• 2.16 MB
  • 74页

某框架住宅楼 毕业设计计算书

  • 74页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'一工程概况本工程为某框架住宅楼。工程为八层现浇钢筋混凝土框架结构。屋面板顶面标高为28.5m。工程所在地抗震设防烈度为6度,设计基本地震加速度为0.10g,设计地震分组为第一组,场地类别为Ⅱ类。屋面做法:40厚C30UEA补偿收缩混凝土防水层,表面压光,混凝土内配4钢筋双向中距15010厚黄砂隔离层20厚1:2.5水泥砂浆找平层20厚(最薄处)1:8水泥珍珠岩找2%坡钢筋混凝土屋面板,板面清扫干净总厚度:90mm自重:2.34kN/楼面做法:20厚1:2水泥砂浆抹面压光素水泥浆结合层一道钢筋混凝土楼板墙身做法:以上框架填充墙体采用混凝土空心砌块,M5水泥混合砂浆砌筑。门窗做法:所有窗均为白色塑钢窗(带纱)玻璃采用5厚平板浮法玻璃,窗框与墙交接应按有关的规范要求施工所有窗均做窗锁.底层窗防护栏杆均采用护栏杆(甲方自定).各户进户门均设防盗门(成品)各户单元均设集中式防盗门(成品)风荷载标准值0.4kN/m2,雪荷载标准值0.65kN/m2。活荷载:上人屋面均布活荷载标准值2.0kN/m2,楼面活荷载标准值2.0kN/m2。本设计计算书包括屋盖、楼盖、框架主体结构、楼梯、基础等部分的计算和设计。74 第二章结构布置及结构计算简图1材料梁板柱混凝土采用C30,梁柱中箍筋和板及基础板底内钢筋采用HPB235级,梁柱中纵向受力钢筋采用HRB400级。2框架梁截面尺寸框架梁的截面尺寸应该根据承受竖向荷载的大小、梁的跨度、框架的间距、是否考虑抗震设防要求以及选用的混凝土材料强度等诸多因素综合考虑确定。一般情况下,框架梁的截面尺寸可参考受弯构件按下式估算:主梁高h=(1/12~1/8)l,其中l为梁的跨度。框架梁宽取与墙等宽25074 mm。在抗震结构中,梁截面宽度不宜小于200mm,梁截面的高宽比不宜大于4,梁净跨与截面高度之比不宜小于4。根据以上内容初选截面尺寸如下:AB梁高:h=(1/12~1/8)l=(1/12~1/8)×5800=483~725mm取b×h=250mm×500mmBC梁高:h=(1/12~1/20)l=(1/12~1/8)4200=350~525mm取b×h=250mm×400mm2.柱截面尺寸本工程为现浇钢筋混凝土结构,6度设防,高度<30m,抗震等级为三级,取底层柱估算柱尺寸,根据经验荷载为15kN/m2:N=15×7.8×(3.6+1.5)=2983.5kN由轴压比限值得Ac≥==260795mm2为安全起见,取底层柱截面尺寸为650mm×650mm,其他层为600mm×600mm3板截面尺寸选择的板有单向板(弹性计算即板区格长边计算跨度/短边计算跨度>2)和双向板(弹性计算即板区格长边计算跨度/短边计算跨度2),并大于L/40,且根据板厚一般为100~150mm,综上取板厚为100mm。计算简图74 梁柱线刚度(其中E=3.0×104N/mm2)AB跨梁i=2E××0.25×0.53/5.8=9×10-4EBC跨梁i=2E××0.25×0.43/3.0=8.9×10-4E上部各层柱i=E××0.64/3=3.6×10-3E底层柱i=E××0.654/4.5=3.3×10-3E将梁柱线刚度标于计算简图中74 第三章恒荷载的计算1.屋面框架梁线荷载标准值40厚C30UEA补偿收缩混凝土防水层,表面压光,混凝土内配4钢筋双向中距15010厚黄砂隔离层0.01×20=0.2kN/m220厚1:2.5水泥砂浆找平层0.02×20=0.4kN/m220厚(最薄处)1:8水泥珍珠岩找2%坡0.02×7=0.14kN/m2钢筋混凝土屋面板,板面清扫干净,总厚度:90mm0.09×25=2.25kN/m2屋面恒荷载3kN/m2AB、CD框架梁自重:kN/m梁侧粉刷:kN/m因此作用在顶层框架梁上的线荷载为:kN/m2.楼面框架梁线荷载标准值20厚1:2.5水泥砂浆找平层0.02×20=0.4kN/m2钢筋混凝土楼板0.1×25=2.5kN/m2楼面恒荷载2.9kN/m2框架梁自重及粉刷3.4kN/m填充墙自重0.24×3×18=13kN/m填充墙粉刷2×0.02×2×17=2.45kN/m则作用于楼面框架梁上线荷载标准值为:kN/m74 3.屋面框架节点集中荷载标准值边柱连系梁自重:kN粉刷:kN1m高女儿墙自重及粉刷kN粉刷kN连系梁传来屋面自重:kN顶层边节点集中荷载为:kN中柱连系梁自重:kN粉刷:kN连系梁传来屋面自重:kN顶层中节点集中荷载为:kN4.楼面框架节点集中荷载标准值边柱连系梁自重:kN粉刷:kN钢窗自重kN墙体自重kN墙面粉刷kN连系梁传来楼面自重kN框架柱自重0.3×0.45×3×25=10.13kN柱面粉刷4×0.6×0.02×17=0.82kN中间层边柱节点集中荷载为:GA==47.83kN中柱连系梁自重:kN粉刷:kN内纵墙自重粉刷扣除门洞重加上门重74 框架柱自重0.3×0.45×3×25=10.13kN柱面粉刷4×0.6×0.02×17=0.82kN连系梁传来屋面自重:kN中间层中节点集中荷载:kN5.恒荷载作用下的计算简图图。第四章框架侧移刚度的计算4.1.横向自振周期计算结构顶点的假想侧移计算如下表:表4.1结构顶点的假想侧移计算层次55058.55058.5542719711.8167.944016.49074.9542719721.2156.134016.413091.3542719730.6135.924016.417107.7542719740105.314284.421392.1532755765.365.3计算基本周期,其中的量纲为m,取,则4.2.水平地震作用及楼层地震剪力的计算结构高度不超过40m,质量和刚度沿高度分布比较均匀,变形以剪切型为主,故可用底部剪力法计算水平地震作用,结构水平地震作用标准值计算,即74 因,所以不用考虑顶部附加的水平地震作用。各质点的水平地震作用按式:计算。不考虑顶部附加水平地震作用的情况下:各楼层的地震剪力按式:计算表具体的计算过程见下表:表4.2各质点横向水平地震作用及楼层地震剪力计算表层次516.555058.5837190.36390.3390.3413.554016.454221.40.24252.8643310.554016.4423730.18197.5840.627.554016.430323.80.13141.4981.914.554284.4194940.0996.61078.54.3.水平地震作用下的位移验算水平地震作用下框架结构的层间位移和顶点位移分别按式:和计算。过程见下表,表中还计算出了各层的层间弹性位移角。表4.3横向水平地震作用下的位移验算层次74 5390.34271970.99.9730001/3333.346434271971.59.0730001/20003840.64271971.977.5730001/15232981.94271972.35.630001/130411078.53275573.33.344501/909由上表可见,最大层间弹性位移角出现在第一层,其值为1/909<1/550,满足按弹性方法计算的楼层层间最大位移应符合的要求。水平地震作用下框架内力计算由上面的表格求出层间剪力后,层柱分配到的剪力以及该柱上、下端的弯矩设计和分别按下各式计算:各柱的反弯点高度比y按式确定。底层柱考虑修正值,第二层柱需考虑修正值,其余柱均无修正。具体计算过程见下表:表4.4各层柱端弯矩及剪力的计算层次A柱53000390.342719785007.762.080.449.313.9743000643427197850012.792.080.45517.520.933000840.6427197850016.732.080.525.125.123000981.9427197850019.52.080.529.329.3144501078.5327557693222.81.130.6365.438.4层次C-柱53000390.342719796008.82.720.4411.614..774 43000643427197960014.52.720.4921.222.133000840.6427197960018.92.720.528.328.323000981.9427197960022.12.720.533.133.1144501078.53275577586251.480.6371.642.1B-柱1183310.84.80.4514.617.81183317.84.80.526.726.71183323.34.80.534.934.91183327.24.80.540.840.8891929.42.610.5978.854.8梁端弯矩,剪力及柱轴力分别按式:具体的计算过程见下表:表4.5各层柱端弯矩及剪力计算层次AB跨梁BC跨梁513.977.763.610.114.74.55.5430.217.96823.433.74.512.7342.626.7611.635.949.54.518.8254.432.8614.542.961.44.523.2167.741.4618.254.175.24.528.774 层次柱轴力A柱C柱B柱5-3.61.95.5411.66.618.2323.214.837237.722.560.2155.93388.9注:1)柱轴力中的负号表示拉力。当为左地震时,左侧两根柱为拉力,右侧两根柱为压力。2)表中M单位为kN·m,V单位为KN,单位为m.4.4.横向风荷载作用下框架结构内力和侧移计算1风荷载的标准值基本风压值:。