- 7.59 MB
- 125页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'设计计算书毕业设计题目:太原某多层混凝土框架结构高层旅馆一.工程概况:1、工程名称:太原某多层混凝土框架结构高层旅馆;2、建筑总面积:10512;3、建筑层数:10层建筑层高:底层3.9m;其它层:3.3m;4、结构形式:现浇钢筋混凝土框架结构;二、设计资料:1、气象及地质条件夏季主导风向:南;基本风压:;基本雪压;室外冬季设计温度:;地下水位:按室外地坪以下4m考虑,地下水无侵蚀性;土壤冻结深度:0.8m;2、设防等级建筑等级为二级,耐火等级不低于二级,抗震设防烈度为8度,设计基本地震加速度为0.2g,场地类别为一类,,设计地震分组为第一组;3、材料混凝土强度等级为C35,纵筋为HRB400,箍筋为HPB300;毕业设计主要内容1、确定建筑设计方案;2、确定结构方案;3、框架结构梁、板、柱的配筋设计;4、基础设计;学生应交的设计文件:1、建筑平面图;首层、标准层平面图;立面图和剖面图;2、梁、板、柱配筋图;3、基础平面布置图和基础配筋图;主要参考文献:1、《混凝土结构设计规范》GB50010-20022、《建筑结构设计规范》GB50009-20013、《建筑抗震设计规范》GB50010-20024、《砌体结构设计规范》GB50003-20015、《建筑地基基础设计规范》GB50007-20026、《混凝土结构构造手册》中国建筑工业出版社7、《房屋建筑学》武汉理工大学出版社5
8、《建筑抗震设计技术措施》中国建筑工业出版社 9、《国家建筑与结构制图标准》中国建筑工业出版社 10、《高层建筑结构》武汉工业大学出版社11、《钢筋混凝土及砌体结构》上下册,中国建筑工业出版社专业班级:土木0904班学生姓名:要求毕业设计(论文)工作起止时间:2013.03 -2013.06指导老师签字:日期:教研室主任审查签字:日期:系主任批准签字:日期:5
5
摘要本次毕业设计是一个高层旅馆设计,包括建筑设计、结构设计和基础设计三部分内容。建筑设计是在总体规划的前提下,根据设计任务书的要求,综合考虑场地环境、使用功能、综合选型、施工、材料、建筑设备、建筑艺术及经济等。着重解决了建筑物与周围环境、建筑物与各种细部构造,最终确定设计方案,画出建筑施工图。结构设计是在建筑初步设计的基础上确定结构方案;选择合理的结构体系;进行结构布置,并初步估算,确定结构构件尺寸,进行结构计算。结构计算包括荷载计算、变形验算、内力分析及截面设计,并绘制相关的结构施工图。基础设计是在上部结构设计的基础上确定基础类型以及基础的平面布置,最后根据所确定的基础类型进行计算,并绘制相关的基础施工图。总之,适用、安全、经济、耐久、使用方便是本设计的原则,三部分空间合理,连接紧凑,主次分明,使建筑空间的舒适度加以提高。 ABSTRACTThisgraduationdesignisahigh-risehoteldesign,includingarchitecturaldesign,structuraldesignandfoundationdesignofthreeparts.Thearchitecturaldesignisthepremiseoftheoverallplan,accordingtothedesignrequirementsofthetask,consideringthesiteenvironment,theuseoffunction,selection,construction,materials,constructionequipment,architecturalartandeconomy.Focusonsolvingthebuildingandthesurroundingenvironment,buildingstructureswithavarietyofdetails,thefinaldesign,constructiondrawingdraw.Structuredesignistodeterminethestructureschemebasedonthepreliminarydesignofarchitecture;selectingreasonablestructuralsystem;III`
