• 2.22 MB
  • 126页

华中科技大学工程热力学课件 第3章纯物质的热力学过程-通用.ppt

  • 126页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
第三章纯物质的性质2021/7/291 §3-1理想气体的概念工程热力学需要过程工质的热力性质方面的知识气态物质具有显著的膨胀压缩能力,适合做为热力过程的工质视其距液态的远近,分为气体和蒸气2021/7/292 工程热力学的两大类工质1、理想气体(idealgas)可用简单的式子描述如汽车发动机和航空发动机以空气为主的燃气、空调中的湿空气等2、实际气体(realgas)不能用简单的式子描述,真实工质火力发电的水和水蒸气、制冷空调中制冷工质等2021/7/293 1.分子之间没有作用力2.分子本身不占容积但是,当实际气体p很小,V很大,T不太低时,即处于远离液态的稀薄状态时,可视为理想气体。理想气体模型现实中没有理想气体2021/7/294 实际气体p很小,V很大,T不太低时,即处于远离液态的稀薄状态时,可视为理想气体。哪些气体可当作理想气体T>常温,p<7MPa的双原子分子理想气体O2,N2,Air,CO,H2如汽车发动机、航空发动机以空气为主的燃气等三原子分子(H2O,CO2)一般不能当作理想气体特殊:如空调湿空气,高温烟气的CO2,可以2021/7/295 §3-2理想气体状态方程凡是遵循克拉贝隆方程的气体就是理想气体根据分子运动论和理想气体模型,可以导出理想气体的状态方程即克拉贝龙方程理想气体状态方程有以下几种不同表达形式,可根据具体条件分别使用:2021/7/296 式中n——气体的千摩尔数,kmol;⑴PV=nRTR——通用气体常数,与气体种类和状态无关,8.3145kJ/(kmol·K)P、V、T分别为气体的压力(Pa)、容积(m3)和温度(K)2021/7/297 ⑵PV=mRgT式中m——气体的质量,kg;Rg——气体常数J/(kg·K),取决于气体的种类,但与气体的状态无关Rg与R的关系为:上式中的M为气体的千摩尔质量(相对分子质量Mr冠以kg单位),kg/kmol教材附表2给出各种气体的摩尔质量和气体常数Rg的值(注;其中单位有误)2021/7/298 对一定质量的气体(m为定数),由方程⑵知上式说明,一定质量的气体当状态(P,T)不同时,其容积(V)是不同的⑶Pv=RgT这是对1kg气体列出的状态方程,是课程中最常使用的形式式中v是气体的比体积,m3/kg2021/7/299 ⑷对mkg质量的微分形式变质量系统的质量是一个状态参数,瞬变流动系统热力学分析时,将会使用到此式当系统质量为定值,有2021/7/2910 小结状态方程⑶Pv=RgT(1kg)⑷⑵PV=mRgT(mkg)⑴PV=nRT(nkmol)(变质量系统)2021/7/2911 使用状态方程时注意事项:1、绝对压力,Pa2、热力学温度,K3、区分:气体常数Rg与通用气体常数R——J/(kgK),J/(kmolK)比体积v与体积V——m3/kg,m3气体常数Rg与气体种类有关,与状态无关;通用气体常数R为恒量8.3145kJ/(kmolK)2021/7/2912 例3-1:一钢瓶的容积为0.03m3,其内装有压力为0.7Mpa、温度为20℃的氧气。现由于使用,压力降至0.28Mpa,而温度未变。问钢瓶内的氧气被用去了多少?解:根据题意,钢瓶中氧气使用前后的压力、温度和体积都已知,故可以运用理想气体状态方程式求得所使用的氧气质量。氧气处于初态1时的状态方程为:故初态1时的氧气质量为:2021/7/2913 氧气处于终态2时的状态方程为:故终态2时的氧气质量为:被用去的氧气质量为:2021/7/2914 例3-2:某300MW机组锅炉燃煤所需的空气量在标准状态下为120×103m3/h,送风机实际送入的空气温度为27℃,出口压力表的读数为5.4×103Pa。当地大气压力为0.1Mpa,求送风机的实际送风量(m3/h)。解由状态方程知实际送风量为2021/7/2915 在实际工程中常常涉及标准立方米作为单位的情形,这样就要将“标准体积”与“实际体积”进行换算。