值:由于建筑物总高度H不超过30m,所以。查《荷载规范》得值:迎风面,背风面,所以取。C类地区,H/B=16/59.4=0.27<1.5,查《荷载规范》得。取9轴线横向框架,其负载的宽度为3.3m。则沿房屋高度的分布风荷载的标准值为:。根据各楼层标高处的高度,由《荷载规范》查取,代入上式可求得各楼层标高处的,沿房屋高度的分布见图:表4.6沿房屋高度分布的风荷载的标准值层次516.450.751.02.1413.450.741.02.1310.450.741.02.174 27.450.741.02.114.450.741.02.1框架结构分析时,按最有利布置取最大线荷载,将分布风荷载转化为节点集中荷载,计算过程如下:图4.4风荷载分布图4.5.风荷载作用下的水平位移的验算根据上式求得的结点水平荷载,计算层间剪力74 ,求出各层的相对侧移和绝对侧移。计算过程见下表:表4.7风荷载作用下框架层间剪力及侧移的计算层次1234516.212.018.835.652.473275574271974271974271974271970.540.350.260.170.070.540.891.151.321.391/66671/185711/115381/176471/48571由上表可见,风荷载作用下框架的最大层间位移发生在首层,最大层间位移角为1/6667,远小于1/550,满足规范要求。4.6.风荷载作用下框架结构内力的计算横向框架在风荷载作用下的弯矩,梁端剪力及柱轴力见下表:表4.8风荷载作用下各层柱端D值及剪力分配系数层号及层高柱号5层H=3mA2.10.510.852.980.285B4..80.711.180.396C2.70.570.950.3192~4层H=3mA2.10.510.852.980.285B4..80.711.180.396C2.70.570.950.3191层H=4.45mA1.10.520.692.340.29B2.60.670.890.3874 C1.50.570.760.334.7.各柱的反弯点位置、剪力柱端弯矩计算计算过程见表表4.9各柱的反弯点位置、剪力、柱端弯矩计算层号柱号5层A0.2852.985.041.440.4050.000.4051.752.60.17B0.39620.450.000.452.73.3C0.3191.60.4350.000.4352.12.74层A0.2852.9811.343.230.4550.000.4554.45.30.38B0.3964.500.50.0000.56.86.8C0.3193.610.4850.000.4855.35.63层A0.2852.9817.645.060.50.000.57.67.60.59B0.3967.030.50.000.510.510.5C0.3195.670.50.000.58.58.52层A0.2852.9823.946.860.50.000.510.310.30.8B0.3969.50.50.000.514.314.3C0.3197.680.50.000.511.111.11层A0.292.3431.849.230.650.000.6520.711.11.36B0.3812.10.590.000.5924.617.1C0.3310.50.650.000.6523.512.7注:;;74 4.8.梁端弯矩计算梁端弯矩,剪力及柱轴力分别按式:具体的计算过程见下表:表4.10风荷载作用下各层柱端弯矩及剪力计算层次AB跨梁BC跨梁52.661.460.671.52.74.50.947.054.161.995.47.84.52.93127.563.39.813.84.55.2217.910.764.814.119.64.57.5121.413.65.817.823.84.59.2层次柱轴力A柱B柱C柱50.670.230.942.571.233.835.873.139210.675.8316.5116.479.2325.7注:1.柱轴力中的负号表示拉力。当为左风时,左侧两根柱为拉力,右侧两根柱为压力。2.表中M单位为kN·m,V单位为KN,单位为m.第四章竖向荷载作用下框架结构的内力计算74 5.1.计算单元横向框架计算单元取9轴线横向框架进行计算,计算单元宽度为3.m,如图所示。直接传给该框架的楼面荷载如图中的水平阴影线所示。计算单元范围内的其余楼面荷载则通过次梁和纵向框架梁以集中力的形式传给横向框架,作用于各个节点上。由于纵向框架梁的中心线与柱的中心线不重合,因此在框架节点上还作用有集中力矩。由于附加力距较小,故不考虑。5.2.荷载的计算2.1恒载计算:在图中,代表横梁自重,为均布荷载形式。对于第5层为屋面梁上的线荷载:对于1~4层横载作用下各层框架梁上的荷载分布如下:图5.1横载作用下各层框架梁上的荷载分布图74 2.2活载的计算:1~5层为屋面梁上的线荷载活载作用下各层框架梁上的荷载分布如下图所示:图5.2活载作用下各层框架梁上的荷载分布图74 5.3.内力的计算梁端、柱端弯矩采用弯矩二次分配法计算,进行横向框架的弯矩的二次分配,需计算固端弯矩,结点分配系数。固端弯矩:恒载作用下顶层框架梁的固端弯矩:恒载作用下1~4层框架梁的固端弯矩:活荷载作用下顶层框架梁的固端弯矩计算过程同恒载74 结点分配系数顶层的分配系数计算过程如下(其他层计算方法相同)顶层节点A:节点B:节点C:5.4.恒荷载作用下的结构内力分析恒荷载作用下的内力分析采用力矩二次分配法,计算过程见下表5.4恒荷载作用下的内力分析上柱下柱右梁左梁上柱下柱右梁上柱下柱左梁50.000.570.430.280.000.360.360.000.500.50 -64.5064.50 -32.94 32.940.0036.7727.74-8.840.00-11.36-11.360.00-16.47-16.478.56-4.4213.87-3.25-8.24-3.88-5.68 -2.36-1.78-0.67 -0.86-0.86 4.784.78    43.0-43.068.9 -15.5-53.4 -15.615.6   40.360.360.280.190.270.270.270.330.340.33 -47.5847.58 -23.54 23.5417.1317.1313.32-4.57-6.49-6.49-6.49-7.77-8.00-7.7718.388.56-2.286.66-5.68-3.25-3.88-8.24-3.88-3.2574 -8.88-8.88-6.911.171.661.661.665.075.225.07   26.616.8-43.450.8-10.5-8.1-32.3-10.9-6.717.628.00   30.360.360.280.190.270.270.270.330.340.33 -47.5847.58 -23.54 23.5417.1317.1313.32-4.57-6.49-6.49-6.49-7.77-8.00-7.778.568.56-2.286.66-3.25-3.25-3.88-4.00-3.88-3.25-5.34-5.34-4.160.711.001.001.003.673.783.67上柱下柱右梁左梁上柱下柱右梁上柱下柱左梁20.320.3-40.750.4-8.7-8.7-32.9-8.1-8.116.2   20.360.360.280.190.270.270.270.330.340.33 -47.5847.58 -23.54 23.5417.1317.1313.32-4.57-6.49-6.49-6.49-7.77-8.00-7.778.569.75-2.286.66-3.25-3.49-3.88-4.00-4.35-3.25-5.77-5.77-4.490.751.071.071.073.833.943.83   19.921.1-41.050.4-8.7-8.9-32.8-7.9-8.416.4   10.410.280.310.220.290.200.290.370.260.37 -47.5847.58 -23.54 23.5419.5113.3214.75-5.29-6.97-4.81-6.97-8.71-6.12-8.718.56 -2.647.37-3.25 -4.35-4.00 -3.49-2.43-1.66-1.840.050.070.050.072.771.952.7774    25.611.7-37.349.7-10.2-4.8-34.8-9.9-4.214.1    5.8 -2.4 -2.1/////////////////////////////////////////////////梁端剪力可根据梁上竖向荷载引起的剪力与梁端弯矩引起的剪力相叠加而得。柱轴力可由梁端剪力和节点集中力叠加得到。计算柱底轴力还需考虑柱的自重,如前所述。恒荷载作用下的梁端剪力及柱轴力结构分析如下表5.3所示:表5.5恒荷载作用下的梁端剪力及柱轴力层次荷载引起的剪力弯矩引起的剪力总剪力AB跨BC跨AB跨BC跨AB跨BC跨564.541.7-4.3-8.460.268.850.133.3447.631.4-1.2-3.346.448.834.728.1347.631.4-1.6-3.74649.235.127.7247.631.4-1.6-3.64649.23527.8147.631.4-2.1-4.645.549.73626.8柱轴力A柱B柱C柱150.1159.3110.2119.4105.5114.7222.1231.3231.9241.1173.4182.6309318.3349358.2246.1255.3396.5405.7366375.2319.3328.574 483.4492.6483.6492.8391.4414.4图5.3恒荷载作用下框架弯矩图3.5.