/Bforhand-dugpierscanI0ormore.Piersareusedtocarrystructuralloadsbeneathanear-surfacelayerofunsuitablebearingmaterialtoanearbycompetentstratum.Thecostofhand-dugpiersrelativetootherfoundationsystemsmaybehighbecauseoftheneedforabracedexcavationandcontrolofground-water.Thesheetingandbracingiscommonlyleftinplacewhenconcreteisplaced.Hand-dugpiersareusedinfrequentlyinmostoftheUnitedstates:drilledpiersorcaissonsareusedintheirplace.FactorsAffectingtheDesignofconcretefootingsInordinal"constructionstheloadonawallorcolumnistransmittedthesoilonwhichitrests.Iftheloadissymmetricalwithrespecttothebearingarea.thebearingpressureisassumedtobeuniformlydislributed.Itisknowthatthisisonlyapproximatelytrue.Underfootingsrestingoncoarse-grainedsoilsthepressureislargeratthecenterofthefootinganddecreasestowardtheperimeter.Thisissobecausetheindividualgrainsinsuchsoilsaresomewhatmobile,sothatthesoillocatedclosetotheperimetercanshiftveryslightlyoutwardinthedirectionoflowersoilstresses.Incontrast,inclaysoilspressuresarehigherneartheedgethanatthecenterofthefooting,sinceinsuchsoilstheloadproducesashearresistancearoundtheperimeterwhichaddstotheupwardpressure.Itiscustomarytodisregardthesenonuniformities(1)becausetheirnumericalamountisuncertainandhighlyvariable,dependingontypeofsoil,and(2)becausetheirinfluenceonthemagnitudesofbendingmomentsandshearingforcesinthefootingisrelativelysmall.Oncompressiblesoilsfootingsshouldbeloadedconcentricallytoavoidtilting,whichwillresultifbearingpressuresaresignificantlylargerunderonesideofthefootingthanundertheoppositeside.Thismeansthatsinglefootingsshouldbeplacedconcentricallyunderthecolumnsandwallfootingsconcentricallyunderthewallsandthatforcombinedfootingsthecentroidofthefootingsareashouldcoincidewiththeresultantofthecolumnload.Eccentricallyloadedfootingscanbeusedonhighlycompactedsoilsandonrock.Itfollowsthatoneshouldcountonrotationalrestraintof101 thecolumnbyasinglefootingonlywhensuchfavorablesoilconditionsarepresentandwhenthefootingisdesignedbothforthecolumnloadandtherestrainingmoment.Eventhen.lessthanthllfixil3:shouldbeassumed,exceptforfootingsonrock.Theaccuratedeterminationofstresses,particularlyinsingle-columnfootings,isnotpractical,sincetheyrepresentrelativelymassiveblockswhichcantileverfromthecolumninallfourdirections.Underuniformupwardpressuretheydeforminabowlshape,atactwhichwouldgreatlycomplicateanaccuratestressanalysis.Forthisreasonpresentproceduresforthedesignofsuchfootingsarebasedalmostentirelyontheresultsoftwoextensiveexperimentalinvestigations,bothcarriedoutattheUniversityofIllinois.Thesetestshavebeenreevaluatedparticularlyinthelightofnewerconceptsofstrengthinshearanddiagonaltension.DeadLoadsDeadloadsaredefinedasfixed,nonmovableloadsofapermanentnaturewhichcanbedividedintotwocategories(I)self-weightofthestructureand(2)superimposeddeadloads.Theself-weightofthestructureincludesallbeams.girders,columns,slabs,walls,bracing,andanyotherstructuralelements.Concreteframingsystemsaretypicallyheavierthansteelframingsystems.whichcansometimesbeanadvantagefromawindoverturningstandpointbutcanalsobeadisadvantageintermsofseismicandfoundationconsiderations.Superimposeddeadloadsconsistofpartitions,hungceilings,hungmechanicalelectricalloads(e.g..sprinklers,light,etc.),specialfloorfillsandfinishes.facadeweight,andanyotherdeadloadwhichactsinadditiontotheweightofthestructuralelements.Man)buildingcodesstipulatethatanallowanceforpartitionloadsequalto20psf(1kN/m2)overthefloorareamustbeconsideredunlesscalculationsbaseduponpartitionlayoutsandweightsdemonstratethatlesserloadingsareapplicable.LiveLoadsLiveloadsarenonpermanentinnatureandverydependinguponthebuildingfloorareainquestion.Forexample,mostbuildingcodesspecifyaminimumdesignliveloadof50psf(2.4kNm:2)fortypicalofficeareas.Increasedliveloadsfor101 