在利用状态方程计算涉及体积流量和质量流量的问题时,只需将体积流量qv视为体积V,质量流量qm视为m即可,此时状态方程应为2021/7/2916 WeknowittakesmoreenergytowarmupsomematerialsthanothersForexample,ittakesabouttentimesasmuchenergytowarmupapoundofwater,asitdoestowarmupthesamemassofiron.§3-3理想气体的比热容2021/7/2917 热容:物体温度升高1K(1℃)时所需的热量称为热容。比热容:加热单位量物质使其温度升高1K(1℃)时所需的热量2021/7/2918 对于1kg物质的任何微元加热过程,有对有限加热过程,有影响比热容的因素有:所取的物量单位、物质的种类、物质的状态(气体的温度)热力过程性质,2021/7/2919 Ts(1)(2)1K比热容是过程量还是状态量?c1c2用的最多的某特定过程的比热容定容比热容定压比热容2021/7/2920 1.定容比热容(cv)和定压比热容(cP)定容比热容cv任意准静态过程u是状态量,设定容物理意义:v时1kg工质升高1K内能的增加量2021/7/2921 定压比热容cp任意准静态过程h是状态量,设定压物理意义:p时1kg工质升高1K焓的增加量2021/7/2922 Heatisaddedtoasubstanceofmassminafixedvolumeenclosure,whichcausesachangeininternalenergy,U.Thus,Q=U2-U1=ΔU=mCvΔTThevsubscriptimpliesconstantvolumeHeat,QaddedmmΔTinsulation2021/7/2923 Heatisaddedtoasubstanceofmassmheldatafixedpressure,whichcausesachangeininternalenergy,U,ANDsomePVwork.Heat,QaddedDTmmDx2021/7/2924 ConsideraconstantpressuresystemIttakesmoreenergytowarmupaconstantpressuresystem,becausethesystemboundariesexpandYouneedtoprovidetheenergytoincreasetheinternalenergydotheworkrequiredtomovethesystemboundary2021/7/2925 We’llworryaboutthemathlater,but…CpisalwaysbiggerthanCvhincludestheinternalenergyandtheworkrequiredtoexpandthesystemboundaries2021/7/2926 cv和cp的说明1、cv和cp,过程已定,可当作状态量。2、前面的推导没有用到理想气体性质,所以3、h、u、s的计算要用cv和cp。适用于任何气体。2021/7/2927 2.质量比热容、容积比热容、千摩尔比热容按照所取的物质量的单位不同,比热容分有:质量比热容、容积比热容和千摩尔比热容⑴质量比热容(通常简称为比热容)加热1kg物质使其温度升高1K(℃)所需的热量,称为该物质的质量比热容使用符号c代表,单位kJ/(kg∙K),即kJ/(kg·℃)2021/7/2928 ⑵容积比热容(体积热容)气态物质常以标准立方米(Nm3)作为物量单位加热1Nm3气体使其温度升高1K(℃)所需的热量称为该气体的容积比热容代表符号C’,单位kJ/(Nm3·K),即kJ/(Nm3·℃)⑶千摩尔比热容加热1kmol物质使其温度升高1K(℃)所需的热量称为该物质的千摩尔比热容(千摩尔热容)符号Cm,单位为kJ/(kmol·K),kJ/(kmol·℃)2021/7/2929 ⑷三种比热容的换算关系阿伏伽德罗假说:同温同压下任何气体的千摩尔容积(Vm)相同,标准状况下为22.414立方米(Nm3)标准状况:T=273.15KP=0.101325MPa若气体的千摩尔质量为M,则以上三种比热容的换算关系应为:2021/7/2930 3.