活荷载作用下的结构内力分析活荷载作用下的内力分析同样采用力矩二次分配法,计算过程见表5.6:表5.6活荷载作用下内力计算分析上柱下柱右梁左梁上柱下柱右梁左梁下柱上柱50.000.570.430.280.000.360.360.500.500.0074   -17.1017.10 -8.608.60 0.009.757.35-2.380.00-3.06-3.06-4.30-4.300.00 3.08-1.193.68-1.15-2.15-1.53-1.42  -1.08-0.81-0.11 -0.14-0.141.471.47 上柱下柱右梁左梁上柱下柱右梁左梁下柱上柱 11.7-11.718.3 -4.3-13.94.2-4.20.0    40.360.360.280.190.270.270.270.330.340.33  -17.1017.10 -8.608.60 6.166.164.79-1.62-2.30-2.30-2.30-2.84-2.92-2.844.873.08-0.812.39-1.53-1.15-1.42-1.15-1.42-2.15-2.57-2.57-2.000.320.460.460.461.561.601.56    8.56.7-15.118.2-3.4-3.0-11.96.2-2.7-3.4    30.360.360.280.190.270.270.270.330.340.33 -17.1017.10 -8.608.60 6.166.164.79-1.62-2.30-2.30-2.30-2.84-2.92-2.843.083.08-0.812.39-1.15-1.15-1.42-1.15-1.42-1.46-1.93-1.93-1.500.250.360.360.361.331.371.33    7.37.3-14.618.1-3.1-3.1-12.05.9-3.0-3.0    20.360.360.280.190.270.270.270.330.340.33 -17.1017.10 -8.608.60 74 6.166.164.79-1.62-2.30-2.30-2.30-2.84-2.92-2.843.083.51-0.812.39-1.15-1.23-1.42-1.15-1.59-1.46-2.08-2.08-1.620.270.380.380.381.391.431.39    7.27.6-14.718.1-3.1-3.1-11.96.0-3.1-2.9    10.410.280.310.220.290.200.290.370.260.37 -17.1017.10 -8.608.60 7.014.795.30-1.87-2.47-1.70-2.47-3.18-2.24-3.183.08 -0.942.65-1.15 -1.59-1.23-1.46-0.88-0.60-0.660.020.030.020.031.000.701.00    9.24.2-13.417.9-3.6-1.7-12.65.2-1.5-3.6     2.1 -0.8 -0.8//////////////////////////////////////////////////梁端剪力可根据梁上竖向荷载引起的剪力与梁端弯矩引起的剪力相叠加而得。柱轴力可由梁端剪力和节点集中力叠加得到。活荷载作用下的梁端剪力及柱轴力结构分析见下表5.7所示:活荷载作用下的梁端剪力及柱轴力层次荷载引起的剪力弯矩引起的剪力总剪力柱轴力AB跨BC跨AB跨BC跨AB跨BC跨A柱B柱C柱===74 517.111.5-1.1-2.21618.213.79.335.830.224.2417.111.5-0.5-1.316.617.612.810.256.264.640317.111.5-0.58-1.416.5217.6812.910.175.999.354.8217.111.5-0.57-1.316.5317.6712.810.295.7133.969.8117.111.5-0.75-1.616.3517.8513.19.9115.4168.884.4活载荷载作用下框架弯矩图74 活载荷载作用下框架轴力图74 第六章内力组合6.1框架梁的内力组合将内力计算图中梁的弯矩、剪力标准值填入内力组合表,对于竖向荷载作用下的支座弯矩进行调幅,再进行内力组合。框架梁在恒荷载,活荷载,风荷载,地震荷载作用下的内力组合及梁端剪力的调整见表6.1层次截面内力SGkSQkSwkSEk1.2SGk+0.9*1.4(SQk+Swk)→←五层AM-32.25-8.78±2.60±13.97-46.48-53.03V60.2016.00±0.67±3.6093.2491.56B左M-51.68-13.73±1.40±7.70-77.54-81.07V68.8018.20±0.67±3.60106.34104.65B右M-40.05-10.43±1.50±10.10-59.31-63.09V50.1013.70±0.90±5.5078.5276.25CM-11.70-3.15±2.70±14.70-14.61-21.41V33.309.30±0.90±5.5052.8150.54跨中MAB40.8010.65±0.60±3.0063.1461.62MBC14.903.85±0.60±2.3023.4921.98四层AM-32.55-11.33±5.30±30.20-46.65-60.01V46.4016.60±1.90±8.0078.9974.20B左M-38.10-13.65±4.10±17.90-57.75-68.09V48.8017.60±1.90±8.0083.1378.34B右M-24.23-8.93±5.40±23.40-33.51-47.12V34.7012.80±2.90±12.7061.4254.11CM-13.20-4.65±7.80±33.70-11.87-31.53V28.1010.20±2.90±12.7050.2342.9274 跨中MAB24.309.00±1.50±6.2042.3938.61MBC10.403.85±1.20±5.2018.8415.82三层AM-30.53-10.95±12.0±42.60-35.31-65.55V46.0016.52±3.30±11.6080.1771.86B左M-37.80-13.58±7.50±26.70-53.01-71.91V49.2017.68±3.30±11.6085.4777.16B右M-24.68-9.00±14.10±34.90-23.18-58.72V35.1012.90±5.20±18.8064.9351.82CM-12.15-4.43±19.60±49.504.54-44.85V27.7010.10±5.20±18.8052.5239.41跨中MAB25.809.30±2.25±8.0045.5139.84MBC10.803.95±2.00±7.3020.4615.42二层AM-30.75-11.03±17.90±54.40-28.24-73.35V46.0016.53±4.80±14.5082.0869.98B左M-37.80-13.58±10.70±32.80-48.98-75.95V49.2017.67±4.80±14.5087.3575.26B右M-24.60-8.93±14.10±42.90-23.00-58.53V35.0012.80±7.50±23.2067.5848.68CM-12.30-4.50±19.60±61.404.27-45.13V27.8010.20±7.50±23.2055.6636.76跨中MAB25.709.25±3.60±8.3047.0337.96MBC10.703.95±2.75±9.3021.2814.35AM-27.98-10.05±21.40±67.70-19.27-73.2074 一层V45.5016.35±5.80±18.2082.5167.89B左M-37.28-13.43±13.60±41.40-44.51-78.78V49.7017.85±5.80±18.2089.4474.82B右M-26.10-9.45±17.80±54.10-20.80-65.66V36.0013.10±9.20±28.7071.3048.11CM-10.58-3.90±23.80±75.2012.38-47.59V26.809.90±9.20±28.7056.2333.04跨中MAB27.9010.00±3.90±13.2050.9941.17层次截面内力rRE[1.2(SGk+0.5SQk)+1.3SEk]1.35SGk+SQk1.2SGk+1.4SQkV=rRE[ηνb(MLb+Mrb)/ln+VGb]→←五层AM-19.35-46.59-52.31-50.9956.99V73.5465.5997.2794.64B左M-45.18-60.19-83.49-81.23V83.4475.48111.08108.04B右M-30.89-50.58-64.49-62.6628.03V64.1752.0181.3479.30CM2.39-26.28-18.95-18.45V44.7932.6354.2652.98跨中MAB44.4438.5965.7363.87MBC17.3912.9023.9723.27四层AM-4.95-63.84-55.27-54.9230.10V64.6346.9579.2478.92B左M-22.98-57.89-65.09-64.83V67.5949.9183.4883.20M-3.00-48.63-41.63-41.5731.2074 