• 1.17 MB
  • 148页

矿山测量学课件.ppt

  • 148页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
第七章井下导线测量的精度分析对井下测角量边误差来源、影响规律以及提高测角量边精度的相应措施进行分析;同时也对各种导线的精度进行分析。其目的在于从理论上阐述井下导线的点位误差和坐标方位角误差与测角量边误差之间的内在联系,最终在满足采矿生产要求的前提下,选择最为合理和经济的测量仪器与方法。 主要内容第一节井下测量水平角的误差第二节井下测量垂直角的误差第三节井下钢尺量边的误差第四节光电测距仪测边的误差第五节经纬仪支导线的误差第六节方向附合导线的误差第七节陀螺定向——光电测距导线的误差 第一节井下测量水平角的误差一、井下测量水平角的误差来源井下用经纬仪测角主要误差来源:(1)仪器误差;(2)测角方法误差:由于瞄准和读数不正确所引起的误差;(3)觇标对中误差和仪器对中误差:由于觇标和仪器的中心与测点中心没有在同一铅垂线上所产生的误差. 此外,由于外界环境条件,如井下湿度、温度、矿尘量、照明度等的变化因素,也会给测角带来误差。但由于井下条件较为稳定,不像地面那样受季节、天气的变化影响,在短暂的测角时刻内可以认为是基本稳定的,故不考虑。下面,仅就上述三个主要误差来源及其对测角的影响进行分析讨论。一、井下测量水平角的误差 二、仪器误差对井下测量水平角的影响仪器误差是由于仪器各部件加工制造的公差及装配校准不完善、仪器结构的几何关系不正确和仪器的稳定性不良所引起的。目前生产的经纬仪,其公差与稳定性对井下测角来说影响很小,可忽略不计;其结构的几何关系的正确性虽在出厂时给予了保证,但在运输和使用过程中可能发生变化而破坏了它的正确性。因此,这里要对其进行分析讨论,以便在井下使用中采取相应措施来减少或消除其影响。 在仪器的几何关系中,“三轴”的相互关系是最为重要的,如图所示。三轴之间的正确关系是:视准轴应垂直于水平轴(横轴),水平轴应垂直于竖轴(纵轴),竖轴应居于铅直位置。否则,将相应地产生视准轴误差(视轴差C)、水平轴倾斜误差i和竖轴倾斜误差v。总称之为“三轴误差”。这里结合井下条件来研究三轴误差对于测量水平角的影响。二、仪器误差对井下测量水平角的影响 图7-1经纬仪三轴的几何关系二、仪器误差对井下测量水平角的影响 二、仪器误差对井下测量水平角的影响 (一)视轴差的影响已知视轴差C对于用一个镜位所观测的水平方向值的影响ΔC的计算公式为:ΔC=C/cosδ(7-1)式中δ——观测方向的倾角由上式可知,ΔC值的大小除与C有关外,还与观测方向的倾角δ有关。当视线接近水平时,δ≈0°,cosδ≈1。此时,对同一目标正倒镜观测读数之差(L-R±180°)称之为2C值。取正倒镜观测的平均值(L+R±180°)/2可消除视轴差C的影响。二、仪器误差对井下测量水平角的影响 测量水平角时,视轴误差对于半测回(即只用正镜或只用倒镜)角值的影响按下式计算:ΔβC=C(1/cosδ2-1/cosδ1)(7-2)式中δ2和δ1为前后视点的倾角。由上式可知,在平巷或倾角大致相同的斜巷中测角时,ΔβC值很小;在平巷与斜巷相交处测角时,随着斜巷倾角的增大,ΔβC值增大。二、仪器误差对井下测量水平角的影响 在观测过程中,常用2C来检定仪器的稳定性和观测的质量,如在前面表1-4中规定,对于DJ2级和DJ6级经纬仪,要求其在一测回中半测回间互差分别不得超过20″和40″,其实质就是要求2C的变化范围分别不得超过20″和40″。为了使C值保持不变。在井下导线测量中应尽量使相邻导线边长大致相等,避免特长边与特短边相邻,以免在观测过程中调焦望远镜而引起C值变化。二、仪器误差对井下测量水平角的影响 (二)水平轴倾斜误差i的影响水平轴不与竖轴垂直的误差,称为水平轴倾斜误差。它是由于水平轴两端支架不等高和轴径不同等原因引起的。水平轴倾斜对于用一个镜位所观测的水平方向值的影响Δi为:Δi=i*tanδ(7-3)式中i——水平轴倾斜误差,即水平轴的倾角;δ——观测方向的倾角。由上式可知,Δi随δ值的增大而增大,而在水平巷道中,δ≈0°,Δi≈0,即无影响。二、仪器误差对井下测量水平角的影响 测量水平角时,水平轴倾斜误差对半测回角值的影响可按下式计算:Δβi=i(tanδ2-tanδ1)(7-4)由上式可知,在平巷中或前后视倾角相同(前后视均为倾角或均为俯角,且大小相等)时,Δβi很小;但在同一斜巷中,前后视的倾角一为仰角一为俯角,Δβi随斜巷倾角δ的增大而增大,并为单方向影响值的二倍。二、仪器误差对井下测量水平角的影响 (三)竖轴倾斜误差竖轴与铅垂线间的夹角称为竖轴倾斜误差。它是由于竖轴整置不正确(如水准管轴线不与竖轴垂直)、照准部旋转不正确以及外界因素影响(仪器脚架下沉,风流吹动仪器)等原因所引起的。竖轴倾斜误差对于用一个镜位所观测的水平方向值的影响为:Δv=vcosθtanδ(7-5)式中v——竖轴倾斜误差,即竖轴与铅垂线间的夹角;θ——竖轴倾斜方向线与水平轴在水平面上投影线间的夹角。二、仪器误差对井下测量水平角的影响 测量水平角时,竖轴倾斜误差对于半测回角值的影响可按下式计算:Δβv=v(cosθ2tanδ2-cosθ1tanδ1)(7-6)由上式可知,在平巷中或直伸的斜巷中测角时,Δβv很小;而在平斜巷相交处Δβv最大。值得注意的是:竖轴倾斜误差的影响,不能通过正、倒镜观测取平均值来消除。因此,仪器应当精确整平。当进行重要贯通测量时,应根据需要加入这项改正数。二、仪器误差对井下测量水平角的影响 综上分析可知,视轴差和水平轴倾斜误差对测量水平角的影响可用正倒镜两个镜位观测的方法来消除或减少到最低艰度;而竖轴倾斜误差只能因加改正数或采用跨水准管来整平水平轴的方法来减少或消除其影响。当然,对于电子经纬仪而言,如前面第一章第二节所述,由于采用了单轴、双轴或三轴自动补偿装置。可将三轴误差的影响消除或限制在极小范围之内,有了三轴自动补偿装置,即使只用一个镜位测角,也可不受或基本上不受三轴误差的影响。二、仪器误差对井下测量水平角的影响 电子经纬仪的自动补偿系统1、电子测角自动补偿系统的工作原理1211212212发光二极管接收二极管Z=PPZHHiTT21T21Titip二、仪器误差对井下测量水平角的影响 2、几种补偿系统(1)KernE2电子经纬仪的补偿系统发光二极管光电探测阵列补偿器液体盒1234光电探测阵列(2)SETC电子速测仪的补偿系统电子经纬仪的自动补偿系统 三、测角方法误差测角方法误差mi是由于瞄准误差和读数误差引起的,但它又与测角方法有关。(一)瞄准误差mV用经纬仪望远镜的十字丝瞄准觇标中心时,由于人眼视力的临界角、望远镜的放大倍数、十字丝的结构、觇标的形状、颜色及其照明状况、视线长度以及空气的透明度等诸多因素的影响,而产生了瞄准误差。确定瞄准误差mV的方法有以下两种。 1.以人眼的最小视角αmin为依据来确定mV最小视角就是人用肉眼所能区分开的两个方向之间的最小角度。经研究证明,最小视角αmin随不同人而在50″~124″之间变化。