热容比、迈耶公式⑴热容比(ratioofspecificheat)物质的定压比热容与定容比热容之比为热容比习惯使用代表符号:、或k定容比热容和定压比热容都是系统的热力状态参数,因此热容比也是系统的一个状态参数2021/7/2931 ⑵迈耶公式(Mayer’sequation)①理想气体的热力学能仅为其温度的函数理想气体分子间无相互作用力,不具有内位能,热力学能仅包含内动能理想气体热力学能u内位能f(v)内动能f(T)u=f(T)0理想气体的热力学能仅为其温度的函数理想气体的定容比热容cv仅为其温度的函数2021/7/2932 由理想气体状态方程Pv=RgT②理想气体的焓仅为其温度的函数以及焓的定义式h=u+Pv有h=u+RgT=f(T)即理想气体的焓仅为其温度的函数按定压比热容的定义,对理想气体应有理想气体的定压比热容cP仅为其温度的函数2021/7/2933 ③迈耶公式的导出由h=u+RgT,对T求导,有cpcv=Rg(理想气体)根据前面的讨论,对理想气体应有以上为迈耶公式,仅适用于理想气体迈耶公式说明:理想气体的定压比热容cp与其定容比热容cv之差恒等于其气体常数Rgcp>cv2021/7/2934 ④cp、cv、Rg及k()之间的关系由热容比的定义式和迈耶公式cpcv=Rg可得以下重要关系:(理想气体)物质的热容比k恒大于1,且随温度升高而减小2021/7/2935 4.理想气体热容的计算理想气体的比热容仅为温度的函数;蒸汽的比热容则还与压力有关对比热容与温度的关系处理不同,使比热容有a、按定比热c、按真实比热计算b、按平均比热法计算2021/7/2936 分子运动论a.按定比热计算理想气体热容运动自由度单原子双原子多原子Cv,m[kJ/kmol.K]Cp,m[kJ/kmol.K]k1.671.41.292021/7/2937 b.按平均比热计算理想气体的热容tt2t1c(cp,cv)附表3,4,5,6c=f(t)摄氏℃2021/7/2938 线性插值法查表想要查出平均比热容表上未列出的平均比热容1.找到表中与t紧邻的上下两个温度t1和t2(0,t)的平均比热容2.查出对应的平均比热容c1、c2(350℃)(300℃)(400℃)(0.950)(0.965)方法:(350℃)[]2021/7/2939 Thatonlyworks,ifthevalueofheatcapacitychangeslinearlyintherangeyouareinterestedin.OKApproximationCrummyApproximationSometimesthebestyoucandoistheroomtemperaturevalue2021/7/2940 Whatifyouneedabetterapproximation?AllofthesefunctionshavebeenmodeledusingtheformCp=a+bT+cT2+dT3Thevaluesoftheconstantsareintheappendixofourbook–Table2021/7/2941 c.按真实比热计算理想气体的热容根据实验结果整理理想气体2021/7/2942 小结比热容与过程的性质有关,通常是过程量;但在过程一定时则是状态量。定容比热容cv与定压比热容cP是两个重要参数比热容与物质的种类有关,计算过程热量时要注意使用对应物质、对应过程的比热容只在纯粹加热,或内部可逆的过程中,才能使用对应的比热容经由计算热量热工计算中计算热力学能,焓,热量时都可能需要知道比热容2021/7/2943 §3.4理想气体的热力学能、焓和熵1.理想气体的热力学能①理想气体的热力学能仅为其温度的函数1843年焦耳实验,对于理想气体pvT不变AB绝热自由膨胀真空2021/7/2944 理气绝热自由膨胀pvT不变理想气体u只与T有关2021/7/2945 理想气体热力学能的物理解释热力学能=内动能+内位能T,v理想气体无分子间作用力,热力学能只决定于内动能T2021/7/2946 ②理想气体的定温过程亦即定热力学能过程例cbaPT=常数.