B右V55.9627.8959.6559.56CM18.89-46.83-22.47-22.35V28.1819.8348.1448.00跨中MAB31.9719.8841.8141.76MBC16.166.0217.8917.87三层AM9.14-73.94-52.16-51.9636.24V68.1642.5378.6278.33B左M-14.10-66.16-64.61-64.37V72.0246.3884.1083.79B右M7.77-60.29-42.31-42.2132.47V63.1621.6160.2960.18CM35.34-61.19-20.83-20.78V54.1812.6347.5047.38跨中MAB35.2119.6144.1343.98MBC18.624.3818.5318.49二层AM20.40-85.68-52.54-52.3436.00V71.3739.3378.6378.34B左M-8.15-72.11-64.61-64.37V75.2243.1784.0983.78B右M15.67-67.98-42.14-42.0232.00V67.8616.5960.0559.92CM46.77-72.96-21.11-21.06V59.197.9247.7347.64跨中MAB35.3919.2043.9543.79MBC20.482.3418.4018.37一层AM36.31-95.71-47.82-47.6445.70V74.8634.6477.7877.4974 B左M0.78-79.95-63.75-63.53V79.9139.6984.9584.63B右M25.01-80.49-44.69-44.5535.07V75.1111.6961.7061.54CM62.05-84.59-18.18-18.15V64.100.6746.0846.02跨中MAB42.4816.7447.6747.48MBC21.901.2318.6518.62注:M以下部受拉为正,V以向上为正。6.2框架柱的内力组合取每层的柱顶柱底两个控制截面,进行组合,组合结果及弯矩设计值的调整见表6.2`6.5.在考虑地震作用效应的的组合时,取屋面为雪荷载时的内力进行组合。表6.2横向框架A柱弯矩和轴力组合层次截面内力SGkSQkSwkSEk1.2SGk+0.9*1.4(SQk+Swk)→←五柱M43.0011.70±2.60±13.9769.6263.07顶N150.1035.80±0.67±3.60226.07134.17柱M-27.00-8.50±1.75±9.30-40.91-45.32底N159.3035.80±0.67±3.60235.42237.11四柱M16.806.70±5.30±20.9035.2821.92顶N222.1056.20±2.57±11.60340.57334.09柱M-20.30-7.30±4.40±17.50-28.01-39.1074 底N231.3056.20±2.57±11.60345.13351.61三柱M20.307.30±7.60±25.1043.1323.98顶N309.0075.90±5.87±23.20473.83459.04柱M-19.90-7.20±7.60±25.10-23.38-42.53底N318.3075.90±5.87±23.20470.20484.99二柱M21.107.60±10.30±29.3047.8721.92顶N396.5095.70±10.67±37.30609.83582.94柱M-25.60-9.20±10.30±29.30-29.33-55.29底N405.7095.70±10.67±37.30593.98620.87一柱M11.704.20±11.10±38.4033.325.35顶N483.40115.40±16.40±55.90746.15704.82柱M-5.80-2.10±20.70±65.4016.48-35.69底N492.60115.40±16.40±55.90715.86757.19层次截面内力rRE[1.2(SGk+0.5SQk)+1.3SEk]1.35SGk+SQk1.2SGk+1.4SQkNminNmax74 ︳Mmax︳→←NMM五柱M57.5919.8169.7567.9869.7519.8169.75顶N165.02157.54238.44230.24238.44134.17238.44柱M-19.06-29.54-44.95-44.30-45.32-29.54-44.95底N166.37173.86250.86241.28237.11166.37250.86四柱M38.51-2.2429.3829.5438.51-2.2429.38顶N252.26228.13356.04345.20252.26228.13356.04柱M-4.49-38.62-34.71-34.58-39.10-38.62-34.71底N240.78261.09368.46356.24351.61240.78368.46三柱M46.03-2.9234.7134.5846.03-2.9234.71顶N357.20308.94493.05477.06357.20308.94493.0574 柱M3.32-45.62-34.07-33.96-45.62-45.62-34.07底N317.87366.13505.61488.22366.13317.87505.61二柱M50.98-6.1636.0935.9650.98-6.1636.09顶N465.37387.78630.98609.78465.37387.78630.98柱M1.39-55.75-43.76-43.60-55.75-55.75-43.76底N396.62474.20643.40620.82474.20396.62643.40一柱M49.86-25.0220.0019.9249.86-25.0220.00顶N577.59461.32767.99741.64577.59461.32461.32柱M57.60-69.93-9.93-9.90-69.93-69.93-9.93底N470.15586.42780.41752.68586.42470.15780表6.3横向框架B柱弯矩和轴力组合层次截面内力SGkSQkSwkSEk1.2SGk+0.9*1.4(SQk+Swk)→←五柱顶M15.504.30±3.30±17.8028.1819.86N110.2030.20±0.23±1.90170.58170.0074 柱底M10.503.40±2.70±14.6020.2913.48N119.4030.20±0.23±1.90181.04181.62四柱顶M8.103.10±6.80±26.7022.195.06N231.9064.60±1.23±6.60361.23358.13柱底M-8.70-3.10±6.80±26.70-5.78-22.91N241.1064.60±1.23±6.60369.17372.27三柱顶M8.703.10±10.50±34.9027.581.12N349.0099.30±3.13±14.80547.86539.97柱底M-8.70-3.10±10.50±34.90-1.12-27.58N358.2099.30±3.13±14.80551.01558.90二柱顶M8.903.10±14.30±40.8032.60-3.43N366.00133.90±5.80±22.50615.22600.6174 柱底M-10.20-1.70±14.30±40.803.64-32.40N375.20133.90±5.80±22.50611.65626.26一柱顶M4.803.60±17.10±54.8031.84-11.25N483.60168.80±9.23±33.00804.64781.38柱底M-2.40-0.80±24.60±78.8027.11-34.88N492.80168.80±9.23±33.00792.42815.68层次截面内力rRE[1.2(SGk+0.5SQk)+1.3SEk]1.35SGk+SQk1.2SGk+1.4SQk︳Mmax︳NminNmax→←NMM五柱顶M33.24-1.4725.2324.6233.24-1.4725.23N122.26118.31178.97174.52122.26118.31178.97柱底M25.22-3.2617.5817.3625.22-3.2617.58N127.14131.10191.39185.56127.14127.14191.39四柱M34.72-17.3514.0414.0634.72-17.3514.0474 顶N260.50246.77377.67368.72260.50246.77377.67柱底M16.81-35.26-14.85-14.78-35.26-35.26-14.85N260.88269.33390.09379.76269.33260.88390.09三柱顶M43.25-24.8014.8514.7843.25-24.8014.85N398.10367.31570.45557.82398.10367.31570.45柱底M24.80-43.25-14.85-14.78-43.25-43.25-14.85N376.14406.93582.87568.86406.93376.14582.87二柱顶M49.19-30.3815.1215.0249.19-30.3815.12N439.03392.23628.00626.66439.03392.23628.00柱底M29.84-49.73-15.47-14.62-49.73-49.73-15.47N401.06447.86640.42637.70447.86401.06640.42一柱顶M59.37-47.4910.0810.8059.37-47.4910.08N579.60510.96821.66816.64579.60510.96821.66柱M74.31-79.35-4.04-4.00-79.35-79.35-4.0474 