当用放大率为V倍的望过镜瞄准觇标时,人眼的鉴别能力也可提高V倍,即最小视角可比人眼的原最小视角缩小V倍。取中误差为极限误差的1/2,则用望远镜观测时,人眼的瞄准中误差为:mV=±αmin/2V=±30″/V~60″/V(7-8)三、测角方法误差 三、测角方法误差 2.以人眼确定十字丝纵丝与垂球线重合或相对称的精度来确定目前经纬仪十字丝的纵丝大多是单丝或单双丝相结合(一半双丝一半单丝),如图所示。而井下测角所用的觇标多为垂球线。如果瞄准时是用十字丝的单纵丝与垂球线重合,可以望远镜的物镜中心所看到的纵丝宽度所成角量的一半作为瞄准误差,即mV=±bρ″/2f(7-9)式中b——单纵丝的宽度;f——望远镜的焦距。三、测角方法误差 如果瞄准时是将垂球线夹在双纵丝的中央,如图所示,只有当宽度ab和bc之比大于2∶1时,人眼才能觉察出垂球线b未处在双纵丝a和c的正中央。由此可知,b偏离正中央的极限误差为:Δv=d/2-2/3d=-d/6或Δv=d/2-d/3=d/6取极限误差Δv的一半作为瞄准中误差mV,则mV=±d/12(7-10)三、测角方法误差 式中d为双纵丝所夹的角值。其大小可以用以下方法来测定。在距离经纬仪l处水平放置一带毫米刻划的三棱尺,用望远镜在三棱尺上读取双纵丝之间的距离n,则d=nρ″/l三、测角方法误差 (二)读数误差mo光学经纬仪最常见的读数设备为显微带尺和光学测微器,现分别讨论其读数误差。1.显微带尺的读数误差由于结构和制造条件上的限制,显微带尺的读数精度不可能很高,因此它目前仅用于中等精度的光学经纬仪,即J6级、J15级的仪器上。三、测角方法误差 三、测角方法误差 显微带尺的读数方法是利用度盘分划线的影像在带尺上的位置进行估读的,一般可估读到带尺最小格值t的十分之一,故其极限误差约为t/10。则读数中误差mo为:mo=1/2×t/10=±0.05t(7-12)式中t为显微带尺的最小格值。例如经Ⅱ型等光学经纬仪的t=1′,则其读数误差为mo=±3″。三、测角方法误差 2.光学测微器的读数误差用光学测微器读数时,包括下面两个过程:首先是使度盘的对径分划线重合或使度盘分划线平分双指标线以读取整数部分;其次是在测微盘或测微尺上读取小数部分。设读取整数部分的误差为mr,读取小数部分的误差为mt,则总的读数误差为:m2o=±m2r+m2t上式中的mt的确定方法与前述显微带尺相同,即mt=±0.05t,这里t是测微盘或测微尺的最小刻划值,故下面主要讨论mr的确定方法。三、测角方法误差 三、测角方法误差图7-6 由于在读数时不论是使分划线重合还是平分,都是用眼睛通过读数显微镜来判断的。因此,重合或平分的准确性取决于人眼对分划线重合或平分的最小鉴别角pm,而经读数显微镜放大后的实际鉴别角δ为:δ=pm/u式中u——读数显微镜的放大率。三、测角方法误差 由图7-6可以看出,δ值在度盘上的相应线量值(弧长)为:式中250为人眼的明视距离,单位mm。度盘弧长s所对应的角度α为:式中r—度盘的半径。若取二倍中误差作为极限误差,则(7-13)三、测角方法误差 若无法得到度盘半径r及显微镜放大倍数u等数值时,则可用度盘的最小格值D和此格子在显微镜中的可见宽度(视宽度)L来计算,L可用带毫米刻划的尺子估计测定。L=ul,l为度盘一格的实际宽度,则三、测角方法误差 将r、u值代入式(7-13),得mr=±125pmD/Lρ(7-14)在上面各式中的pm值,不论是重合法还是平分法的仪器均可取pm≈10″,故最后得光学测微器的读数误差为:m2o=±(1250/ru)2+(0.05t)2或m2o=±(1250D/Lρ)2+(0.05t)2(7-15)三、测角方法误差 度盘容量与码道数的关系:3、电子测角原理读数误差(1)编码度盘测角原理分辨率与码道数的关系:码道数、分辨率有限,需采用测微装置(拓普康ET-2)三、测角方法误差 格莱(Grey)码与粗差消除状态二进制码Grey码状态二进制码Grey码000000000810001100100010001910011101200100011101010111130011001011101111104010001101211001010501010111131101101160110010114111010017011101001511111000特点:1、各位数均为无权代码;2、相邻两数之间只有一位码发生变化。三、测角方法误差 (2)光栅增量式测角读数误差(a)光栅与莫尔条纹横向莫尔条纹的生成:横向莫尔条纹的放大作用:q光栅2光栅1wBωBθ节距纹距三、测角方法误差 (b)常见莫尔条纹模数转换装置1光源2透镜3主光栅4指示光栅5接收物镜6光探测器透射式反射式发光二极管光栅度盘光电接收管三、测角方法误差 (3)光栅动态测角设单位角度为:则任一个角度均可表示为:——利用内外光栅探测器的信号延迟时间来测定。n——利用四个标志之间的时间隔来确定和检核。固定光栅探测器活动光栅探测器三、测角方法误差 3.用试验法求光学经纬仪的读数误差上面是从理论上分析得出两种读数设备的读数误差公式。但是,为了检验上述分析的正确性,更重要的是能针对所使用的每一台仪器求得它的较切合实际的读数误差。一般可采用下述简便的试验方法:(1)在度盘的某一位置重复读取n个读数为一组,则一次读数的中误差为:m2oi=[vv]/(n-1)式中v-i组的算术平均值与组内每次读数之差。三、测角方法误差 (2)按上述方法在度盘和测微器的不同位置读取读数,设共在N个不同位置读取了N组读数,则该仪器的一次读数中误差为:m2o=[m2oi]/N=[vv]/N(n-1)此外,也可接度盘和测微器的不同位置,在每个位置上取两次读数,接双次观测列求得该仪器的一次读数中误差为:m2o=[dd]/2n三、测角方法误差 (三)测角方法的误差mi当用n个测回测角时,其最终角值是n个测回的平均值,即(7-16)每次瞄准和读数的误差和对最终角有影响,故一个镜位观测一个方向时的瞄准误差与读数误差的综合影响为:根据式(7-16)和误差传播规律可知,由瞄准误差和读数误差所引起的测角误差为:最后可得测回法测角时,测角方法误差为:m2i=(m2v/n+m2o/n)三、测角方法误差 四、觇标及仪器对中误差(一)觇标对中误差的中误差b1bAA1eAΦABaCβ1βδA (二)仪器对中误差由真误差求中误差的公式为:CABC1eTA1B1ββ1βCACBCACBbb1aa1c四、觇标及仪器对中误差 五、井下测水平角总中误差由于仪器不完善所引起的测角误差(仪器误差),一般可以用适当的观测方法加以消除或减少到最低限度。至于外界条件的影响,除应采取相应的有效措施外,目前尚难以用数学公式加以估算,且相对于上述主要误差来源而言也是很小的。因此也可不予考虑,这样一来,井下测量水平角的总中误差便是由测角方法误差和对中误差构成,即 六、求井下实际测角误差及各误差要素的方法(一)根据实际测角资料求测角中误差及其要素的方法1.根据多个闭合导线的角闭合差fβ求测角中误差mβ(7-28)2.根据多个双次观测值(双次观测列)求测角中误差(7-29)式中d—同一角度两次独立观测值之差;n—差值d的个数。 (二)用试验法求测角中误差mβ及其要素的方法(1)经纬仪和前后视点的觇标(垂球线)均不动,重复观测此角n次,按下式求测角中误差mβⅠ;(2)每测角一次后将一个觇标(例如觇标A)重新对中,另一觇标及经纬仪均不动,如此重复观测n次,仍可按白塞尔公式求得测角中误差mβⅡ;六、求井下实际测角误差及各误差要素的方法 (3)每测角一次后,两觇标A与B均不动,仅将经纬仪重新对中整平,同样观测n次,仍按白塞尔公式求得mβⅢ,则mβⅢ中包含了测角方法误差mi和仪器对中误差meT,故此外,还可以采取直接观测的方法求对中线量误差和值。在井下选择有代表性的地点,按照本矿所采用的经纬仪对中和觇标对中方法将经纬仪和觇标多次重新对中,每次对中后用另外两架视线90°正交的经纬仪同时观测经纬仪中心或觇标中心与测点标志的偏离线量值,便可求出对中线量误差及值。六、求井下实际测角误差及各误差要素的方法 第二节井下测量垂直角的误差一、测量垂直角δ的误差测量垂直角(倾角)的误差同测量水平角的误差一样,也包括仪器误差、测量方法误差和对中误差三部分。但是,仪器误差和对中误差对垂直角的影响很小,故不必考虑。校正后剩余的竖盘始读数可用正、倒镜两个镜位观测来消除。因此,测量垂直角误差的主要来源是测量方法误差。用测回法正倒镜观测某个方向求其垂直角时,要用望远镜十字丝的水平中丝瞄准球线上的标记或者瞄准觇标中心。使竖盘水准管气泡严格居中后再读取竖盘读数。 因此,用几个测回观测垂直角的误差mδ为:mδ=±(m2V+m2o+m2τ)/2n(7-31)式中mV——瞄准误差;mo——读数误差,其估算方法同前;mτ——竖盘水准管气泡居中误差,一般水准器可取mτ=±(0.1~0.15)τ(τ为水准管分划值),符合水准器可取mτ=±(0.07~0.1)τ;对竖盘采用自动安平补偿器的J2级经纬仪,可取mτ=±2″,J6级经纬仪可取mτ=±3″。一、测量垂直角δ的误差 二、观测井下导线边的垂直角的必要精度的确定观测井下导线边的垂直角的主要目的有两个:一个是为了将倾斜导线边长化算为水平投影边长;另一个是为了在斜巷中用三角高程方法求相邻导线点之间的高差。因此,在考虑观测井下导线边的垂直角的必要精度时,应兼顾以上两个方面的精度要求。 1.化算水平边长对测倾角的要求在下面分析井下导线边长的容许误差时,得出测量倾角δ的中误差mδ应满足式(7-46)的要求,即mδ<10″/sinδ由上式可知,倾角δ愈大时,测量倾角的误差应愈小,而在平巷中,对测倾角的精度要求不高。二、观测井下导线边的垂直角的必要精度的确定 2.计算三角高程对测倾角的要求用三角高程方法测定导线边两端点之间的高差的计算公式为:h=Lsinδ+i-v由误差传播律可写出高差h的中误差为:m2h=m2Lsin2δ+(Lcosδmδ/ρ)2+m2i+m2v式中L——导线边斜长;δ——导线边倾角;I,v——仪器高和觇标高。二、观测井下导线边的垂直角的必要精度的确定 上式中的第二项即为测倾角的误差对高差h的影响,即mhδ=Lcosδmδ/ρ或mhδ/L=cosδmδ/ρ按《煤矿测量规程》的规定,相邻两点往返测高差的互差d不应大于10mm+0.3mmL(L为导线水平边长,以m为单位)。设L=50m,δ=40°,则:d容=10+0.3×50×cos40°=21.5mm往测或返测的高差中误差mh≤±d容/2√2=±7.6mm高差相对中误差为:Mh/L=7.6/50×103=1/6580二、观测井下导线边的垂直角的必要精度的确定 考虑到mh是由四项误差(mδ,mL,mi及mv)引起的,则由mδ所引起的高差相对误差为:mhδ/L<1/13200由此得mδcosδ/ρ<1/13200或mδ<15″/cosδ(7-32)由上式可以看出:倾角愈小时,δ应当测得愈精确。但在平巷中,一般均采用水准测量而不采用三角高程测量,所以上述结论对平巷来说,没有多大实际意义,而斜巷中必须采用三角高程测量时,对于测量倾角的精度要求相对来说较低。二、观测井下导线边的垂直角的必要精度的确定 3.观测垂直角的合理精度要求由以上分析可知,上面两项对测量垂直角的精度要求恰好相反。在平巷中,可直接丈量水平边长和进行几何水准测量,所以对测量倾角的要求不高;而在斜巷中,应按照化算水平边长的精度要求来确定测量垂直角的精度,所以规程中,对在倾斜巷道中测量导线边长时,观测垂直角的精度提出了要求。二、观测井下导线边的垂直角的必要精度的确定 第三节井下钢尺量边的误差一、主要的误差来源(1)钢尺的尺长误差;(2)测定钢尺温度的误差;(3)确定钢尺拉力的误差;(4)测定钢尺松垂距的误差;(5)定线误差;(6)测量边长倾角的误差;(7)测点投到钢尺上的误差;(8)读取钢尺读数的误差;(9)风流的影响。 (一)系统误差最主要和最典型的量边系统误差是钢尺的尺长误差。钢尺在使用前及使用过程中应定期进行比长检定,但在比长检定过程中也有误差。其大小及符号都是偶然性的,但当用此钢尺量边并按比长结果对所量边长加入比长改正数时,比长的误差就是一个固定的常数,对边长的影响持同一符号(永为正或永为负),其大小与边长成正比,也就是说,它转化为系统误差。此外,测定钢尺松垂距的误差对量边的影响也是系统性的。温度计和拉力计的零位误差也属于系统误差。一、主要的误差来源 (二)偶然误差这类误差对量边的影响是偶然性的,即这类误差的大小及符号均不定。例如测点投到钢尺上的误差,对钢尺施加拉力的误差,读数误差,测定边长倾角的误差等。但是,当巷道中的温度变化虽不大,却总是比标准温度高些或低些而又不加温度改正时,这种影响便是系统性的。(三)其符号是系统性的,而其大小是偶然性的定线误差和风流将钢尺吹弯都会使所测边长大于真正边长,故它们对量边的影响其符号是系统性的,但其大小却随定线精度和风流大小而变化,因而是偶然性的。一、主要的误差来源 由上述分析可知,各种误差来源所引起的量边误差的大小及性质,主要取决于测量的条件及方法,并不是固定不变的。而且由于偶然误差与系统误差在观测中经常是同时产生的,并在一定条件下相互转化,所以要严格划分哪些误差属于哪一类就较为困难。因此,在下面的量边误差分析中,应当以辩证的观点,综合考虑其影响。一、主要的误差来源 二、量边误差的积累由上可知,量边误差按其性质可分为系统误差、偶然误差及大小为偶然而符号为系统的三类,后者实质上也属于系统误差。下面对量边偶然误差及系统误差的累积规律分别加以研究。(一)量边偶然误差的积累设L为所量的导线边长,以长度为l的钢尺丈量了n段,即L=l+l+…+l(共n个),若每段丈量的偶然误差均为mL△,则按偶然误差传播律可得出量边偶然中误差为: m2L偶=±(m2L△+m2L△+…+m2L△)=±nm2L△将n=L/l代入上式得mL偶=±mL△(L/l)1/2=±(mL△/l1/2)·L1/2令a=mL△/l1/2则最后得mL偶=±aL1/2或mL偶/L=aL1/2/L=a/L1/2二、量边误差的积累 当L=1m即单位长度时,则mL偶=a,所以a是由于偶然误差所引起的单位长度的量边中误差,通称为偶然误差影响系数。显然,当mL偶及L均以m的单位,a的单位为m1/2。由以上两式得出:1)由偶然误差引起的量边误差与边长的平方根成正比;2)量边的偶然误差与边长之比(即由它引起的量边相对误差),随边长的增加而减小。