(u=常数h=常数)P-v图上理想气体热力过程ab和aca、b在同一定温线上应有uab=uac2021/7/2947 ③理想气体热力学能的计算理想气体,任何过程理想气体实际气体2021/7/2948 例3-1一个门窗打开的房间,若房内空气压力不变而温度上升,问房内空气的总热力学能将如何变化(按定比热容考虑)?解:视空气为定比热容理想气体由于房间内P、V恒定不变,根据理想气体状态方程应有由于可见:2021/7/2949 2.理想气体的焓①理想气体的焓仅为其温度的函数理想气体,任何过程理想气体实际气体理想气体h只与T有关②理想气体的定温过程亦即定焓过程2021/7/2950 例3-2V=0.55m3的刚性容器中装有P1=0.25MPa、T1=300K的CO2,N2气在输气管道中流动,参数保持PL=0.85MPa、TL=440K,如图4-31所示。打开阀门充入N2气,直到容器中混合气体的压力升到P2=0.5MPa时关闭阀门。整个充气过程绝热,试求容器内混合物的终温T2和质量m2。按定值比热容计算2021/7/2951 容器中CO2的质量解:容器内起始的热力学能充气后P2V=nRT(因混合后成分未知,Rg为未知数)①00000由一般形式能量方程按题意;忽略气体流动的动能和重力位能有2021/7/2952 将式①代入上式,整理得解得2021/7/2953 因此,有2021/7/2954 3.理想气体的熵⑴状态由(T,v)给定时的熵变计算由Tds=du+Pdv由理想气体状态方程,有代入上式,有对简单可压缩物质可逆过程有因du=cvdT2021/7/2955 ······①(理想气体任何过程)对有限过程,有······②(理想气体任何过程)当比热容为定值时,有(定比热容理想气体任何过程)······③2021/7/2956 ⑵状态由(T,P)给定时的熵变计算由Tds=dhvdP由理想气体状态方程,有代入上式,有对简单可压缩物质可逆过程有因dh=cPdT······④(理想气体任何过程)2021/7/2957 对有限过程,有······⑤(理想气体任何过程)当比热容为定值时,有(定比热容理想气体任何过程)······⑥⑶状态由(v,P)给定时的熵变计算由经整理后2021/7/2958 (理想气体任何过程)······⑦对有限过程,有(理想气体任何过程)······⑧······⑨(定比热容理想气体任何过程)提示:以上理想气体熵变各计算式虽在可逆条件下导得,但是,鉴于熵为状态参数,在给定的两状态间系统的熵变一定,与过程无关,因此,它们适用于任何过程(可逆和不可逆过程)2021/7/2959 (理想气体任何过程)(理想气体任何过程)(定比热容理想气体任何过程)(理想气体任何过程)(理想气体任何过程)(定比热容理想气体任何过程)(理想气体任何过程)(理想气体任何过程)(定比热容理想气体任何过程)2021/7/2960 附表给出了空气和其他一些气体的热力性质·利用热力性质表进行熵的计算其结果是精确的·熵不仅是温度的函数气体通常取P0=101325Pa,T0=0K为确定相对熵值的基准态,并令这时的熵值s00K=0任意状态(T,P)下的熵相对值则为·表中列出的s0=f(T)是按真实比热容的求积结果其实就是标准大气压P0=101325Pa下基于上述零点的熵相对值·根据T从表中查得s0,再据P便可方便算出精确的熵相对值 例3-3绝热刚性容器中间用隔热板将容器一分为二,左侧有0.05koml的300K、2.8MPa的高压空气,右侧为真空。若抽去隔板,试求容器中的熵变。解:取容器内气体为系统,视空气为定比热容理想气体按题意:V2=2V1;Q=0;W=0由能量平衡Q=U+WU=nCm,vT=0T1=T2有2021/7/2962 空气的熵变(以T,V给定气体状态)1kmol气体熵变2021/7/2963 §3-5理想气体混合物热力过程中的工质大都为气体混合物例:锅炉烟气CO2,CO,H2O,N2燃气轮机中的燃气空调工程中的湿空气水蒸气含量低,稀薄,当作理想气体水蒸气含量可变化,单独研究理想气体的混合物仍为理想气体2021/7/2964 1.理想混合气体的假拟分子假想理想气体由某单一分子(假拟分子)组成,分子数等于混合气体中各组元分子之和,分子的总质量等于各组元的分子质量之和。2021/7/2965 2.