底N519.79588.43834.08827.68588.43519.79834.08表6.4横向框架C柱弯矩和轴力组合层次截面内力SGkSQkSwkSEk1.2SGk+0.9*1.4(SQk+Swk)→←五柱顶M15.64.20±2.70±14.7027.4120.61N105.524.20±-0.90±5.50155.9697.24柱底M-10.9-3.40±2.10±11.60-14.72-20.01N114.724.20±-0.90±5.50169.27167.00四柱顶M6.72.70±5.60±22.1018.504.39N173.440.00±-3.80±18.20253.69263.27柱底M-8.1-3.00±5.30±21.20-6.82-20.18N182.640.00±-3.90±18.20274.43264.61三柱顶M8.13.00±8.50±28.3024.212.79N246.154.80±-9.00±37.00353.03375.71柱底M-7.9-2.90±8.50±28.30-2.42-23.84N255.354.80±-9.00±37.00386.75364.07二柱顶M8.43.10±11.10±33.1027.970.00N319.369.80±-16.50±60.20450.32491.9074 柱底M-9.9-3.60±11.10±33.10-2.43-30.40N328.569.80±-16.50±60.20502.94461.36一柱顶M4.21.50±12.70±42.1022.93-9.07N391.484.40±-25.70±88.90543.64608.41柱底M-2.1-0.80±23.50±71.6026.08-33.14N414.4084.40±-25.70±88.90636.01571.24层次截面内力rRE[1.2(SGk+0.5SQk)+1.3SEk]1.35SGk+SQk1.2SGk+1.4SQk︳Mmax︳NminNmax→←NMM五柱顶M30.261.6025.2624.6030.261.6025.26N118.6283.94166.63160.48118.6283.94166.63柱底M-0.03-22.65-18.12-17.84-22.65-22.65-18.12N92.78127.45179.05171.52127.45179.0574 92.78四柱顶M28.79-14.3011.7511.8228.79-14.3011.75N204.59166.74274.09264.08204.59166.74274.09柱底M12.03-29.31-13.94-13.92-29.31-29.31-13.94N175.57213.42286.51275.12213.42175.57286.51三柱顶M36.23-18.9513.9413.9236.23-18.9513.94N301.04224.08387.04372.04301.04224.08387.04柱底M19.18-36.01-13.57-13.54-36.01-36.01-13.57N232.91309.87399.46383.08309.87232.91399.46二柱顶M41.23-23.3214.4414.4241.23-23.3214.44N402.64277.42500.86480.88402.64277.42500.86柱M21.74-42.80-16.97-16.92-42.80-16.9774 底-42.80N286.26411.47513.28491.92411.47286.26513.28一柱顶M45.50-36.597.177.1445.50-36.597.17N508.71323.80612.79587.84508.71323.80612.79柱底M67.56-72.06-3.64-3.64-72.06-72.06-3.64N345.88530.79643.84615.44530.79345.88643.84注:表中M以左侧受拉为正,单位为,N以受压为正,单位为表6.5横向框架A柱剪力组合层次SGkSQkSwkSek1.2SGk+0.9*1.4(SQk+Swk)rRE[1.2(SGk+0.5SQk)+1.3SEk]→←→←五-23.30-6.70±1.45±7.80-34.58-38.23-18.56-35.80四-12.40-4.70±3.20±12.80-16.77-24.83-0.90-29.19三-13.40-4.80±5.10±16.70-15.70-28.552.34-34.57二-15.60-5.60±6.90±19.50-17.08-34.472.78-40.32一±7.00±2.50-15.1420.60-29.7874 -3.80-1.4022.80层次1.35SGk+SQk1.2SGk+1.4SQkrRE[ηvc(Mbc+Mtc)/Hn]五-38.16-37.3447.82四-21.44-21.4632.25三-22.89-22.8038.09二-26.66-26.5644.35一-6.53-6.5249.78表6.6横向框架B柱剪力组合层次SGkSQkSwkSek1.2SGk+0.9*1.4(SQk+Swk)rRE[1.2(SGk+0.5SQk)+1.3SEk]1.35SGk+SQk1.2SGk+1.4SQkrRE[ηvc(Mbc+Mtc)/Hn]→←→←五-8.70-2.60±2.00±10.80-11.20-16.241.73-22.13-14.35-14.0824.29四-5.60-2.10±4.50±17.80-3.70-15.0412.89-26.45-9.66-9.6629.0874 三-5.80-2.10±7.00±23.30-0.79-18.4318.76-32.73-9.93-9.9035.95二-6.40-1.60±9.50±27.202.27-21.6722.71-37.40-10.24-9.9241.11一-1.60-1.50±9.20±29.407.78-15.4030.09-34.88-3.66-4.0257.65表6.7横向框架C柱剪力组合层次SGkSQkSwkSek1.2SGk+0.9*1.4(SQk+Swk)rRE[1.2(SGk+0.5SQk)+1.3SEk]1.35SGk+SQk1.2SGk+1.4SQkrRE[ηvc(Mbc+Mtc)/Hn]→←→←五-8.80-7.60±1.60±8.80-18.12-22.15-3.13-22.58-19.48-21.2020.80四-4.90-1.90±3.60±14.40-3.74-12.819.95-21.88-8.52-8.5424.14三-5.30-1.97±5.70±18.90-1.66-16.0214.47-27.30-9.13-9.1225.02二±±-1.1516.92-31.92-10.8234.9274 -6.10-2.507.4022.10-19.79-10.74一-1.40-0.80±8.00±25.007.39-12.7725.79-29.46-2.69-2.8048.85注:表中V以绕柱端顺时针为正。rRE[ηvc(Mbc+Mtc)/Hn]为相应与本层柱净高上、下端的剪力设计值表6.8横向框架各柱柱端组合弯矩设计值的调整横向框架A柱柱端组合弯矩设计值的调整层次54321截面柱顶柱底柱顶柱底柱顶柱底柱顶柱底柱顶柱底rRE(∑Mc=ηc∑Mb)______38.51-39.1046.03-45.6250.98-55.7549.86-69.93rREN_____252.26351.61357.20366.13465.37474.20577.59586.42横向框架B柱柱端组合弯矩设计值的调整层次54321截面柱顶柱底柱顶柱底柱顶柱底柱顶柱底柱顶柱底74 rRE(∑Mc=ηc∑Mb)______34.72-35.2643.25-43.2549.19-49.7359.37-79.35rREN______260.50269.33398.10406.93439.03447.86579.60588.43横向框架C柱柱端组合弯矩设计值的调整层次54321截面柱顶柱底柱顶柱底柱顶柱底柱顶柱底柱顶柱底rRE(∑Mc=ηc∑Mb)______28.79-29.3136.23-36.0141.23-42.8045.50-72.06rREN______204.59213.42301.04309.87402.64411.47508.71530.79第七章梁、柱、板的配筋计算7.1梁正截面受弯承载力的计算第一层AB跨梁(1)梁的正截面受弯承载力计算从框架梁内力组合表中分别选出AB跨跨中截面及支座截面的最不利内力,并将支座中心处的弯矩换算为支座边缘控制截面的弯矩进行配筋计算.支座弯矩:跨间取控制截面,即支座边缘处正弯矩:74 则支座边缘处:当梁下部受拉时,按T形截面设计,当梁上部受拉时,按矩形截面设计.翼缘计算宽度当按跨度考虑时,按梁间距考虑时,;按翼缘厚度考虑时,,,此种情况不起控制作用,故取.梁内纵向钢筋选HRB400(),=0.518.