- 876.95 KB
- 27页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'《数字信号处理B》课程项目终期报告:字音效处理器14号题目:一组号:_任课教师:组长:_成员:_成员:_成员:_成员:_联系方式:二0—五年10月240
目录项目介绍•项目原理•项目完成过程四.项目结果与分析五.工作分配六.参考文献
一.项目介绍本次项0要求设计一个数字音效处理器,通过一系列相关算法以及借助相关工具(MATLAB),对声音信号进行处理,要求具备语音识别以及降除噪声的功能,另外我们又加入了语音均衡器,丰富了数字音效处理器的功能。最后加入GUI界而设计,方便了用户的使用。二.项目原理本部分主要分为三部分,分别是语音识别,噪声降除以及语音均衡器的相关原理。语音识别:1.1项目大体步骤我们主要釆用基于VQ的说话人识别,我们采用的识别结构框图如下,语音信号
1.2语音信号的预处理预处理包括:预加重,端点检测,分帧以及加窗。预加重的目的是将更为有用的高频部分频谱进行提升,使信号的频谱变得平坦,保持在低频到高频的整个频带中,能用同样的信噪比求取频谱,以便于进行频谱分析或声道参数分析。端点检测即是对输入语音信号的起始点与结束点的判定。分帧:由于语音信号的准平稳特性,使得其只有在短时段上才可被视为一个平稳过程,所以需要把一定长度的语音分为很多帧来分析。加窗:为了减少语音帧的截断效应,降低帧两端的坡度,使语音帧的两端不引起急剧变化而平滑过渡到零,需要将语咅帧乘以一个窗函数。1.3MFCC特征函数的提取Mel频率倒谱系数(MFCC)的分析与传统的线性倒谱系数(LPCC)不同,它的分析是着眼于人耳的听觉机理,因为人类在对1000Hz以下的声音频率范围的感知遵循近似的线性关系;对1000Hz以上的声咅频率范围的感知不遵循线性关系,而是遵循在对数频率坐标上的近似线性关系,所以Mel倒谱系数获得了较高的识别率和较好的兽棒性。实现上,Mel倒谱系数是将语音频率划分成一系列三角形的滤波器序列,这组滤波器在频率的Mel坐标上是等待宽的。MFCC参数的提取过程为:1.对输入的语音信号进行分帧、加窗,然后作离散傅立叶变换,获得频谱分布信息。设语音信号的DFT为:/V-l」2nnkXa(k)=^x(n)e~,0r/7(z7t-0.5/m)),0<7i