specialusageareasthatareknownatthetimeofpreliminary,designshouldbetakenintoaccount,suchaslobbies,restaurants.mechanicalequipmentrooms,coolingtowers,landscapedplantingareas.computerrooms,andplacesofassembly.Localizedareastobeusedforstorageorhear)filingloadsareoftenunknownatthetimeofpreliminar7designand.therefore,mustbetakenaccountduringfinaldesignor,assometimesisnecessary,duringorafterconstruction.Roofliveloads,whichwillbeaverysmallportionoftotalgravityload.includesnowloadswithdueconsiderationgiventodrifting,forexample.atverticalsurfacesofparapets,penthouses,andadjacentstructures.Allowablereductionofliveloadinaccordancewithapplicablebuildingcodeprovisionsshouldbeappliedduringthepreliminarydesignphase.WindLoadsOutsideofhigh-riskseismiczones,windistheforcethatmostaffectsthedesignofhigh-risebuildings.Forthisreason,abriefsummaryofcurrentapproachesfordeterminingwindforceispresentedhere.Forpreliminay,design,windloadsareusuallyderivedfromthepressuresspecifiedinthegoverningbuildingcodes.Mostbuildingcodesdifferentiatebetweenthewindpressuresactingontheoverallstructureandthoseactingonthefacadeorsecondarywallflamingelements.Thelattervaluesarehighermagnitudebecauseofthelocalizedeffectsofgustsandminimalstructuraldampingcharacteristics.Thewindloadsactingontheoverallstructurearegenerallygivenassteppedincrementsofwindpressurealongtheheightofthebuilding,withthepressuresincreasinginmagnitudeastheheightabovegroundlevelincreases.Thesewindloadsaretakentoactnormaltotheverticalsurfacesofthebuildingwithconsiderationalsogiventotheeffectofquarteringwindloads.Forcertainconfigurationsofthemuchmoreseverethannormal.windloadsstructuralbracingsystem,quarteringwindloadscanbemuchmoreseverethannormal.WindloadsCommonlyUsedStructuralSystemsWithloadsmeasuredilltensofthousandsofkips.thereislittleroominthe101 designofhigh-risebuildingsforexcessivelycomplexthought.Indeed.Thebetterhigh-risebuildingscart3"theuniversaltraitsofsimplicity"ofthoughtandclarityofexpression.Itdoesnotfollowthatthereisnoroomforgrandthoughts.Indeed.itiswithsuchgrandthoughtsthatthenewfamilyofhigh-risebuildingshasevolved.Perhapsmoreimportant,thenewconceptsofbutafenyearsagohavebecomecommonplaceintoday"stechnology.Omittingsomeconceptsthatarerelatedstrictlytothematerialofconstruction,themostcommonlyusedstructuralsystemsusedinhigh-risebuildingscanbecategorizedasfollows:1.Moment-resistingframes.2.Bracedframes,includingeccentricallybracedframes3.Shearwalls,includingsteelplateshearwalls.4.Tubularframes.5.Tube-in-tubestructures.6.Core-interactivestructures.7.Cellularorbundled-tubesystems.Particularlywiththerecenttrendtowardmorecomplexarchitecturalforms.butinresponsealsototheneedforincreasedstiffnesstoresisttheforcesformwindearthquake,mosthigh-risebuildingshavestructuralsystemsbuiltupofcombinationsofframes,bracedbents,shearwalls,andrelatedsystems.Further.forthetallerbuildings,themajorityarecomposedofinteractiveelementsinthree-dimensionalarrays.Themethodofcombiningtheseelementsistheveryessenceofthedesignprocessforhigh-risebuildings.Thesecombinationsneedevolveinresponsetoenvironmental,functional,andcostconsiderationssoastoprovideefficientstructuresthatprovokethearchitecturaldevelopmenttonewheights.Thisisnottosaythatimaginativestructuraldesigncancreategreatarchitecture.Tothecontray,manyexamplesoffinearchitecturehavebeencreatedwithonlymoderatesupportfromthestructuralengineer,whileonlyfinestructure,notgreatarchitecture,canbedeveloped101 withoutthegeniusandtheleadershipofatalenledarchilect.!nan3~event,thebestofbothisneededtoformulateatrulyextraordinay,designofahigh-risebuilding.101'