下部跨间截面按单筋T形截面计算,因为=1.014.32000120(470-100/2)=120.1>56.1,属于第一类T形截面.实配钢筋314(=461),ρ=/(b)=461/(250400)=0.46%>0.25%,满足要求.将下部跨间截面的314钢筋深入支座,作为支座负弯矩作用下的受压钢筋(=461),再计算相应的受拉钢筋,即支座A上部说明富裕,且达不到屈服.可近似取74 实取414(=615),支座上部,实取414(=615),,=0.75>0.3,满足要求.BC跨:支座弯矩:跨间取控制截面,由于梁上部受拉,按矩形截面设计,由于AB梁BC梁跨度相差不大,因BC梁受弯矩较小,故不学计算,同时为了施工方便,可采用同样的配筋,配筋率满足要求。7.2梁斜截面受剪承载力计算第一层AB跨梁。故截面尺寸满足要求.梁端加密区箍筋取4肢箍Ф8@100,箍筋用HPB235级钢筋(=210),则=0.421.43250470+1.25210101/100470=318.6KN>45.7KN加密区长度取0.75m,非加密区箍筋取4肢Ф8@150,箍筋设置满足要求.BC跨若梁端箍筋加密区取双肢8@100,则其承载力为:=0.421.43250265+1.25210110/100265=110.05KN>加密区长度取0.75m,非加密区箍筋取4肢Ф8@150,箍筋设置满足要求AB跨同CD跨一样满足梁斜截面受剪承载力的要求。74 7.4梁的挠度和裂缝验算裂缝验算五层A-B梁跨中弯矩最大,可只对五层A-B梁裂缝验算若其满足要求,其它梁也满足要求,C=30mm取钢筋为HRB400级,故所以验算:挠度验算五层A-B梁跨中弯矩最大,可只对五层A-B梁挠度验算若其满足要求,其它梁也满足要求,在荷载效应标准组合作用下,受弯构伯的短期刚度可按下列公式计算74 计算短期刚度:变形验算:<<=28.8mm7.5框架柱配筋截面的设计剪压比和轴压比的验算。下表给出了框架柱各层的剪跨比和轴压比计算结果,其中剪跨比也可取.注意,表中的都不应考虑抗震调整系数.由表可见,各柱的剪跨比和轴压比均满足规范要求.表7.1柱的剪跨比和轴压比的验算柱号层次b/㎜A柱535032014.39347.86>26.48>20.07<0.9335032014.361.438.15>25.18>20.25<0.9145042014.366.549.83.1>24.69>20.21<0.9B柱535042014.344.324.35.7>26.20>20.05<0.9335032014.357.7365>24.58>20.17<0.9145042014.379.1657.73.2>24.42>20.13<0.974 C柱535032014.336.520.85.5>26.21>20.06<0.9335032014.332.3254>24.50>20.19<0.9145042014.360.748.93>24.34>20.14<0.97.6柱正截面承载力的计算(1)第一层A柱.根据A柱内力组合表,将支座中心处的弯矩设计值换算至支座边缘,并与柱端组合弯矩的调整值比较后,选出最不利内力,进行配筋计算.取20和偏心方向截面尺寸的1/30两者中的较大值,故取=20.柱的计算长度的确定:因为,故应考虑偏心距增大系数.(取1.0).<15,取=1.0对称配筋为大偏压情况再按及相应的M一组计算.=780.4KN,节点上端弯矩M=16.4874 此组内力是非地震组合情况,且无水平荷载效应,故不必进行调整,,为大偏压情况。<0,故应进行构造配筋,满足最小配筋率的要求,单侧配筋率满足,故。选取414(),总配筋率B柱。同样根据B柱内力组合表,将支座中心处的弯矩设计值换算至支座边缘,并与柱端组合弯矩的调整值比较后,选出最不利内力,进行配筋计算.取=20.柱的计算长度的确定:因为,故应考虑偏心距增大系数.(取1.0).<15,取=1.0对称配筋74 为大偏压情况再按及相应的M一组计算.=834.08KN,节点上端弯矩M=4.04。此组内力是非地震组合情况,且无水平荷载效应,故不必进行调整,且取:,为大偏压情况。<0,故应进行构造配筋,满足最小配筋率的要求,单侧配金率满足,故。选取414(),总配金率(3)C柱:同样根据B柱内力组合表,将支座中心处的弯矩设计值换算至支座边缘,并与柱端组合弯矩的调整值比较后,选出最不利内力,进行配筋计算.取20.柱的计算长度的确定:因为,故应考虑偏心距增大系数.74 (取1.0).<15,取=1.0对称配筋为大偏压情况再按及相应的M一组计算.=643.84KN,节点上端弯矩M=3.64。此组内力是非地震组合情况,且无水平荷载效应,故不必进行调整,且取:,为大偏压情况。<0,故应进行构造配筋,满足最小配筋率的要求,单侧配金率满足,故选取414(),总配金率74 7.7柱斜截面承载力的计算对于A柱,剪力设计值:=57.65KN与相对应的轴力:,取N=735KN.柱故该层柱应按构造配置箍筋,柱端加密区的箍筋选用4肢8@100.A柱轴压比。由上表查得则最小体积配箍率取加密区48@100,加密区:柱上端取800mm柱下端地面上下各取500mm,非加密区采用48@200表7.2框架柱的箍筋数量表柱层数0.2N0.3实配加密非加密A柱一49.78540.5>V733868.7<00.4148@10048@150三38.09320.3>V457.7525.5<00.4148@10048@150五47.82320.3>V296.4525.5<00.4148@10048@150B柱一57.65540>V735.5868.7<00.4148@10048@150三35.95720>V509525.5<00.4148@10048@150五24.29>V159525.5<00.4148@10048@15074 C柱一48.85>V663868.7<00.4148@10048@150三25.02>V387525.5<00.4148@10048@150五20.8>V159525.5<00.4148@10048@1507.8板的配筋计算选取一区格双向板肋梁楼盖结构布置如图,板厚100mm,15mm彩色水磨石楼面,20mm的1:3水泥砂浆抹面,15mm厚天棚抹灰,楼面活荷载标准值为,混凝土采用,钢筋采用级钢,按弹性理论计算。彩色水磨石楼面0.015×25=0.38N/㎡20厚的1:3水泥砂浆抹面压实赶光0.020×20=0.40KN/㎡100厚的钢筋混凝土楼板0.12×25=2.5KN/㎡15厚的天棚抹灰0.015×17=0.26KN/㎡合计3.5KN恒荷载标准值:恒荷载设计值:活荷载标准值:活荷载设计值:荷载设计值:弯矩计算(1)计算该区格板跨内弯矩,则取在作用下,各内支座可视为固定,某些区格板跨内最大正弯矩并不在板的中心点处,在作用下,各区格板四边均可视作简支,跨内最大正弯矩则在中心点处,计算时,可近似取二者之和作为跨内最大正弯矩值。(2)求中间支座最大负弯矩(绝对值)按恒荷载及活荷载均为满布各区格板计算,则取荷载。B区格板的计算简图为:74 跨内格板计算简图支座处计算简图则跨内弯矩当时,当时,支座弯矩D区格板的计算简图为:则跨内弯矩当时,74 当时,支座弯矩双向板的钢筋截面面积可近似按计算,取跨内及支座截面h0x=80mm,h0y=70mm,区格板的跨中弯矩考虑乘以折减系数0.8,钢筋采用级钢筋具体计算见下表:截面mH0As选配实配As跨中BLx4.13*0.8802078@180279Ly1,86*0.870106.58@180279DLx6.3880399.78@120419Ly3.8170272.88@180279支座B-D6.3803958@120419第八章基础的设计对于本工程我们采用独立基础,震害资料表明,下述天然地基上的各类建筑很少产生地基破坏从而引起上部结构破坏,故可不进行地基抗震承载力验算:A柱基础采用柱下独立基础,混凝土采用C25,钢筋采用HPB235级.根据冻土深度与高层建筑对基础埋深的要求,假定基础底面标高-2.5m,假定基础高度为1.0m.地基承载力特征值得修正:74 8.1确定A柱基础底面面积。。74 3.8.2A柱基础高度计算3.8.3A柱基础底板配筋的计算74 B柱基础也采用柱下独立基础,混凝土采用C25,钢筋采用HPB235级.根据冻土深度与高层建筑对基础埋深的要求,假定基础底面标高-2.5m,假定基础高度为1.0m.选取B柱的最不利截面内力为:地基承载力特征值得修正:3.8.4确定B柱基础底面面积。。74 3.8.5B柱基础高度计算74 3.8.6B柱基础底板配筋的计算选取C柱的最不利截面内力为:因为C柱与A柱的内力相差不大,故同样可采用A柱的基础及配筋,且满足承载力的要求。第九章楼梯的设计本工程采用板式,现浇整体钢筋混凝土结构楼梯,选取标准层楼梯的半跨进行计算,其结构布置如图.踏面采用20mm厚混合砂浆找平,采用C30()混凝土,钢筋选用HPB235级钢筋,活荷载标准值,按板式楼梯进行设计.74 9.1梯段板的计算图9.1板式楼梯示意图(1)确定板厚梯段板的厚度为:(2)荷载计算(取1m的宽板作为计算单元)楼梯斜板的倾斜角:74 恒荷载踏步重斜板重20mm厚找平层恒荷载标准值恒荷载设计值活荷载标准值活荷载设计值总荷载(3)内力计算(4)配筋计算受力钢筋选用10@120(=651),分布钢筋选用8@250.74 9.2平台板的计算(1)荷载计算(取1m的宽板带计算)恒载的计算:平台板自重(板厚120㎜)20㎜厚的找平层恒荷载的标准值恒荷载的设计值活荷载的标准值活荷载的设计值总荷载(2)内力的计算(3)配筋的计算选用8@150(=335.3)74 3.9.3平台梁的计算(1)荷载的计算楼梯板传来平台板传来梁自重总荷载(2)内力的计算取两者中的较小者(3)配筋的计算纵向钢筋(按第二类倒L形截面计算)翼缘的宽度取值为取选用的314纵向钢筋(=461)74 ②箍筋计算箍筋按构造配置选用8@200.