• 569.00 KB
  • 10页

湖北省荆州市2013届高三3月第二次质量检查数学(文)试题 word版含答案

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'湖北省荆州市2013届高中毕业班质量检查(II)数学(文)试题本试卷共三大题22道小题,满分150分,考试用时120分钟。注意事项:1答卷前,考生务必将自己的学校、班级、姓名、考号填在试卷答题卡上。2第1至10小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。第11至22题用0.5毫米黑色签字笔在答题卡上作答,答在试题卷上的无效。3.考试结束,只交答题卡。本科目考试时间:2013年3月12日下午15∶00———17∶00一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项正确,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,多涂、不涂或涂错均得0分.1.已知复数z满足zi=1+i,则z=A.1+i     B.i     C.-i     D.1-i2.某班有54名同学,准备派6名同学参加某高校组织的夏令营活动。现将54名同学编号(1~54),用系统抽样的方法抽取,已知5号在样本中,则样本中最大的号码是A.50     B.51     C.52     D.533.已知集合A={x│≥0},集合B={y│y=sinx,x∈R},则B∩CRA=A.Φ     B.{-1}     C.{1}     D.{-1,1}4.已知变量x,y满足约束条件,则目标函数z=3x+y的最小值为A.12      B.11      C.8      D.-15.设l,m,n为不重合的三条直线,其中直线m,n在平面α内,则“l⊥α”是“l⊥m且l⊥n”的A.充要条件             B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件6.某程序的流程图如图所示,若使输出的结果不大于38,则输入的整数i的最大值为 A.4     B.5     C.6     D.77.在△ABC中,O是中线AM上一个动点,若AM=4,则的最小值是A.-4    B.-8    C.-10    D.-128.设一个四面体的体积为V1,且它的各条棱的中点构成一个凸多面体,其体积为V2,则V2/V1为A.1/2     B.2/3     C.3/4     D.5/69.以下四个命题(1)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB,则B=π/4;(2)设a,b是两个非零向量且│a·b│=│a│·│b│,则存在实数λ,使得b=λa;(3)函数f(x)=sin-x在R上的零点有且仅有一个;(4)a,b∈R且,则a>b.其中正确的个数有A.1个     B.2个     C.3个     D.4个10.已知函数f(x)在R上可导,下列四个选项中正确的是A.若f(x)>f'(x)对x∈R恒成立,则ef(1)<f(2)B.若f(x)<f'(x)对x∈R恒成立,则f(-1)>f(1)C.若f(x)+f'(x)>0对x∈R恒成立,则ef(2)<f(1)D.若f(x)+f'(x)<0对x∈R恒成立,则f(-1)>f(1)二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中相应的横线上.11.若函数f(x)=为奇函数,则实数m=     . 12.已知{an}是等比数列,a4=4,a7=1/2,则其公比q=     .13.一个底面是等腰直角三角形的直棱柱,侧棱长与底面三角形的腰长相等,其体积为4,它的三视图中俯视图如图所示,侧视图是一个矩形,则这个矩形的对角线长为    .14.已知α为第三象限的角,cos2α=-3/5,则tan(π/4+2α)=    .15.若函数f(x)=,则函数f(f(x))的值域是    .16.已知椭圆=1的左、右焦点分别为F1、F2,过椭圆的右焦点F2作一条直线l交椭圆于点P、Q,则(1)△F1PQ的周长是    ;(2)△F1PQ内切圆面积的最大值是 .17.点O是等腰Rt△ABC底边BC的中点,AB=1,过点O的动直线与两腰或其延长线的交点为Q、R,则有S△AQR=S△AOQ+S△AOR,所以=  ;类比平面结论,拓展到空间有:设O是正三棱锥P-ABC的面ABC的中心,PA,PB,PC两两垂直且PA=1,过点O的动平面与三棱锥的三条侧棱或其延长线的交点分别为Q、R、S,则有 .三、解答题:本大题共5小题,共65分,解答题应写出文字说明、证明过程或演算步骤.18.(本小题满分12分)已知函数f(x)=.(1)求函数f(x)图像的对称轴方程及最小值;(2)已知f(α-π/8)=,α∈(0,π/4),求f(α/2)的值. 19.(本小题满分12分)在等差数列{}中,=3,其前n项和为Sn;在各项均为正数的等比数列{bn}中,b1=1,且b2+S2=12,S5=5b3.(1)求{}与{bn}的通项公式;(2)设数列{cn}满足cn=,求数列{cn}前n项和Tn,并证明Tn<0(n∈).20.(本小题满分13分)2013年6月6日是第18个全国“爱眼日”.某校为了解学生近视情况,决定按10%的比例对高一、高二近视在100度以上的700名学生按年级进行抽样检查,测得近视度的频数分布表如下表1、表2.表1:高二年级学生近视度频数分布表表2:高一年级学生近视度频数分布表(1)求该校高二年级近视在100度以上的人数并完成下面频率分布直方图;(2)估计高一年级学生近视度的平均值; (3)从样本中近视度在[500,700)之间的学生中任选2人,求至少有1人近视度在[600,700)之间的概率.21.(本小题满分14分)已知圆C:=8及点F(1,0),P为圆C上一动点,在同一坐标平面内的动点M满足:,││=││.(1)求动点M的轨迹E的方程;(2)过点F作直线l与(1)中轨迹E交于不同两点R,S,设=λ,λ∈[-2,-1),求直线l的纵截距的取值范围.22.(本小题满分14分)已知f(x)=.(1)当a>0时,求函数f(x)的最小值;(2)当a=1时,是否存在过点(1,-1)的直线与函数y=f(x)的图像相切?若存在,有多少条?若不存在,说明理由;(3)求证:对任意正整数n均有. www.ks5u.comwww.ks5u.comwww.ks5u.com'