二、量边误差的积累 (二)量边系统误差的积累设mlλ为每尺段丈量的系统误差,ml系为所丈量边长的系统误差,则ml系=mlλ+mlλ+…+mlλ=nmlλ即ml系=(L/l)mlλ=(mlλ/l)·L令b=mlλ/lb为单位长度的系统误差,通称为系统误差影响系数。则ml系=bL从而ml系/L=b由上两式可知,系统误差对量边的影响与边长成正比,而系统误差所引起的量边相对误差与边长L无关,在一定条件下为常数,即系统误差影响系数b。二、量边误差的积累 (三)量边的总中误差按照误差传播律,可知偶然误差与系统误差综合影响所引起的量边总中误差为:M2L=mL偶2+ml系2=a2L+b2L2(7-37)二、量边误差的积累 三、量边误差估计公式中a、b系数的确定方法系数a、b可以用分析实际量边资料的方法或实验的方法求得。(一)按实测资料求a、b系数按实测资料求a、b,可以按多个不同边的双次观测列来求。 设两次独立丈量或往返丈量同一边长的差值为d,则di=Li1-Li2;应当指出的是,同一边长两次丈量时的条件往往基本相同(采用同一条钢尺和相同的量边方法),量边系统误差对于Li1及Li2的影响也基本相同,从而使在计算di=Li1-Li2时,系统误差的影响大部分互相抵消,di中只能反映出部分系统误差的剩余影响,则其剩余系统误差影响系数b为:b=[d]/[L]三、量边误差估计公式中a、b系数的确定方法 若b=[d]/[L]≈0,则说明没有剩余系统误差或其影响很小,则往返测丈量边长平均值的偶然误差影响系数为:a=±([dd/L]/(2n))1/2若b=[d]/[L]≠0,则应当从每个差值di中减去剩余系统误差的影响bLi,然后得到偶然误差影响的部分,即di′=di-bLi(7-40)再按下式计算往返丈量边长平均值的偶然误差影响系数a为:a=±([d′d′/L]/(2(n-1))1/2)/21/2=±([d′d′/L]/(n-1))1/2/2(7-41)三、量边误差估计公式中a、b系数的确定方法 为简化计算,将式(7-40)平方并求和后得[d′d′/L]=[dd/L]-2b[d]+b2[L]=[dd/L]-2b[d]+b[d][L]/[L]=[dd/L]-b[d]将上式代入式(7-41)得a=±(([dd/L]-b[d])/(n-1))1/2/2三、量边误差估计公式中a、b系数的确定方法 (二)用实验方法求a、b系数在井下选择N条不同长度和不同条件的导线边。先用高精度的方法丈量(如采用因瓦基线尺和轴杆架和拉力架精密丈量),因其丈量误差很小,故可认为量得的是边长的真值L0i,然后用矿上通常采用的量边方法按规程规定丈量这些边长,得其长度为Li,则丈量的真误差为:Δi=L0i-Li(i=1,2,…,N)三、量边误差估计公式中a、b系数的确定方法 将N条边长按照长度间隔为5m或10m分成k组,例如,以5m为间隔分组:0~5m为第1组,其中有n1条边;5~10m为第2组,其中有n2条边;……;(k-1)5~k5m为第k组,其中有nk条边N=n1+n2+…+nk;然后用下式求每组的平均边长Lj(j=1,2,3,…k)的一次量中误差为:m1=±([ΔΔ]1/n1)1/2,m2=±([ΔΔ]2/n2)1/2,……,mk=±([ΔΔ]k/nk)1/2三、量边误差估计公式中a、b系数的确定方法 按间接平差原理,将mj视为观测值,它是未知数x=a2和y=b2的函数,并取各组的边数nj或nj/c(c为任意正整数)为该组的权Pj,可列出k个误差方程式为:a2L1+b2L12-m1L1=V1权为P1a2L2+b2L22-m2L2=V2权为P2……a2Lk+b2Lk2-mkLk=Vk权为Pk令a2=x,b2=y,并代入上式,组成两个法方程式答解法方程式,求得x、y值后,便可得V。三、量边误差估计公式中a、b系数的确定方法 (三)误差系数a、b的数值根据我国现场实际资料,参照有关规定,建议采用表1-4中所列的钢尺量边误差系数a、b值。表1-4井下钢尺量边误差系数值导线等级巷道倾角δ<15°巷道倾角δ>15°Abab基本控制0.0003~0.00050.00003~0.000050.00150.0001采区控制0.00080.00010.00210.0002三、量边误差估计公式中a、b系数的确定方法 四、各种误差对量边影响的估算及容许值的确定方法为分析简便起见,当研究某一误差来源对量边的影响时,假定其他来源均无影响,只集中考虑这一个误差来源,最后再综合研究所有误差来源的影响。前面在讨论井下用钢尺量边时的误差来源时,曾提到9种主要误差来源。为了使井下导线的量边误差不超过一定的范围以保证导线的必要精度,需要对前述9种误差规定一个极限,即容许值,设用mLi(i=1、2、…9)来表示9种误差来源所引起的量边中误差,并设各种误差来源对量边误差的影响相等,则所量边长L的中误差mL应为: M2L=±(m2L1+m2L2+…+m2L9)=9m2L根据式(7-37)M2L=a2L+b2L2,并取a=0.0001,b=0.00005。导线平均边长L=50m,可得ML=±4.3mm,容许误差为中误差的2倍,即ML容=2ML=±8.6mmML容/L=0.0086/50≈1/6000因此,9项误差来源中每个来源所引起的量边容许相对误差为:mL容/L=(ML容/L)*(1/√9)≈1/20000(7-45)四、各种误差对量边影响的估算及容许值的确定方法 (一)尺长误差及其容许值设用长度为L的钢尺丈量边长L,其尺长改正数为:ΔLK=ΔK*L/LR则由尺长误差mK所引起的量边误差mLK为:mLK=L*mK/LRmK/LR=mLK/L对照式(7-45)可看出,尺长误差所引起的量边误差的相对容许值应为:mK/LR=1/20000这就是说,钢尺比长检定的精度应不低于1/2万,达到这个精度是不困难的。四、各种误差对量边影响的估算及容许值的确定方法 (二)测定温度t的误差及其容许值量边的温度改正是按下式计算的:ΔLt=Lα(t-t0)若以mt表示测定温度t的误差,则由它引起的量边误差的:mLt=Lαmt对照式(7-45)可得:mt容=L/20000*1/Lα=1/20000α=±4℃由此可知,测量温度的容许误差为±4℃。四、各种误差对量边影响的估算及容许值的确定方法 (三)测定拉力的误差及其容许值由第一章计算拉力改正中的式(1-5)以及计算垂曲改正的式(1-6)和式(1-7)可知,当所加拉力P有误差mP时,将引起这两项改正数产生误差,从而引起量边误差。拉力改正为ΔLP=(P-P0)L/EF故mⅠLP=LmP/EF垂曲改正为ΔLf=-q2L3/24P2故mⅡLP=q2L3mP/12P3四、各种误差对量边影响的估算及容许值的确定方法 两项误差mⅠLP及mⅡLP具有相同符号,则mLP=(L/EF+q2L3/12P3)mP对照式(7-45)可得mP容=L/20000(L/EF+q2L3/12P3)=1/20000(1/EF+q2L2/12P3)设L=50m,q=0.165N/m,F=0.023cm2,P=98.067N,将其代入上式得:mP容=±6.3N此值较小,因此量边时要用拉力计较精确地对钢尺施以标准拉力。