混合气体的千摩尔质量和折算气体常数混合气体由k种成分(组元)组成,各组元的千摩尔数分别为n1,n2,……nk;混合气体相应于其假拟分子的千摩尔数为n,则⑴混合气体的千摩尔数混合气体假拟千摩尔数等于各组元千摩尔数之和。2021/7/2966 各组元的质量分别为m1,m2,……mkkg千摩尔质量分别为M1,M2,……Mkkg/kmol混合气体质量为mkg,折算千摩尔质量为Meqkg/kmol,由质量守恒定律⑵混合气体的假拟(折算)千摩尔质量⑶混合气体的折算气体常数2021/7/2967 3.混合气体中各组元的分压力Pi定义:在混合气体的温度下,各组元单独占有混合气体的总容积时相应具有的压力pTVpTVpTVpTV分压力pi2021/7/2968 道尔顿(Dolton)定律:混合气体的总压力等于各组元分压力之和⑵道尔顿分压定律⑴以分压力表达的第i组元的状态方程PiV=miRgiTPiV=niRT及2021/7/2969 4.混合气体中各组元的分容积Vi分容积定义:在混合气体的温度下,当某组元的压力等于混合气体的总压力时,相应具有的容积pTVpTVpTVpTV分容积Vi2021/7/2970 ⑵混合气体分容积定律亚美格(Amagat)定律:混合气体的总容积等于各组元分容积之和PVi=niRT⑴以分容积表达的第i组元的状态方程PVi=miRgiTPVi=niRT及2021/7/2971 5.混合气体的成分⑴质量成分定义:各组元在混合气体总质量中所占有的份额m=m1+m2+······+mk令w1+w2+······+wk=1wi为i组分的质量份额质量守恒2021/7/2972 ⑵容积成分各组元的分容积在混合气体总容积中所占的份额V=V1+V2+······+Vk令1+2+······k=1i为i组分的容积份额2021/7/2973 ⑶千摩尔成分定义:各组元千摩尔数在混合气体总千摩尔数中所占有的份额n=n1+n2+……+nk令x1+x2+······+xk=1xi为i组分的千摩尔份额2021/7/2974 6.混合气体的分压力与其成分的关系⑴混合气体各种成分的换算PVi=miRg,iTPV=mRg,eqT对混合气体及其第i种组分,可分别写出另外,根据V=nVm,应有2021/7/2975 同温同压下任何1千摩尔气体有相同容积Vmi=Vm混合气体的容积成分与千摩尔成分相同混合气体各种成分间的换算关系为:因为气体常数与千摩尔质量成反比2021/7/2976 ⑵各组分的分压力与成分的关系对于混合气体中的同一组元,有可见在锅炉的热力计算中使用旧工程单位制时,由于烟气的总压力接近等于1bar或1at,因而往往直接将烟气中某一组分的容积份额当作其分压力2021/7/2977 7.混合气体的比热容、热力学能、焓和熵⑴混合气体的比热容当混合气体温度升高1℃时,所有组元的温度均同时升高1℃混合气体所吸的热量,等于各组元吸热量之和一定质量混合气体的吸热量可见kJ/(kg∙K)同理kJ/(Nm3∙K);kJ/(kmol∙K)2021/7/2978 ⑵混合气体的热力学能热力学能为广延参数混合气体的热力学能应为其各组元热力学能之和kJ/kg⑶混合气体的焓kJ/kg其它成分下的计算方法,依此类推2021/7/2979 ⑷混合气体的熵系统的熵是广延参数混合气体的熵应为其各组元的熵之和对于比熵:熵不仅是温度的函数对第i组元对混合气体kJ/(kg∙K)kJ/(kg∙K)当气体的状态按(T,P)给定2021/7/2980 注意:wi——i组元的质量份额Pi——i组元的分压力同种气体分子不可辨认同温同压(即状态相同)下同种气体相混不会引起系统的熵变不同种气体相混则会引起系统的熵变不要引用分压力的概念不要引用上式进行熵变计算2021/7/2981 例3-4:锅炉燃烧产生的烟气中,按容积分数二氧化碳占12%,氮气占80%,其余为水蒸气。假定烟气中水蒸气可视为理想气体,试求:(1)烟气折合千摩尔质量和折合气体常数;(2)各组元的质量分数;(3)若已知烟气的压力为0.1MPa,试求烟气中水蒸气的分压力。可求得烟气的折合千摩尔质量为:解:(1)按题意:2021/7/2982 折合气体常数为:(2)各组元的质量分数:2021/7/2983 (3)可求得烟气中水蒸气的分压力:2021/7/2984 AB例3-3(补充题)绝热刚性容器用隔板分成A、B两部分。