structurallayout,andapreliminaryestimate,todeterminestructuralcomponentsize,structurecalculation.Thestructurecalculation,includingcalculationofinternalforcecalculation,analysisanddesignofdeformationload,andthemappingofthestructuraldrawings.Foundationdesignistodeterminethelayouttypeoffoundationandfoundationbasedontheupperstructuredesign,finallycalculatedbasedonthedeterminedtype,andthemappingofthebasicconstructionplan.Inshort,application,security,economic,durable,easytouseisthedesignprinciple,thethreepartofthespaceisreasonable,compactconnection,prioritize,makethebuildingspacetoimprovecomfort.III`
III`
第一篇建筑设计部分第一章设计概况一、工程概况太原某高层旅馆为钢筋混凝土结构体系,建筑面积约为10000,建筑平面为一字形,房间开间3.6m,进深6.0m,走廊宽度2.4m,底层层高3.9m,其它层高3.3m,室内外高差0.45m,屋面女儿墙高900mm,框架柱、梁现浇,屋面及楼面选用混凝土现浇板。二、设计资料1、气象及地质条件夏季主导风向:南;基本风压:W0=0.5kPa;基本雪压:S0=0.3kPa;室外冬季设计温度:-15℃.地下水位:按室外地坪下2.5m考虑,地下水无侵蚀性;土壤冻结深度:1.12m;室外地面至地面以下6m范围内为粉质粘土,属于第一类场地;地基承载力特征值:fak=120kPa。2、设防等级:建筑等级为二级,耐火等级不低于二级,抗震设防烈度为8度。3、材料;混凝土强度等级为C35,纵筋为HRB400,箍筋为HRB335。第二章工程做法一、屋面做法(不上人屋面)自上而下依次为:25厚细石混凝土保护层三毡四油上铺小石子防水层20厚1:3水泥砂浆找平层100厚聚苯保温层1:6水泥焦渣找坡板底20厚粉刷抹灰二、楼地面做法1、走道、房间楼面(铺地砖楼面)自上而下依次为:10厚地砖面层20厚1:4水泥砂浆结合层20厚1:3水泥砂浆找平层钢筋混凝土楼板119`
板底20厚粉刷抹灰2、卫生间楼面自上而下依次为:防滑地砖屋面30厚1:4水泥砂浆结合层60厚C20细石混凝土找坡聚氨酯防水涂层1:3水泥砂浆找平层钢筋混凝土楼板板底20厚粉刷抹灰3、地面做法自上而下依次为:20mm厚1:2.5水泥砂浆水泥砂浆一道(内参建筑胺)60mm厚C15混凝土垫层素土夯实一、墙身做法1、外墙面自外而内依次为:无机建筑涂料6mm厚1:2.5水泥砂浆12mm厚1:3水泥砂浆打底,扫毛或划出纹道2、内墙面(1)卫生间自外而内依次为:5mm厚釉面砖8mm厚1:0.1:2.5水泥砂浆抹平扫毛8mm厚1:0.5:4水泥砂浆打底扫毛加气混凝土界面处理剂一道(2)房间、走道、楼梯间自外而内依次为:乳胶漆两遍刷底漆一遍轻刮腻子一遍5mm厚1:2水泥砂浆15mm厚1:3水泥砂浆加气混凝土界面处理剂一道(3)电梯间墙体电梯间墙体采用200mm厚实心砖墙体,采用1:2.5水泥砂浆砌筑,内抹2mm厚1:3水泥砂浆(4)女儿墙女儿墙采用240mm厚900mm高砖墙,墙面粉刷20mm厚1:3水泥砂浆,然后涂料四、门窗做法采用铝合金窗户,外部门采用铝合金门,其它门都采用木门。119`
第二篇结构设计部分第一章结构平面布置及结构计算简图的确定第一节结构平面布置界结构结构承重方案的选择一、结构平面布置本工程采用柱距为7.2m的等距柱网两边跨为6.0m,中间跨为2.4m,各层层高由建筑层高确定,其中层底结构层高从基础顶面算起,取室内外高差为0.45m,并取室外地面道基础顶面的距离为0.5m,故各层的结构层高分别为:底层4.85m,二~十层3.3m。柱网布置如图1所示图1柱网布置图二、框架结构城中方案的选择1.本方案中竖向荷载的传力路径:楼板的均布活载和恒载经次梁间接或直接传至主梁,再由主梁传至框架柱,并由框架柱传给基础,最后传至地基。2.因房屋横向较短,柱数量较少,故本框架的承重方案采用横向框架承重方案,这可增加框架的横向的侧移刚度,同时也有利于房屋室内采光通风。119`