四、各种误差对量边影响的估算及容许值的确定方法 (四)测定松垂距f的误差及其容许值按实际测定的松垂距f计算垂曲改正的公式为ΔLf=-8f2/3L若测定松垂距f的误差为mf,则由此引起垂曲改正的误差为:mLf=16fmf/3L对照式(7-45)由上式可得mf容=L/20000×3L/16f=L2/(1.07×105f)设用某一钢尺量测50m长的导线边,其f=0.546m代入上式得mf容=±42mm。由此可知测定f的精度要求并不十分高。四、各种误差对量边影响的估算及容许值的确定方法 (五)定线误差及其容许值在图7-9中,AB是欲丈量的边长,由于大于尺长而分为三段。由于定线误差me而使中间的1、2点均偏离了AB连线,使实际所丈量的边长为折线A12B而非直线AB。显然所量边长总是比真正的边长大。图7-9中所示中间点1和2分别位于AB连线的不同侧,这是最不利的情况,因为这时中间一段12=l′与其对应的真长1′2′=l相差最大。四、各种误差对量边影响的估算及容许值的确定方法 由△122″可看出:l2=(l′)2-(2me)2将上式按二项式展开,并仅取前两项得l=l′{1-1/2(2me/l′)2}=l′-2m2e/l′因此,由定线误差me所引起的量边误差为:mle=l′-l=2m2e/l′将上式对照式(7-45)可得me容=√l/20000×l/2=±0.005l当l=50m时,me容=±0.25m,当l=30m时,me容=±0.15m。四、各种误差对量边影响的估算及容许值的确定方法 然后我们再来研究一个端点未在测边AB连线上的第一段A1和第三段2B的情况。以第三段2B为例,同上法可推得mle=m2e/2l余me容=±0.01l余当余长l余为10m时,me容=±0.1m;当余长l余为20m时,me容=±0.2m。综上分析可知,分段长度愈小时,定线的容许误差愈小。所以规程中规定:分段丈量边长时,最小尺段长度不得小于10m。而当分段长度较大时,对定线的精度要求就相应较低。四、各种误差对量边影响的估算及容许值的确定方法 (六)测倾角的误差及其容许值由倾斜边长L化算为平距l时,采用的公式为:l=Lcosδ若测量倾角δ的误差为mδ,则由它引起的平距l的误差为:mlδ=Lsinδm″δ/ρ″对照式(7-45)可得mδ容=±L/20000·ρ″/Lsinδ=±10″/sinδ(7-46)由上式可以看出,倾角δ愈大时,对测量倾角的精度要求愈高。规程中对在倾斜巷道中测量导线边长时,观测倾角的精度要求见表7-6,这里不再重复。四、各种误差对量边影响的估算及容许值的确定方法 (七)投点的误差及其容许值利用垂球线将测点中心投到钢尺上的误差来源有:(1)垂球线与测点标志孔的中心不重合,当测点标志孔的直径较大时,形状不规则,而垂球线较细时,这项误差可达0.5mm或更大;(2)由风流引起的垂球线偏斜和摆动;(3)钢尺碰到垂球线而引起的偏斜或摆动。此外,如果量边时,钢尺的一端对着经纬仪的横轴外端中心读数或对着望远镜镜上中心读数,则经纬仪对中误差以及横轴外端中心或镜上中心偏离测点标志中心所在的铅垂线,也属于投点的误差。四、各种误差对量边影响的估算及容许值的确定方法 因钢尺两端均需投点,故由投点误差mE所引起的丈量一段边长L的量边误差为:mLE=mE√2对照式(7-45)可得mE容≤L/20000√2用50m的钢尺丈量50m的边长时,mE容=±1.8mm,而丈量30m的边长时,mE容=±1.1mm,所以在丈量较短的边长(或较短的分段长)时,应十分注意精确投点。四、各种误差对量边影响的估算及容许值的确定方法 为此,可以采用长钢尺,加重垂球重量,采取挡风措施或用光学投点器等。此外,还可以通过往、返丈量边长以抵消风流对垂球线投点的影响。图7-10(a)所示为往测对风流时量边的影响,图7-10(b)为返测时的影响,当在丈量边长时风流及仪器高均不变时,取往返测平均值可最大限度地消除风流引起的垂球线偏斜影响。当然,在这种情况下,往返测边长的较差中却包含了两倍垂球线偏斜Δl。四、各种误差对量边影响的估算及容许值的确定方法 (八)读数误差及其容许值读数时,钢尺一端对准整厘米或整分米分划线,另一端估读小数,这种读数误差mo是偶然性的,其对丈量一段边长的影响为:mLo=±mo√2L/kl式中k—读数次数,一般k=3;L—边长;l—钢尺长。则参照式(7-45)可得mo容=L/20000√3/2=L/16400当L=50m时,mo容=±3mm;L=30m时,mo容=±1.8mm。四、各种误差对量边影响的估算及容许值的确定方法 (九)风流的影响风流除使垂球线偏斜而产生投点误差外,还将使钢尺抖动或呈波状曲线形,从而使量得的边长大于真长。其大小与风流强弱有关,但其符号却是系统性的。减小风流影响的措施已在上面讨论投点误差时提到过,这里不再重复,此外,还可以采取适当加大拉力的方法尽量将钢尺拉直。四、各种误差对量边影响的估算及容许值的确定方法 最后应当指出:(1)以上分析大部分是以尺长和边长都是50m为基础的,而实际上并不完全是这样。一般来说,边长愈短,则要求丈量时的精度愈高,否则就难以保证其相对误差小于规定的限值;四、各种误差对量边影响的估算及容许值的确定方法 (2)在确定各种误差来源的容许值时,采用了等影响原则,这种原则可使所讨论的问题得以简化,但只能帮助我们大致得出一个数值范围,绝不能机械地去理解和运用。例如,对有的误差容许值(如测量较大倾角时的容许误差等),较难达到,而有些项目(如测定温度t和松垂距f等),则又很容易达到。为此,必须统筹兼顾,使之能相互补偿,以最终达到总的量边精度要求。此外,对引起量边系统误差的尺长、定线等误差以及测定松垂距f的容许误差值,应当从严掌握。四、各种误差对量边影响的估算及容许值的确定方法 第四节光电测距仪测边的误差一、光电测距误差的主要来源短程红外测距仪大都采用相位测距,所测距离是用下式计算的:D=c0/2nf(N+Δφ/2π)+K(7-47)式中c0——真空中光速;n——大气的群折射率;f——调制频率,即单位时间内正弦波变化的次数;N——整周期个数,零或正整数;Δφ——不足整周期的相位尾数;K——剩余加常数。 上式中各要素与边长D的中误差MD之间的关系式可写成:M2D={(mc0/c0)2+(mn/n)2+(mf/f)2}D2+(λ/4π)2mφ2+m2K(7-48)由上式可以看出,测距中误差MD由两部分组成:一部分是与被测距离D成正比的误差,即上式等号右边前三项误差;另一部分是与被测距离D无关的误差,即上式等号右边的后两项误差。一、光电测距误差的主要来源 但还应当看到,在实际测距过程中还存在测距仪对中误差mT、反射镜对中误差mC以及周期误差mE。因此,用光电测距仪测距的误差通常用固定误差(与边长大小无关的随机性偶然误差)A和比例误差B(与边长大小成比例的随机性系统误差)来表示,即MD=±(A+BD)(7-49)一、光电测距误差的主要来源 二、光电测距的误差分析(一)比例误差1.真空中光速值c0的测定误差mc02.大气折射率的误差mn3.频率误差mf(二)固定误差1.