A的容积VA=0.4m3,内有0.4MPa、15℃的氧气;B中有同样压力和温度的氮气,体积VB=0.6m3。现抽去隔板让两部分气体混合,求:⑴混合后容器内气体的温度和压力;⑵试分析容器内气体的状态是否发生了变化。2021/7/2985 解:⑴Q=0;W=0U=0取容器内全部气体为系统,并视为理想气体按题意,应有即题给,混合后对各组元又应有因此2021/7/2986 又,由道尔顿定律因为所以由于所以;可见混合后容器内气体的温度和压力都不改变2021/7/2987 ⑵A、B气体的质量各为已知因此,混合引起的气体熵变为2021/7/2988 气体的熵有了变化,可见混合后容器内气体的状态发生了变化提示:这里使用的是分压力对应的总容积,不是分容积;通过确定混合后两种组元分压力的办法亦可求得气体的熵变,但过程要复杂些。2021/7/2989 quiz何谓理想气体和实际气体?火电厂的工质水蒸气可视为理想气体吗?热力学第一定律的数学表达式可写成或两者有何不同?气体常数Rg与气体种类是否有关?与状态呢?理想气体的cp-cv=,与气体状态关?容器内盛有一定状态的理想气体,如将气体放出一部分后重新又达到新的平衡状态,放气前后两个平衡状态之间可否表示为下列形式:(a)(b)2021/7/2990 §3.6纯物质P-V-T关系纯物质化学成分均匀一致的物质系统相物质内部性质均匀一致的某种聚集体复相系举例:同一物质的汽液共存系统、油水混合物单元系由单一成分构成的物质系统典型单元系举例:1atm,0℃下,冰、水混合物1atm,100℃,水,蒸汽混合物 单元系相变的一般特征单元系相变统称为一级相变相变时体积要发生变化伴随有相变潜热。相变时的体积变化和相变潜热的大小与发生相变的具体条件有关一定压力下,相变潜热一定 纯物质P-V-T关系 三相点(triplepoint)——物质唯一可复现的点纯物质的汽液固三相平衡共存时的状态称为三相点。AD——升化曲线AB——溶解曲线AC——汽化曲线A:三相点 汽液相变的若干概念(一)1.汽化(vaporization):物质由液态变为汽态的过程。汽化过程包括蒸发和沸腾两种现象:蒸发(evaporation)特指发生在液体表面的汽化过程,可在任何温度下发生。汽化(boiling)在液体内部发生并产生大量气泡的汽化过程。沸腾过程只在沸点下才会发生。 汽液相变的若干概念(二)2.凝结(condensation)物质由汽态转变为液态的过程称为凝结。又称液化现象,是汽化的反过程3.汽化潜热(latentheatofvaporation)汽化过程中1kg液态物质(饱和液)完全转变为汽态时所需的热量称为汽化潜热。 汽液相变的若干概念(三)4.饱和(saturation)现象一定条件下,当液化和汽化过程达到动态的平衡,物质汽液两相的质量各自保持不变时,称这时的系统为饱和状态。饱和状态下的液体称为饱和液(saturatedliquid),蒸汽则称为饱和蒸汽(saturatedsteamorvapor).例如:处于平衡状态的汽液混合物沸腾中的液体 汽液相变的若干概念(四)5.饱和蒸汽压饱和状态下的蒸汽压力,亦即液体沸腾时所产生的气泡中的蒸汽压力称为饱和蒸汽压。对应一定的温度应有一定的饱和蒸汽压;反之,一定的压力对应一定的饱和温度(ts)。饱和蒸汽压随温度的升高而增大 §6.3安德鲁试验 CriticalPointAbovethecriticalpointthereisnosharpdifferencebetweenliquidandgas!! Pressure,Temperature,andStatePlasmaGasVaporLiquidSolidTtripleTcriticalPtriplePcriticalPressureTemperatureCriticalPointTriplePoint 安德鲁试验结果一点两线三区五态一点物质的临界点两线饱和蒸汽状态连线(上界限线)饱和液体状态连线(下界限线)三区汽态区:上界限线与临界等温线上段右侧区域液态区:下界限线与临界等温线上段左侧区域湿蒸汽区:上、下界限线之间的锺罩形区域 安德鲁试验结果五态过热蒸汽:一定压力下,温度高于对应饱和温度的蒸汽。或者说:一定温度下,压力低于饱和蒸汽压的蒸汽。