参考文献 [1].混凝土结构设计规范GB50010-2010  [2].建筑结构荷载规范GB50009-2001  [3].建筑地基基础设计规范GB50007-2002  [4].建筑抗震设计规范GB50011-2010  [5].高层建筑混凝土结构技术规程JGJ3-2010  [6].建筑设计防火规范GBJ16-87  [7].民用建筑设计通则JGJ62-90  [8].建筑结构制图标准GB/T50105-2001  [9].房屋建筑制图统一标准GB/T50001-2001[10].龙驭球,《结构力学》,北京:高等教育出版社,2000.7[11].同济大学,西安建筑科技大学,东南大学,重庆建筑大学,《房屋建筑学》北京:中国建筑工业出版社,1997[12].包世华,张铜生,《高层建筑结构设计和计算》,北京,清华大学出版社,2005.12  [13].李必瑜,《房屋建筑学》武汉,武汉工业大学出版社,2000  [14].丰定国,王社良《抗震结构设计》武汉:武汉理工大学出版社,2001  [15].金喜平、邓庆阳,《基础工程》北京:机械工业出版社,2006[16].东南大学、天津大学、同济大学合编,《混凝土结构》中国建筑工业出版社200974 致谢我的毕业设计是在###老师的直接指导之下完成的。毕业设计中的许多思想和方法得益于指导老师的指导和启发,从设计选题到成果的完成倾注了指导老师的巨大心血。毕业设计的完成这标志着大学的生活也许将要以此作为一个结束了,但大学结束了,我们的精神不能结束,我们追求我们事业的雄心壮志永远也不能结束。大学给了我一个追求辉煌的梦想,而我就在这个梦想下努力地朝着它飞翔。“不积跬步无以至千里”本设计能够顺利的完成,也归功于各位任课老师的认真负责,使我能够很好的掌握和运用专业知识,并在设计中得以体现。正是有了他们的悉心帮助和支持,才使我的毕业论文工作顺利完成,在此向土木工程系的全体老师表示由衷的谢意,感谢他们四年来的辛勤栽培!祝你们以及家人身体健康,工作顺利,万事如意!74 DESIGNANDEXECUTIONOFGROUNDINVESTIGATIONFOREARTHWORKSPAULQUIGLEY,FGSIrishGeotechnicalServicesLtdABSTRACTThedesignandexecutionofgroundinvestigationworksforearthworkprojectshasbecomeincreasinglyimportantastheavailabilityofsuitabledisposalareasbecomeslimitedandcostsofimportingengineeringfillincrease.Anoutlineofgroundinvestigationmethodswhichcanaugment‘traditionalinvestigationmethods’particularlyforglacialtill/boulderclaysoilsispresented.Theissueof‘geotechnicalcertification’israisedandrecommendationsoutlinedonitsmeritsforincorporationwithgroundinvestigationsandearthworks.1.INTRODUCTIONTheinvestigationandre-useevaluationofmanyIrishboulderclaysoilspresentsdifficultiesforboththegeotechnicalengineerandtheroaddesignengineer.Theseglacialtillorboulderclaysoilsaremainlyoflowplasticityandhaveparticlesizesrangingfromclaytoboulders.Mostofourboulderclaysoilscontainvaryingproportionsofsand,gravel,cobblesandbouldersinaclayorsiltmatrix.Theamountoffinesgovernstheirbehaviourandthesiltcontentmakesitveryweathersusceptible.Moisturecontentscanbehighlyvariablerangingfromaslowas7%forthehardgreyblackDublinboulderclayupto20-25%forMidland,South-WestandNorth-Westlightgreyboulderclaydeposits.Theabilityofboulderclaysoilstotake-infreewateriswellestablishedandpoorplanningofearthworksoftenamplifiesthis.Thefinesoilconstituentsaregenerallysensitivetosmallincreasesinmoisturecontentwhichoftenleadtolossinstrengthandrenderthesoilsunsuitableforre-useasengineeringfill.Manyofourboulder74 claysoils(especiallythosewithintermediatetypesiltsandfinesandmatrix)havebeenrejectedattheselectionstage,butgoodplanningshowsthattheycaninfactfulfilspecificationrequirementsintermsofcompactionandstrength.Theselectionprocessshouldaimtomaximisetheuseoflocallyavailablesoilsandwithcarefulevaluationitispossibletouseorincorporate‘poorormarginalsoils’withinfillareasandembankments.Fillmaterialneedstobeplacedatamoisturecontentsuchthatitisneithertoowettobestableandtrafficableortoodrytobeproperlycompacted.Highmoisturecontent/lowstrengthboulderclaysoilscanbesuitableforuseasfillinlowheightembankments(i.e.2to2.5m)butnotsuitablefortraffickingbyearthworkplantwithoutusingageotextileseparatorandgranularfillcappinglayer.Hence,itisvitalthattheearthworkscontractorfullyunderstandsthehandlingpropertiesofthesoils,asformanyprojectsthisiseffectivelygovernedbythetrafficabilityofearthmovingequipment.2.TRADITIONALGROUNDINVESTIGATIONMETHODSForroadprojects,aprincipalaimofthegroundinvestigationistoclassifythesuitabilityofthesoilsinaccordancewithTable6.1fromSeries600oftheNRASpecificationforRoadWorks(SRW),March2000.Themajorityofcurrentgroundinvestigationsforroadworksincludesacombinationofthefollowingtogivetherequiredgeotechnicaldata:§Trialpits§Cablepercussionboreholes§Dynamicprobing§Rotarycoredrilling§In-situtesting(SPT,variableheadpermeabilitytests,geophysicaletc.)