第二节确定梁柱截面尺寸及结构计算简图本结构采用C35混凝土,纵向受力钢筋采用HRB400级,箍筋采用HRB335级,一、梁截面尺寸的确定(一)主梁截面高度一般按梁跨度的1/8~1/12估算,截面宽度可取梁高的1/2~1/3故:1、纵梁:h=(1/8~1/12)L=(1/8~1/12)x7200=600mm~900mm取h=600mmb=300mm2、横梁:h=(1/8~1/12)L=(1/8~1/12)x6000=500mm~750mm取h=600mm,b=300mm(二)次梁截面按次梁跨度的1/12~1/18取h=400mm,b=250mm二、柱截面尺寸根据柱的轴压比限制确定,可按下列公式估算:(一)、柱截面面积 式中:柱轴压比限值:混凝土轴心抗压强度设计值:柱的轴力设计值(二)、柱轴力设计值=1.25CβN 式中 N:竖向荷载作用下柱轴力标准值(包含活载) β:水平作用对柱轴力的放大系数 七度抗震:β=1.05,八度抗震:β=1.10C:系数;中柱C=1,边柱C=1.1,角柱C=1.2(三)竖向荷载作用下柱轴力标准值:式中n:柱承受楼层数A:柱的从属面积q:竖向荷载标准值(包含活载)对框架结构取q=10~12kN/(轻质砖)q=12~14kN/(机制砖)(四)查<<建筑抗震设计规范>>可确定本工程框架结构的抗震等级为二级,框架柱的轴压比限制为0.8119`
1、对于底层中柱A=7.2x6.0=43.2N=10x50.4x11=4752KN=1.25x1x1.1x4752=6534KNAc≥6534/(0.8x16.7)=489072、对于底层边柱A=0.5x7.2x6.0=21.6N=10x21.6x12=2592KN=1.25x1.1x1.1x2892=3920.4KNAc≥3920.4/(0.8x16.7)=2934433、对于底层角柱A=0.5x7.2x6.0x0.5=10.8N=10x10.8x12=1296KN=1.25x1x1.2x1296=2138KNAc≥2138/(0.8x16.7)=160006四、根据上述结果,综合考虑,取框架柱的截面尺寸为:1~4层:700x700mm5~10层:500x500mm三.计算简图的确定根据地震资料,取室内外高差为450mm,取基础顶离室外地面高位500mm由此求得底层高为4.85mm,取框架柱的形心线为柱轴线,取板顶作为框架轴线,得结构计算简图如下图2所示119`
图2.结构计算简图第二章荷载计算第一节恒载计算一、不上人屋面永久荷载标准值25厚细石混凝土保护层0.025×22=0.55KN/三毡四油上铺小石子保护层0.4KN/20厚1:3水泥砂浆找平层0.02×20=0.4KN/100厚聚苯保温板0.1x4=0.4KN/1:6水泥焦渣找坡0.08x15=3.0KN/钢筋混凝土屋面板0.12x25=3KN/板底20厚粉刷抹灰0.02x17=0.34KN/小计6.29KN/二119`
走道、房间楼面永久荷载标准值10厚地砖面层0.01x20=0.2KN/20厚1:4水泥砂浆结合层0.02x20=0.4KN/20厚1:3水泥砂浆找平层0.02x20=0.4KN/钢筋混凝土楼板0.12x25=3.0KN/板底20厚粉刷抹灰0.02x17=0.34KN/小计4.34KN/三卫生间楼面永久荷载标准值防滑地砖屋面0.01x20=0.2KN/30厚1:4水泥砂浆结合层0.03x20=0.6KN/60厚C20细石混凝土找坡0.06x25=1.5KN/聚氨酯防水涂层0.002x12=0.024KN/1:3水泥砂浆找平层0.02x20=0.4KN/钢筋混凝土楼板0.12x25=3.0KN/板底20厚粉刷抹灰0.02x17=0.34KN/小计6.04KN/第二节活载计算不上人屋面均布活荷载0.5KN/房间楼面均布活荷载2.0KN/卫生间楼面均布活荷载2.0KN/走廊、楼梯间楼面均布活荷载2.5KN/电梯机房均布活荷载7.0KN/119`
屋面雪荷载标准值0.35KN/屋面活荷载与雪荷载不同时考虑,按抗震规范在计算重力荷载代表值时计算雪荷载,不计屋面活荷载第三节墙体重力荷载标准值的计算一、外墙5.5x0.3=1.65KN/二、内墙5.5x0.2=1.1KN/三、电梯间墙体18x0.24=4.32KN/四、女儿墙0.9x0.24x18+(0.9x2+0.24)x0.02x17=4.582KN/五、墙面抹灰1、外墙面0.018x17=0.306KN/2、内墙面0.02x17=0.341KN/3、卫生间墙面0.021x17=0.357KN/4、电梯间墙面.02x20=0.40KN/第四节门窗重力荷载标准值的计算一、铝合金门、窗0.45KN/二、实木门0.45KN/三、电梯门0.45KN/第五节各层重力荷载代表值的计算因为本建筑纵向总长达73m>55m,根据<<混凝土结构设计规范>>(GB5001~2002)的规定,本结构在6~7轴之间设有伸缩缝一道,结构被分为两部分,结构计算分析时取伸缩缝右侧部分结构进行计算分析。119`
一、柱子各层柱的重力荷载代表值见下表表一层次计算高度/mmb/mmh/mmV/mm重量/kN抹灰重/kN数量/根总重/kN148507007002.8359.54.14241527.4233007007001.6240.53.14241047.4333007007001.6240.53.14241047.4433007007001.6240.53.14241047.4533005005000.8320.752.2424551.8633005005000.8320.752.2424551.8733005005000.8320.752.2424551.8833005005000.8320.752.2424551.8933005005000.8320.752.2424551.81033005005000.8320.752.2424551.8一、梁梁的编号如图三所示。各层梁的重力荷载代表值的计算见表二。119`