仪器加常数的测定误差mk2.棱镜常数C0的测定误差由以上分析讨论可知,测距仪在测距之前,必须确认反射棱镜的棱镜常数与原先输入测距仪的棱镜常数是否相符。 三、光电测距边长的精度评定(一)对向观测边长时的精度评定(1)一次测量(往测或返测)的观测值中误差,用下式计算m20=±[dd]/2n(2)对向观测值的平均值中误差,用下式计算MD=m0/√2=±1/2√[dd]/n式中d—化算至同一高程面的每对水平距离之差;n—所有差数的个数。(3)边长相对中误差MD/D=1/D/MD式中D——测距边的水平距离平均值。 (二)单向观测边长的精度评定根据测距误差来源的大小估算测距精度。测距中误差的公式采用经验公式的形式MD=±(A+BD)式中A——固定误差,mm;B——比例系数,mm/km。A=m21+m22+2m23+m24(7-53)B=m25+m26+m27+m28+m29(7-54)式中m1——加常数测定误差,由加常数测定中获得;三、光电测距边长的精度评定 其中:v——每次读数与所有读数中数之差;N——读数的总次数;m5——乘常数测定误差,由乘常数测定中获得;m6——折射率计算公式误差,取值为0.2×10-6;m7——气象代表性误差,这项误差在井下光电测距时很小;m8——斜距改平误差,当用垂直角δ归算时,计算公式为:m8=sinδ/ρmδm9——精测频率测定中误差。三、光电测距边长的精度评定 第五节经纬仪支导线的误差一、支导线终点的位置误差(一)由测角量边误差所引起的支导线终点的位置误差在前面导线测量及测角量边的误差分析中可以看出,由于测角和量边误差的积累,必然会使导线点的位置产生误差,下面就对这一问题进行分析讨论。的任意形状的支导线中,其终点k的坐标为:xk=x1+l1cosα1+l2cosα2+…+lncosαnyk=y1+l1sinα1+l2sinα2+…+lnsinαn(7-55)而导线任一边lj的坐标方位角是所测角度βi的函数,即αj=α0+∑βi±j180°(7-56) xyBRRx1Rx2Rx3Rxn-1RxnRy1Ry2Ry3Ryn-1Rynβ1β2β3βn-1βn一、支导线终点的位置误差 一、支导线终点的位置误差 式中:β1,β2,…,βn——所测导线各左角;l1,l2,…,ln——所量导线各边水平边长;α1,α2,…,αn——导线各边的坐标方位角;α0——起始坚强边(B)的坐标方位角;x1,y1——起始坚强点1的平面坐标。还引用了下列符号以便对照:mβ1,mβ2,…,mβn——导线各角的测角中误差;ml1,ml2,…,mln——导线各边的量边中误差。一、支导线终点的位置误差 导线终点k的坐标是所有角度及边长的函数。根据偶然误差传播律,可得终点k的坐标误差:一、支导线终点的位置误差 一、支导线终点的位置误差 一、支导线终点的位置误差 不难看出,上两式中等号右边第一项为测角误差mβ所引起的终点k的坐标误差,第二项为量边误差ml所引起的终点k的坐标误差。一、支导线终点的位置误差 下面分别求出由测角误差和量边误差所引起的导线终点的坐标误差。1.由测角误差所引起的导线终点的坐标误差由以上各式可以看出,在由测角误差所引起的导线终点的坐标误差估算公式中ρ=206265″是已知常数,而mβ可用本章第一节中分析的方法求得,只有偏导数项待求。为此,对式(7-55)求偏导数。一、支导线终点的位置误差 ∂xk/∂β1=-(l1sinα1∂α1/∂β1+l2sinα2∂α2/∂β1+…+lnsinαn∂αn/∂β1)∂xk/∂β2=-(l1sinα1∂α1/∂β2+l2sinα2∂α2/∂β2+…+lnsinαn∂αn/∂β2)……∂xk/∂βn=-(l1sinα1∂α1/∂βn+l2sinα2∂α2/∂βn+…+lnsinαn∂αn/∂βn)(7-61)由式(7-56)知α1=α0+β1±180°α2=α0+β1+β2±2×180°……αn=α0+β1+β2+…+βn±n·180°一、支导线终点的位置误差 故得∂α1/∂β1=∂α2/∂β1=…=∂αn/∂β1=1∂α1/∂β2=0,∂α2/∂β2=∂α3/∂β2=…=∂αn/∂β2=1∂α3/∂β1=∂α3/∂β2=0,∂α3/∂β3=∂α4/∂β3=…=∂αn/∂β3=1……∂αn/∂β1=∂αn/∂β2=…=∂αn/∂βn-1=0,∂αn/∂βn=1一、支导线终点的位置误差 将上式各值代入式(7-61)中,得∂xk/β1=-(l1sinα1+l2sinα2+…+lnsinαn)∂xk/∂β2=-(l2sinα2+l3sinα3+…+lnsinαn)……∂xk/∂βn=-lnsinαn亦即∂xk/∂β1=-(Δy1+Δy2+…+Δyn)=-(yk-y1)∂xk/∂β2=-(Δy2+Δy3+…+Δyn)=-(yk-y2)……∂xk/∂βn=-Δyn=-(yk-yn)(7-62)一、支导线终点的位置误差 由上式可以看出,导线终点的x坐标对所测角度的偏导数值,等于导线终点k与所测角度顶点的y坐标差,也就是终点k与所测角度顶点的连线R在y坐标轴上的投影长Ry,即∂xk/∂β1=-R1sinγ1=-Ry1∂xk/∂β2=-R2sinγ2=-Ry2……∂xk/∂βn=-Rnsinγn=-Ryn(7-63)式中Ri——导线各点i与终点k的连线长度;γi——导线各点i与终点k的连线Ri的坐标方位角。一、支导线终点的位置误差 将式(7-63)代入式(7-58)中的第一式得M2xβ=1/ρ2∑R2yim2βi(7-64)同理得M2yβ=1/ρ2∑R2xim2βi(7-65)式中Rxi——导线终点k与各导线点i的连线在x坐标轴上的投影长。一、支导线终点的位置误差 2.由量边误差所引起的导线终点的坐标误差同样,是求偏导数值的问题,也就是式(7-55)对导线各边边长li求偏导的问题。因为∂Xk/∂l1=cosα1,∂xk/∂l2=cosα2,…,∂xk/∂ln=cosαn则式(7-58)中的第二式为:同理得M2xl=∑cos2αim2liM2yl=∑sin2αim2li(7-66)一、支导线终点的位置误差 对于光电测距导线来说,上式中的mli可用式(7-49)来估算;而对于钢尺量距导线而言,由于钢尺量边常有系统误差存在,因此需要进一步分析量边偶然误差与系统误差对于终点k的坐标的影响。 (1)量边偶然误差的影响由式(7-37)知量边总中误差为mli2=a2li+b2li2,当无明显的系统误差时,即b=0,则mli2=a2li;故有Mxl2=a2∑licos2αiMyl2=a2∑lisin2αi(7-67)一、支导线终点的位置误差 (2)量边系统误差的影响当量边存在明显的系统误差时,由于它对边长的影响是单方面的,其大小与边长成正比。如图7-15所示,ABCDE为一正确导线,假设在这条导线中没有其他误差的影响,只考虑量边系统误差的影响,而且假设所有边长均按相同比例伸,从而使导线变成A′B′C′D′E′,不难看出,它与正确导线的形状相似,因而导线各点的位置都从原来的正确位置,沿着该点与起始点A的连线方向移动了一段距离,其大小为相应连线的长度乘以系统误差影响系数b。