§LaboratorytestingTheimportanceof‘phasing’thefieldworkoperationscannotbeoverstressed,particularlywhenassessingsoilsuitabilityfromdeepcutareas.Cablepercussionboreholesarenormallysunktoa74 desireddepthor‘refusal’withdisturbedandundisturbedsamplesrecoveredat1.00mintervalsorchangeofstrata.Inmanyinstances,cablepercussionboringisunabletopenetratethroughverystiff,hardboulderclaysoilsduetocobble,boulderobstructions.Sampledisturbanceinboreholesshouldbepreventedandlossoffinesiscommon,invariablythisleadstoinaccurateclassification.Trialpitsareconsideredmoreappropriateforrecoveringappropriatesizesamplesandforobservingtheproportionofclaststomatrixandsizesofcobbles,boulders.Detailedandaccuratefielddescriptionsarethereforevitalforcutareasandtrialpitsprovideanopportunitytoexaminethesoilsonalargerscalethanboreholes.Trialpitsalsoprovideaninsightontrenchstabilityandtoobservewateringressanditseffects.Asuitablyexperiencedgeotechnicalengineerorengineeringgeologistshouldsupervisethetrialpittingworksandrecoveryofsamples.Thecharacteristicsofthesoilsduringtrialpitexcavationshouldbecloselyobservedasthisprovidesinformationonsoilsensitivity,especiallyifwaterfromgranularzonesmigratesintothefinematrixmaterial.Veryoften,theconditionofsoilonthesidesofanexcavationprovidesamoreaccurateassessmentofitsin-situcondition.3.SOILCLASSIFICATIONSoildescriptionandclassificationshouldbeundertakeninaccordancewithBS5930(1999)andtestedinaccordancewithBS1377(1990).Theengineeringdescriptionofasoilisbasedonitsparticlesizegrading,supplementedbyplasticityforfinesoils.Formanyofourglacialtill,boulderclaysoils(i.e.‘mixedsoils’)difficultiesarisewithdescriptionsandassessingengineeringperformancetests.Asoutlinedpreviously,Irishboulderclaysusuallycomprisehighlyvariableproportionsofsands,gravelsandcobblesinasiltorclaymatrix.Lowplasticitysoilswithfinescontentsofaround10to15%oftenpresentthemostdifficulties.BS5930(1999)nowrecognisesthesedifficultiesindescribing‘mixedsoils’–thefinesoilconstituentswhichgoverntheengineeringbehaviournowtakespriorityoverparticlesize.74 Akeyparameter(whichisoftenunderestimated)inclassifyingandunderstandingthesesoilsispermeability(K).Inspectionoftheparticlesizegradingswillindicatemagnitudeofpermeability.Wherepossible,triaxialcelltestsshouldbecarriedoutoneitherundisturbedsamples(U100’s)orgoodqualitycoresamplestoevaluatethedrainagecharacteristicsofthesoilsaccurately.Lowplasticityboulderclaysoilsofintermediatepermeability(i.e.Koftheorderof10-5to10-7m/s)canoftenbe‘conditioned’bydrainagemeasures.Thisusuallyentailstheinstallationofperimeterdrainsandsumpsatcutareasorborrowpitssoastoreducethemoisturecontent.Hence,withsmallreductioninmoisturecontent,difficultglacialtillsoilscanbecomesuitableasengineeringfill.土方工程的地基勘察与施工保罗·圭格利爱尔兰岩土工程服务有限公司摘要:当工程场地的处理面积有限且填方工程费用大量增加时,土方工程的地基勘察设计与施工已逐渐地变得重要。由于冰渍土以及含砾粘土的提出使土方工程地基勘察方法的纲要比传统的勘察方法更详细。本文提出“岩土认证”观点以及对地基勘察与土方工程相结合的优点加以概要说明。1、引言许多爱尔兰含砾粘土的勘察与再利用评价使岩土工程师与道路工程师感到为难。这些冰渍土或含砾粘土主要表现为低可塑性而且还含有从粘土到漂石的不同粒径颗粒。大部分本地粘土与淤泥质土中包含不同比例的砂、砾石、卵石、漂石。颗粒级配控制着土体的行为,而且淤泥使土体性质易受天气变化影响。74 土体含水量随着地区不同而不同,从都柏林硬灰黑含砾粘土的7%到中部、西南部或西北部浅灰色含砾粘土沉积物的20%-25%。含砾粘土吸附水的能力建立的较好但土方工程中计划的不恰当常导致其扩大。一般来说,良好级配的土体对于含水量的轻微变大相当敏感,将导致强度下降或不适合用作工程回填土。许多含砾粘土(尤其中等淤泥质土或良好级配的砂)在选择阶段已经被筛除,但事实上它们能对压缩或强度起到特定的作用。筛选过程应尽量使用本地土体或者回填区或路堤边性质相对较差的土体,通过仔细评价应加以应用。回填材料必须保持一定的含水量,既不能太湿导致土体不稳定也不能太干以致不能被充分压缩。高含水量、低强度含砾粘土适用于低路堤回填(相当于2到2.5米的高度)但不适用于没有使用土工织布隔离与回填层的土方回填工程。因此,土方工程承包商充分认识土体的处理特性相当重要,因为许多工程都受到挖掘设备通行能力的影响。2、传统地基勘察方法对于道路工程来讲,地基勘察最基本目标是对土体适用性进行类似表6.1的分类,该表源于国家档案登记处2000年3月版的道路施工规范。目前大部分道路施工中的地基勘察包含以下提供有关岩土参数的试验方法:◆取样孔◆静压法取样◆动力探测◆回转钻进◆原位测试(标准贯入试验,变水头渗透试验,岩土物理试验等)◆室内试验评价场地工作的重要性特别是评价土体深部取样区域的适用性时不能过分强调其适用性。静压法取样通常将取样器下沉至要求深度进行取样,并每间隔一米进行取样。在许多情况下,静压法取样由于卵石、漂石阻碍不能压入非常坚硬的含砾粘土。土样在钻孔内应尽量少扰动,但级配变坏是很正常的,级配变坏将导致土样分类不够精确。74 取样孔对于恢复适当尺寸的土样以及观察碎屑岩在卵石、漂石中所占比例来说应该是适当的。因此,详尽且精确的地区描述取样区域以及取样空来说都相当重要,而且还为它们提供了检查土体在钻孔范围以外性质的良机。取样孔也提供了孔壁稳定性的评价以及观察孔壁内水进入时所造成的影响。一位有经验的岩土工程师或工程地质专家应监督取样孔工作以及土样的恢复。因为土样性质为土样敏感性提供了信息,所以取样时土体性质应被密切关注,尤其是水从小颗粒区域迁移到良好级配区域。而且土体在开挖时的条件为其原位条件提供了一个相对精确的评价。3、土的分类土的描述与分类应该依照英国标准5930(1999)进行并依照英国标准1337(1990)进行测试。土的工程描述应基于按粒径大小分级并依照良好级配土的可塑性进行补充。对于许多冰渍土或含砾粘土(混合土)的难点在于其描述与工程性质测试的评价。关于以前的地基勘察纲要,爱尔兰含砾粘土的粘土与淤泥质土中常由易变比例的砂、砾石、卵石组成。良好级配且含水量为10%-15%的低可塑性土最难进行描述与分类。现在英国标准5930(1999)已认识到描述“混合土”所存在的难点——土的良好级配较之颗粒尺寸对于控制着土的工程性质更优越。一个关键参数在土分类以及理解过程中经常被低估,该参数就是渗透系数K。检查土的颗粒级配将间接说明土的渗透系数的大小。假如可能,为了准确评价土体的排水特性,三轴单元试验将采用无扰动原状土样或高质量土样进行试验。低可塑性的中等渗透性含砾粘土(K大约在10-5到10-7米.秒范围内)能经常通过不同排水条件进行“模拟”。其必须在取样区域安装排水边界以及水坑边界或借用钻孔以减少土样的含水量。因此,由于含水量的小量减少,工程性质复杂的冰渍土也能当作合适的工程填土加以应用。74'