- 461.00 KB
- 15页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
结构的极限荷载
1.极限荷载、强度条件和计算假定结构的弹性分析:假定应力应变关系是线性的,结构的位移与荷载关系是线性的。荷载卸去后,结构会恢复到原来形状无任何残余变形。结构的塑性分析:基于考虑材料塑性性质的结构分析。其任务是研究结构处于塑性状态下的性能,确定结构破坏时所能承受的荷载---极限荷载。极限荷载:结构的变形随荷载的增加而增大。当荷载达到某一临界值时,不再增加荷载变形也会继续增大,这时结构丧失了进一步的承载能力,这种状态称为结构的极限状态,此时的荷载是结构所能承受的荷载极限,称为极限荷载,记作Pu。弹性设计时的强度条件:塑性设计时的强度条件:
计算假定:材料为理想弹塑性材料。2.极限弯矩、塑性铰和破坏机构
1.弹性阶段---应力应变关系---应变与曲率关系---应力与曲率关系---弯矩与曲率关系---弹性极限弯矩(屈服弯矩)线性关系
2.弹塑性阶段中性轴附近处于弹性状态.处于弹性的部分称为弹性核.---弯矩与曲率关系非线性关系或3.塑性流动阶段---塑性极限弯矩(简称为极限弯矩)
极限弯矩与外力无关,只与材料的物理性质和截面几何形状、尺寸有关。设截面上受压和受拉的面积分别为和,当截面上无轴力作用时中性轴亦为等分截面轴。由此可得极限弯矩的计算方法式中3.塑性流动阶段---塑性极限弯矩(简称为极限弯矩)
极限弯矩与外力无关,只与材料的物理性质和截面几何形状、尺寸有关。设截面上受压和受拉的面积分别为和,当截面上无轴力作用时中性轴亦为等分截面轴。由此可得极限弯矩的计算方法式中例:已知材料的屈服极限,求图示截面的极限弯矩。100mm20mm解:A1形心距下端0.045m,A2形心距上端0.01167m,A1与A2的形心距为0.0633m.
塑性铰若截面弯矩达到极限弯矩,这时的曲率记作。意味着该截面两侧可以发生相对转角,形如一个铰链。称为塑性铰。塑性铰与铰的差别:1.塑性铰可承受极限弯矩;2.塑性铰是单向的;3.卸载时消失;4.随荷载分布而出现于不同截面。
破坏机构结构由于出现塑性铰而形成的机构称为破坏机构。破坏机构可以是整体性的,也可能是局部的。
3.静定结构的极限荷载静定结构无多余约束,出现一个塑性铰即成为破坏机构。这时结构上的荷载即为极限荷载。塑性铰出现的位置应为截面弯矩与极限弯矩之比的绝对值最大的截面。求出塑性铰发生的截面后,令该截面的弯矩等于极限弯矩,利用平衡条件即可求出极限荷载。例:已知屈服应力为。求极限荷载。Pl/2l/210020解:极限弯矩为梁中最大弯矩为令,得
例:已知屈服应力为。求极限荷载。Pl/2l/210020解:极限弯矩为梁中最大弯矩为令,得若能判断出塑性铰的位置,利用极限状态的平衡可直接求出极限荷载。Pu/2Pu也可列虚功方程本例中,截面上有剪力,剪力会使极限弯矩值降低,但一般影响较小,可略去不计。
4.单跨超静定梁的极限荷载超静定梁有多余约束,出现一个塑性铰后仍是几何不变体系。Pl/2l/2PA截面先出现塑性铰,这时再增加荷载令将P代入,得逐渐加载法(增量法)
从受力情况,可判断出塑性铰发生的位置应为A、C。利用极限状态的平衡可直接求出极限荷载。RBPu逐渐加载法(增量法)Pl/2l/2P或列虚功方程极限平衡法
例:求图示等截面梁的极限荷载.已知梁的极限弯矩为Mu。因为是最大弯矩,l解:梁中出现两个塑性铰即为破坏机构,根据弹性分析,一个在A截面,设另一个在C截面。RB
例:求图示变截面梁的极限荷载.已知AB段的极限弯矩为2Mu,BC段为Mu。这种情况不会出现。解:确定塑性铰的位置:l/3Pl/3l/3若B、D出现塑性铰,则B、D两截面的弯矩为Mu,若A出现塑性铰,再加荷载时,B截面弯矩减少D截面弯矩增加,故另一塑性铰出现于D截面。列虚功方程