BB′=b×ABCC′=b×ACDD′=b×ADEE′=b×AE一、支导线终点的位置误差 由此可见,由量边系统误差所引起的支导线终点的位置误差为EE′=b×AE=bL(7-68)式中L为导线始点与终点的连线(叫做闭合线)的长度。由图7-15可看出,对终点坐标x和y所产生的误差,分别为bLx和bLy,Lx和Ly分别为闭合线L在x轴和y轴上的投影长。一、支导线终点的位置误差 (3)由测角量边误差所引起的支导线终点的位置误差将上面所得到的结果代入式(7-60)中,对于光电测距导线,最后得到K点的点位误差为:Mxk2=(1/ρ2)∑Ryi2mβi2+∑cos2αimli2Myk2=(1/ρ2)∑Rxi2mβi2+∑sin2αimli2Mk2=(1/ρ2)∑Ri2mβi2+∑mli2(7-69)一、支导线终点的位置误差 对于钢尺量距导线,最后得到K点的点位误差为:Mxk2=(1/ρ2)∑Ryi2mβi2+a2∑licos2αi+b2Lx2Myk2=(1/ρ2)∑Rxi2mβi2+a2∑lisin2αi+b2Ly2Mk2=(1/ρ2)∑Ri2mβi2+a2∑li+b2L2(7-70)当测角精度相等时,即mβ1=mβ2=…=mβn=mβ,则上式可写成:M2xk=(mβ2/ρ2)∑R2yi+a2∑licos2αi+b2Lx2M2yk=(mβ2/ρ2)∑R2xi+a2∑lisin2αi+b2Ly2Mk2=(mβ2/ρ2)∑R2i+a2∑li+b2L2(7-71)一、支导线终点的位置误差 由式(7-69)和式(7-70)可以看出,导线精度与测角量边的精度、测站数目和导线的形状有关,而测角误差的影响对导线精度起决定性作用。为提高导线精度,减小导线点位误差,首先应注意提高测角精度,同时应适当增大边长,以减小测站个数,有条件时,要尽量将导线布设成闭合图形,因为闭合图形的∑R2i值要比直伸形的∑R2i小,从而使测角误差mβ对点位误差的影响减小。一、支导线终点的位置误差 (二)由起算边坐标方位角误差和起算点位置误差所引起的支导线终点位置误差在上面的讨论中,没有考虑起算数据的误差。实际上,不论是起算边的坐标方位角和起算点的坐标,都是经过许多测量环节才求出的,因此不可避免的都带有误差,尤其是起算边的坐标方位角,当用几何定向时,是从地面通过井筒传递到井下的,因此会有较长的误差,对支导线终点的位置有显著的影响,故要对其进行分析。一、支导线终点的位置误差 设起算边的坐标方位角α0的误差为mα0,则由它引起的支导线终点的坐标误差,根据式(7-55)应为:Mx0k=∂xk/∂α0*mα0/ρMy0k=∂yk/∂α0*mα0/ρ而∂xk/∂α0=∂x1/∂α0–(l1sinα1∂α1/∂α0+l2sinα2∂α2/∂α0+…+lnsinαn∂αn/∂α0)一、支导线终点的位置误差 由式(7-56)可得∂α1/∂α0=∂α2/∂α0=…=∂αn/∂α0=1但∂x1/∂α0=0因而可得∂xk/∂α0=-(l1sinα1+l2sinα2+…+lnsinαn)=-(yk-y1)=-Ry1同理可得∂yk/∂α0=-(xk-x1)=-Rx1 故最后得点位误差:Mx0k=Ry1*mα0/ρMy0k=Rx1*mα0/ρM0k=R1*mα0/ρ(7-72)实质上,若把mα0当作导线起始点1的测角误差mβ1,便可由式(7-62)得到上式。因此,起始边坐标方位角α0的误差的影响与起始点1的测角误差的影响相同,即与导线的形状和闭合线长度有关。一、支导线终点的位置误差 若考虑起始点1的坐标误差Mx1与My1时,则mα0及Mx1和My1的共同影响为:M2x0k=M2x1+(Ry1*mα0/ρ)2M2y0k=M2y1+(Rx1*mα0/ρ)2M20k=M21+(R1*mα0/ρ)2(7-73)显然,导线起算点1的坐标误差对各点的影响均相同,即与导线的形状及长度无关。一、支导线终点的位置误差 (三)在某一指定方向上支导线终点的点位误差矿井测量工作中,通常需要的不是支导线终点沿x坐标轴或y坐标轴方向的Mx和My,而是沿某一指定方向上的点位误差。例如,在巷道贯通测量工作中,需要估算垂直于巷道中线方向(所谓贯通的主要方向)x′上的相遇误差,而当向采空区掘进巷道时,则沿中线方向(距采空区的距离)便是重要方向。一、支导线终点的位置误差 在解决上述这类问题时,由上面所导出的一系列公式可看出,只需设一个假定坐标系x′和y′,使x′及y′与某指定方向重合,然后求支导线各点在此假定坐标轴x′和y′方向上的误差,就是所需要的指定方向上的误差。其估算公式仍与式(7-69)或式(7-70)相同。Mx′k2=(1/ρ2)∑Ry′i2mβi2+∑cos2α′imli2My′k2=(1/ρ2)∑Rx′i2mβi2+∑sin2α′imli2一、支导线终点的位置误差 (四)等边直伸形支导线终点的坐标误差井下导线是沿巷道布设的,特别是在主要的直线大巷中,各测站的水平角βi均近于180°,并且其边长li亦大致相等,这类导线就近于等边直伸形导线,根据前述在某一指定方向上估算点位误差的理论,在求这种等边直伸形导线的终点位置误差时,便不必按原始坐标系统进行估算,只要在沿导线直伸方向和垂直于直伸方向估算就可以了。这就简化了估算工作。一、支导线终点的位置误差 设t为导线终点k沿直伸方向x′的误差,简称为“纵向误差”;u为垂直于导线直伸方向y′的误差,简称为“横向误差”,则t=Mx′ku=My′k即t2=M2x′β+M2x′l=m2β/ρ2∑R2y′+a2∑lcos2α′+b2L2x′u2=M2y′β+M2y′l=m2β/ρ2∑R2x′+a2∑lsin2α′+b2L2y′一、支导线终点的位置误差 由于采用了上述假定坐标系统x′,y′,则α′i≈0,故cosα′i≈1,sinα′i≈0,Ry′i≈0,Lx′≈L,Ly′≈0因此t2=M2x′l=a2∑l+b2L2u2=M2y′l=m2β/ρ2∑R2x′一、支导线终点的位置误差 由图7-20可以看出Rx′1≈nl,Rx′2≈(n-1)l,…,Rx′(n-1)≈2l,Rx′n≈l故∑R2x′=n2l2+(n-1)2l2+…+22l2+l2=l2﹛n2+(n-1)2+…+22+12﹜=l2n(n+1)(2n+1)/6≈n2l2(n+1.5)/3 同时,闭合线L≈nl,则t2=±a2∑l+b2L2=±a2L+b2L2(7-74)u=mβL/ρ√n+1.5/3当边很多,即n很大时,则u=mβL/ρ√n/3(7-75)由此可知,当导线成直伸形时,测角误差只引起终点的横向误差,而量边误差只引起终点的纵向误差。因此,要减小点的横向误差,就必须提高测角精度和加大边长以减少测点的个数;而要减小终点的纵向误差,则只须提高量边精度。一、支导线终点的位置误差 二、支导线任意点的位置误差上面所分析的是支导线终点k(即n+1)的位置误差。当需要估算支导线任意点C的位置误差时,根据上面的分析推导可知,只要将任意点C当作导线终点,然后将始点1与C点之间的各点与C点连线即得到Ri及L等要素,便可利用相应的公式进行估算。 