图三、梁的编号图表二层次类别净长/mmh/mmb/mmV/mm重量/KN抹灰重/KN数量/根总重/KN合计/KN1~4ZL-163006003001.13428.353.218252.511168.69ZL-265006003001.17229.253.3212390.78HL-148506003000.87321.832.4812291.72ZDL-124006003000.42310.801.23672.18CL-157506003000.57514.381.7710161.5ZL-166006003001.18829.703.378264.53119`
5~101216.71ZL-267006003001.20630.153.4212402.81HL-152506003000.94523.632.6812315.69ZDL-124006003000.43210.801.23672.18CL-157504002500.57514.381.7710161.5一、墙体(一)第一层抹灰及墙体自重(0.34+5.5)=5.84KN外墙(4.29x29.3-2.1x1.8x8)x5.84x0.3=167.24KN(4.29x36.5-2.1x1.8x10)x5.84x0.3=208.11KN(14.4x4.29-2.1x1.8)x5.84x0.3=101.61KN内墙4.29x5.75x7x5.84x0.2=189.94KN(4.29x29.3-1.8x2.1x4-0.9x2.1)x5.84x0.2=131.36KN(4.29x36.5-1.8x2.1x4-0.9x2.1)x5.84x0.2=163.02KN卫生间(5.75x4.29x2-0.9x2.1x2-1.8x2.1x2+6.95x4.29x2)x6.0x0.2=117.15KN共计;1078.43KN第二层:外墙(3.18x36.5-2.1x1.8x10)x5.84x2x0.3=274.26KN3.18x14.4x5.84x0.3=80.23KN内墙3.18x6.0x10x5.5x0.2=22.85KN3.18x3.79x5.84x9x0.2=126.70KN(3.18x36.5-9x2x0.9x2.1)x5.84x2x0.3=191.67KN卫生间(2x1.84x3.18+1.76x3.18-0.7x2.1)x6.0x0.2=341.93KN共计:1237.64KN其余层计算过程同上,计算的结果如下表三。表三119`
层次外墙/KN内墙/KN卫生间/KN总计/KN1476.96484.32117.151078.432~10354.49541.22341.931237.64四、门窗各层门窗的重力荷载代表值见表四。表四层次门窗总计/KN门宽/mm门高/mm数量门重/KN窗宽/mm窗高/mm数量窗重/KN118002100915.31180021002034.0251.88900210032.552~101800210023.40180021002034.265.5690021001815.311500180011.2270021001811.91五、楼板各层楼板的重力荷载代表值的计算1~9层(1)卫生间1.9x2.0x6.064x18=414.78Kn(2)其次(36.5x14.4-19.2x2.0x18)=1984.25KN共计:2399.03KN10层36.5x14.4x6.29=3306.02KN六、恒载汇总119`
各层恒载汇总如下表五。表五层次梁/KN板/KN小计/KN柱/KN墙/KN门窗/KN小计/KN11168.692399.033567.721527.41078.4351.882657.7121168.692399.033567.721047.41237.6465.562350.631168.692399.033567.721047.41237.6465.562350.641168.692399.033567.721047.41237.6465.562350.651216.712399.033615.74551.81237.6465.56185561216.712399.033615.74551.81237.6465.56185571216.712399.033615.74551.81237.6465.56185581216.712399.033615.74551.81237.6465.56185591216.712399.033615