饱和蒸汽:一定压力下,温度等于对应饱和温度的蒸汽。或者说:一定温度下,压力等于饱和蒸汽压的蒸汽。湿蒸汽:饱和蒸汽与饱和液体的机械混合物。饱和液体:一定压力下,温度等于对应饱和温度的液体。或者说:一定温度下,压力等于饱和蒸汽压的液体。未饱和液体:一定压力下,温度低于对应饱和温度的液体。或者说:一定温度下,压力高于饱和蒸汽压的液体。 §3.6水的定压加热汽化过程最早广泛使用的工质:⊙容易获得⊙热力性质适宜特点:离液态近,不能视为理想气体!! ConsiderwhathappenswhenweheatwateratconstantpressurePistoncylinderdevice–maintainsconstantpressureLiquidWater Tv12534 水的定压汽化三阶段未饱和水的定压饱和阶段ab(12),发生在液相区;饱和水的定压汽化阶段bd(24),发生在液一汽两相区;饱和蒸汽的定压过热阶段de(45),发生在汽相区。 TwoPhaseRegionCompressedLiquidSuperheatedGas 定压汽化过程的P-v图I:过冷水区II:湿蒸气区III:过热蒸气区三区:一点:临界点C二线:1‘-2’-C:饱和水线1“-2”-C:饱和蒸气线五态:过冷水;饱和水;湿饱和蒸气;干饱和蒸气;过热蒸气 定压汽化过程的T-s图sTC1‘1“2‘2“IIIIIITcrp=pcrI:过冷水区II:湿蒸气区III:过热蒸气区三区:一点:临界点C二线:1‘-2’-C:饱和水线1“-2”-C:饱和蒸气线五态:过冷水;饱和水;湿饱和蒸气;干饱和蒸气;过热蒸气 未饱和水的定压饱和阶段三种名称压缩水压力高于水温对应的饱和压力过冷水温度低于水压对应的饱和温度;过冷度未饱和水上述两种未达到饱和状态的水的统称 饱和水的定压汽化阶段汽化潜热γ定压汽化过程所需的热量干度xmv:饱和蒸气质量mf:饱和水质量 干饱和蒸汽的定压过热阶段过热蒸汽及过热度温度高于所处压力下的饱和温度的蒸汽。这两个温度之差为过热度。过热蒸汽的压力低于其温度所对应的饱和压力。 §6.5水和水蒸汽的状态参数从水蒸汽图表中查得按u=h-pv计算1。图表法求状态参数:p,v,t,h,s,u2。物性软件ASMEpropertycodeUofOpropertycode~25种流体的全范围物性计算 一、零点的规定按1963年的第六届国际水蒸汽会议的规定,选定水的三相点,即273.16k的液相水作为基准点。基准点上的液态水的热力学能和熵为零u’0=s’0=0容易证明:h’0≈0此时水的比容v’0=0.0010022m3/kg,p0=pTP=0.006112bar 二、温度为0.01oC,压力为p的过冷水水可以近似看成不可压缩介质:因为温度t1=t0,又有v1=v0,压力不高时: 三、温度为t、压力为p的饱和水设想一个等压过程从t=0.01oC加热到t,则当水的温度小于100℃时,可以把水的cp当作定值,cp=4.1868kJ/(kg.K) 四、压力为p的干饱和蒸气ph”3MPa临界点h”h’g压力为p,温度为Ts的干饱和蒸气,参数:汽化潜热:热力学能的增量膨胀功h”,h’,和g的变化趋势示于图中 五、压力为p的湿饱和蒸气因为是两相混合物,需用干度x确定其状态任一比参数y(如u,h,s及v等)可由下式计算: 六、压力为p的过热蒸气在饱和蒸气的基础上继续加热,即得过热蒸气。参数满足以下基本关系:过热度:过热热量: §6.6水蒸气表和图水蒸汽表:饱和水和干饱和蒸汽表、未饱和水和过热蒸汽表未饱和水和过热蒸汽表:黑线以上为未饱和水,黑线以下为过热蒸汽。饱和水和干饱和蒸汽表:‘代表饱和水,“代表干饱和蒸汽。按压力或温度排。根据已知条件确定工质的状态,然后查相应的表格。 T-S图优点:便于循环分析分为:湿区和过热区;定干度线、定压线和定容线等。缺点:热量和功以面积表示。sTCx=0x=1 H-S图优点:用线段的长度表示热量和功;分为:过热蒸汽区和湿蒸汽区;定压线、定干度线、定温线。湿蒸汽区:定压线=定温线定压过程热量=焓差;绝热过程技术功=焓差锅炉蒸气产生水蒸气在汽轮机中膨胀 H-S图湿蒸汽区:定压线=定温线二区:过热蒸汽区湿蒸汽区三线:定压线定干度线定温线粗黑线为界