- 439.00 KB
- 47页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
第三章 理想气体的性质
3-1理想气体的概念理想气体指分子间没有相互作用力、分子是不具有体积的弹性质点的假想气体实际气体是真实气体,在工程使用范围内离液态较近,分子间作用力及分子本身体积不可忽略,热力性质复杂,工程计算主要靠图表理想气体是实际气体p0的极限情况。理想气体与实际气体
提出理想气体概念的意义简化了物理模型,不仅可以定性分析气体某些热现象,而且可定量导出状态参数间存在的简单函数关系在常温、常压下H2、O2、N2、CO2、CO、He及空气、燃气、烟气等均可作为理想气体处理,误差不超过百分之几。因此理想气体的提出具有重要的实用意义。
3-2理想气体状态方程式理想气体的状态方程式Rg为气体常数(单位J/kg·K),与气体所处的状态无关,随气体的种类不同而异理想气体在任一平衡状态时p、v、T之间关系的方程式即理想气体状态方程式,或称克拉贝龙(Clapeyron)方程。
通用气体常数(也叫摩尔气体常数)R通用气体常数不仅与气体状态无关,与气体的种类也无关气体常数之所以随气体种类不同而不同,是因为在同温、同压下,不同气体的比容是不同的。如果单位物量不用质量而用摩尔,则由阿伏伽德罗定律可知,在同温、同压下不同气体的摩尔体积是相同的,因此得到通用气体常数R表示的状态方程式:
气体常数与通用气体常数的关系:M为气体的摩尔质量
不同物量下理想气体的状态方程式mkg理想气体1kg理想气体nmol理想气体1mol理想气体
3-3理想气体的比热容1kg物质温度升高1K所需的热量称为比热容:一、比热容的定义物体温度升高1K所需的热量称为热容:
1mol物质的热容称为摩尔热容Cm,单位:J/(mol•K)标准状态下1m3物质的热容称为体积热容C´,单位:J/(m3•K)比热容、摩尔热容及体积热容三者之间的关系:Cm=Mc=0.0224141C´
定压比热容:可逆定压过程的比热容二、定压比热容及定容比热容热量是过程量,因此比热容也与各过程特性有关,不同的热力过程,比热容也不相同:定容比热容:可逆定容过程的比热容
焓值h=u+pv,对于理想气体h=u+RgT,可见焓与压力无关,理想气体的焓也是温度的单值函数:对于理想气体,cp、cv是温度的单值函数,因此它们也是状态参数。对于理想气体,其分子间无作用力,不存在内位能,热力学能只包括取决于温度的内动能,与比体积无关,理想气体的热力学能是温度的单值函数:
三、定压比热容与定容比热容的关系迈耶公式:迈耶公式
比热比:
四、理想气体比热容的计算真实比热容将实验测得的不同气体的比热容随温度的变化关系,表达为多项式形式:
如附表4:各种气体的系数:a、b、g、d、e根据一定温度范围内的实验值拟合得出的,如附表4适用范围300-1000K。
平均比热容:见附表5,比热容的起始温度同为0°C,这时同一种气体的 只取决于终态温度t
定值比热容:工程上,当气体温度在室温附近,温度变化范围不大或者计算精确度要求不太高时,将比热视为定值,参见附表3。亦可以用下面公式计算:气体种类cV[J/(kg·K)]cp[J/(kg·K)]单原子双原子多原子3×Rg/25×Rg/27×Rg/25×Rg/27×Rg/29×Rg/21.671.401.30
3-4理想气体的热力学能、焓、熵一、热力学能和焓理想气体的热力学能和焓是温度的单值函数:
工程上的几种计算方法:按定值比热容计算;
按真实比热容计算;
按平均比热容计算;
按气体热力性质表上所列的u和h计算;热工计算中只要求确定过程中热力学能或焓值的变化量,因此可人为规定一基准态,在基准态上热力学能取为0,如理想气体通常取0K或0°C时的焓值为0,如{h0K}=0,相应的{u0K}=0,这时任意温度T时的h、u实质上是从0K计起的相对值,即:参见附表8,u可由u=h-pv求得。
二、状态参数熵熵的定义:式中,下标“rev”表示可逆,T为工质的绝对温度。
熵是状态参数:
三、理想气体的熵方程熵方程的推导:
同理:
理想气体熵方程:微分形式:积分形式:理想气体熵方程是从可逆过程推导而来,但方程中只涉及状态量或状态量的增量,因此不可逆过程同样适用。
四、理想气体的熵变计算按定比热容计算:
通过查表计算S0是如何确定的呢?
p0=101325Pa、T0=0K时,规定这时{}=0,任意状态(T,p)时s值为:状态(T,p0):S0仅取决于温度T,可依温度排列制表(见附表8)取基准状态:
3-5理想气体混合物理想气体混合物中各组元气体均为理想气体,因而混合物的分子都不占体积,分子之间也无相互作用力。因此混合物必遵循理想气体方程,并具有理想气体的一切特性。
一、混合气体的摩尔质量及气体常数混合气体成分的几种表示方法:体积分数:Vi为分体积质量分数:摩尔分数:
混合气体摩尔质量
混合气体的气体常数
二、分压力定律和分体积定律分压力及分体积在与混合物温度相同的情况下,每一种组成气体都独自占据体积V时,组成气体的压力称为分压力。用pi表示。各组成气体都处于与混合物温度、压力相同的情况下,各自单独占据的体积称为分体积。用Vi表示。
分压力定律混合气体的总压力等于各组成气体分压力之和,称为道尔顿(Dalton)分压定律
分体积定律理想气体混合物的总体积等于各组成气体分体积之和,称为亚美格(Amagat)分体积定律
三、wi、xi、i的转算关系
四、混合气体的比热容、热力学能、焓和熵比热容
热力学能和焓热力学能和焓均为广延参数同理:
熵熵为广延参数
熵变同理:
思考题1、下面表达式是否正确?错。分压力与分体积不能同时出现正确
2、T-s图中任意可逆过程的热量如何表示?理想气体在1和2状态间热力学能变化量及焓变化量如何表示?若1-2经历不可逆过程又将如何?Ts12Ts12热量Ts12u或h
1Kg空气经历过程1-2-3,其中1-2过程为不可逆的绝热过程,熵增为0.1KJ/Kgk,2-3过程为可逆定压放热过程,已知初态t1=100℃,p1=2bar,终态t3=0℃,p3=1bar.(设空气为理想气体,Cp=1.004KJ/(KgK),R=0.287KJ/(KgK))求:1)全过程中系统的熵变△S123;2)整个过程中系统与外界交换的热量。
空气在气缸中由压力0.28Mpa、温度60℃,不可逆膨胀到压力为0.14Mpa,膨胀过程中空气对外作功30KJ/Kg,并放热14KJ/Kg,计算每公斤空气熵的变化。(空气为理想气体,Cp=1.004KJ/(KgK),R=0.287KJ/(KgK)