三、支导线任意边的坐标方位角误差任意边lj的坐标方位角αj为αj=α0+∑βj±j180°故该坐标方位角的中误差为:M2αj=M2α0+∑m2βi当测角精度相同时,则M2αj=M2α0+jm2β(1-88)若不考虑起算边的坐标方位角误差,则αj相对于α0的中误差为Mαj=±mβj1/2(1-89) 第六节方向附合导线的误差单一导线的两端均有坚强方向控制时,称为方向附合导线,如图7-22所示,其特点是只有一端有已知坐标点1,另一端n和k坐标未知,所以只对角度进行平差。 一、方向附合导线终点的点位误差方向附合导线经角度平差后,导线点的坐标是水平角平差值和实测边长的函数。依条件观测平差求平差值函数中误差的方法,当不考虑起算数据误差的影响时,方向附合导线终点k的点位误差估算公式为:M2xk=m2β/ρ2{[y2]-[y]2/(n+1)}+[m2lcos2α]M2yk=m2β/ρ2{[x2]-[x]2/(n+1)}+[m2lsin2α]M2k=m2β/ρ2{[x2]+[y2]-([x]2+[y]2)/(n+1)}+[m2l](7-78) 如果把坐标原点移到导线各点的平均坐标点(即重心)上(见图7-22中的O点),可得导线终点的误差在重心坐标系统中的公式为:M2xk=m2β/ρ2[η2i]+[m2licos2αi]M2yk=m2β/ρ2[ξ2i]+[m2lisin2αi]M2k=m2β/ρ2[R20i]+[m2li](7-79)一、方向附合导线终点的点位误差 当用钢尺量边,a、b误差系数已知时,上式可写为:M2xk=m2β/ρ2[η2i]+a2[licos2αi]+b2L2xM2yk=m2β/ρ2[ξ2i]+a2[lisin2αi]+b2L2yM2k=m2β/ρ2[R20i]+a2[li]+b2L2(7-80)式中ηi=yi-y0,ξi=xi-x0,R20i=η2i+ξ2i,而x0=[xi]/(n+1),y0=[yi]/(n+1)。一、方向附合导线终点的点位误差 分析上式可知:量边误差的影响与支导线相同;而测角误差的影响比支导线减小了,因为[R20]比[R2i]小。所以方向附合导线与支导线相比较,提高了终点的点位精度。《煤矿测量规程》中规定在布设井下基本控制导线时,一般每隔1.5~2.0km应加测陀螺定向边。对于已建立井下控制网的矿井,在条件允许时,应当用加测陀螺定向边的方法改建井下平面控制网,其道理就在于此。一、方向附合导线终点的点位误差 二、方向附合导线中任意点C的点位误差方向附合导线中任意点C的点位误差可按下式估算:M2xC=m2β/ρ2{∑R2yCi-(∑RyCi)2/(n+1)}+∑(m2licos2αi)M2yC=m2β/ρ2{∑R2xCi-(∑RxCi)2/(n+1)}+∑(m2lisin2αi)M2C=M2xC+M2yC(7-81)式中RxCi,RyCi——任意点C与C点之前的各点的连线在x、y轴上的投影长;n+1——方向附合导线的角度总个数。 当用钢尺量边,误差系数a和b已知时,方向附合导线中任意点C的点位误差可按下式估算:M2xC=m2β/ρ2{∑R2yCi-(∑RyCi)2/(n+1)}+a2[licos2αi]+b2L2xcM2yC=m2β/ρ2{∑R2xCi-(∑RxCi)2/(n+1)}+a2[lisin2αi]+b2L2ycM2C=M2xC+M2yC(7-82)式中LxC,LyC——C点与导线起点连线在x轴与y轴上的投影长。二、方向附合导线中任意点C的点位误差 三、加测陀螺定向边的导线终点误差若井下导线起算边采用陀螺经纬仪定向,并在支导线中每隔一定距离加测陀螺定向边,共加测了N条陀螺定向边,而将整个导线分为N段方向附合导线,各段导线的重心分别为OⅠ、OⅡ、…,ON(参阅图7-23),则当角度按方向附合导线平差后,同时顾及陀螺定向边本身的误差影响时,导线终点k的点位误差估算公式为: M2xk=m2β/ρ2{[η2]Ⅰ+[η2]Ⅱ+…+[η2]N}+mα20/ρ2(yA-y0Ⅰ)2+mα2Ⅰ/ρ2(y0Ⅰ-0Ⅱ)2+…+m2αN/ρ2(yk-y0N)2+∑m2licos2αiM2yk=m2β/ρ2{[ξ2]Ⅰ+[ξ2]Ⅱ+…+[ξ2]N}+mα20/ρ2(xA-x0Ⅰ)2+m2αⅠ/ρ2(x0Ⅰ-x0Ⅱ)2+…+m2αN/ρ2(xk-x0N)2+∑m2lisin2αiM2k=M2xk+M2yk(7-83)式中η,ξ——各导线点至本段导线重心O的距离在y轴和x轴上的投影长。 四、等边直伸形方向附合导线终点k的点位误差终点k沿导线直伸方向的纵向误差与等边直伸形支导线的纵向误差相同,即t2=±a2L+b2L2(7-84)终点k在垂直于导线直伸方向的横向误差为:u2=±m2βL/ρ2{(n+1)(n+2)/12n}≈m2βL/ρ2{n/12}(7-85)比较式(7-75)与式(7-85)可知,等边直伸形方向附合导线经角度平差后的终点横向误差比支导线的小了一半。 五、方向附合导线任意边的坐标方位角误差方向附合导线经角度平差后,任意边的坐标方位角按下式计算:αj=αo+∑(βj)±j*180°式中(βj)——经角度平差后的角值。因为任意边的坐标方位角是角度平差值的函数,故按求平差值函数权倒数的公式,可导出平差后任意边坐标方位角中误差Mαj的计算公式为:M2αj=±m2β(j(n+1-j)/n+1)(7-86)方向附合导线中,经角度平差后,坐标方位角误差最大的边位于导线中央,将j=(n+1)/2代入上式得:m2α最大=m2β(n+1)/2(7-87) 第七节陀螺定向—光电测距导线陀螺经纬仪是把陀螺仪和经纬仪结合起来、用作定向的一种仪器,简称陀螺仪。测设的井下导线就叫作陀螺定向—光电测距导线。 一、测量方法陀螺定向—光电测距导线的测设方法有两种:一是用陀螺仪和测距仪测定每个边的方向和长度,往测时将陀螺仪和测距仪跳站安设,例如安设在单号点上,用陀螺仪测量前后视边的方向后,再安测距仪测前后视边长;返测时则将仪器安设在双号点上,同样测量前后视边的方向和边长。另一种是往测时,与前一种方式相同,而返测时只跳站安设测距经纬仪,测前后视边长,但不安设陀螺仪测方向,而是按一般导线测量水平角。第七节陀螺定向—光电测距导线 用陀螺仪测角时,方法与用经纬仪相同;用光电测距仪在井下测距时,先在测站上安置仪器并接好电源线,在前后视点上安置反射镜并照准测距仪,再用测距仪瞄准反射镜。然后打开电源开关,按仪器说明书规定的步骤和方法进行测距和测量天顶距或倾角,并测记气象参数。用不防爆的测距仪在井下测角时,一般是在进风的平峒、斜井或主要大巷中进行的。测距时,应注意避免在侧线两侧及镜站后方有反射物体。当巷道内充满炮烟时不宜测量。而且,应在与仪器实现同高处测量温度和气压。同时注意不要让水淋湿仪器。当待测边较长时,要采用灯语。第七节陀螺定向—光电测距导线 二、成果处理方法采用陀螺仪进行测角量边,每边的坐标方位角都已知,在光电测距边加入气象等改正的斜距化算成平距后,便可按一般公式计算坐标增量及依坐标展点绘图。按第二种测设方式测设的导线,边长和坐标计算仍可按一般方法进行。但在计算各边方位角时,由于往、返测时按陀螺仪所测方位角之差算得的水平角值,与返测时用经纬仪直接测得的水平角值之间存在差值,因此需要平差。平差可采用条件平差法。第七节陀螺定向—光电测距导线