.74551.81237.6465.561855101216.713306.024522.73551.81237.6465.561855四、活荷载的计算计算重力荷载代表值时,仅考虑屋面雪荷载雪荷载标准值为:0.35x36.5x14.4=183.96KN楼面均布活荷载:标准值取2.0KN/2.0x36.5x14..4=1051.2KN五、各层重力荷载代表值G1=3567.72+0.5x(2657.71+2350.6)+0.5x1051.2=6597.48KNG2=3567.72+0.5x(2350.6+2350.6)+0.5x1051.2=6597.48KNG3=3567.72+0.5x(2350.6+2350.6)+0.5x1051.2=6597.48KNG4=3567.72+0.5x(2657.71+1885)+0.5x1051.2=6597.48KNG5=3615.74+0.5x(1885+1885)+0.5x1051.2=6597.48KN119`
G6=3615.74+0.5x(18851+1885)+0.5x1051.2=6597.48KNG7=3615.74+0.5x(1885+1885)+0.5x1051.2=6597.48KNG8=3615.74+0.5x(1885+1885)+0.5x1051.2=6597.48KNG9=3615.74+0.5x(1885+1885)+0.5x1051.2=6597.48KNG10=4522.73+0.5x1885+183.96=5649.19KN则集中于各楼层标高处重力荷载代表值的计算结果如下图所示。图四、重力荷载代表值119`
第三章.框架侧移刚度的计算一、框架横梁线刚度的计算框架横梁线刚度(1)边跨框架边横梁:i=1.5EcI0/L0=1.5x3.15xx/6000=4.26xN.mm中间横梁:i=1.5EcI0/L0=1.5x3.15xx/2400=10.63xN.mm(2)中跨框架边横梁:i=1.5EcI0/L0=2.0x3.15xx/6000=5.68xN.mm中间横梁:i=1.5EcI0/L0=2.0x3.15xx/2400=14.17xN.mm二、框架柱线刚度计算框架柱线刚度计算见下表:表六层次(mm)(N/)()(N.mm)148503.15x700x7002.0x13.0x233003.15x700x7002.0x19.0x333003.15x700x7002.0x19.0x433003.15x700x7002.0x19.0x533003.15x500x5000.52x5.0x119`
633003.15x500x5000.52x5.0x733003.15x500x5000.52x5.0x833003.15x500x5000.52x5.0x933003.15x500x5000.52x5.0x1033003.15x500x5000.52x5.0x二、各层框架横向侧移刚度的计算采用D值法计算各层框架横向侧移刚度,各层梁柱线刚度如下图所示(括号内为边框架的线刚度)单位:xN.mm.各层框架横向侧移刚度计算如下图:119`
边框架中框架图五.线刚度单位:各层框架横向侧移刚度计算如下表表七层次类别KαcD(/m)D(/m)1边跨边柱0.34430.360223583.321117693.495中柱1.20370.531833559.525中跨边柱0.45910.390024611.160中柱1.60470.583936847.323119`
2~4边跨边柱0.22660.101820393.653210206.876中柱0.81900.290558196.033中跨边柱0.31240.135127064.661中柱1.09190.5219104552.525~10边跨边柱0.90060.310517107.438115373.585中柱3.14800.611533691.425中跨边柱1.20080.534129278.237中柱4.19660.677235296.485第四章横向水平地震作用下框架内力和侧移的计算第一节横向自振周期的计算(采用能量法)基本自振周期T1可按下式计算:T1=2α0式中:假想把集中在各层楼面处的重力荷载代表值作为水平荷载作用在各质点处所引起的质点i的水平位移α0:结构基本自振周期考虑非承重砖墙影响的折减系数,本方案中取为0.7按下列公式计算:(Δu)i=Δu)k式中:第i层的层间剪力119`
:第i层的层间侧移刚度(Δu)k:第i层的层间侧移结构横向自振周期的计算过程见下表表八层次Gi/(KN)Vi/(KN)(Δu)i/(m)/(m)105649.195649.19692241.510.008160.37162099.239780.077296026.3411675.53692241.510.01600.36342189.972795.835886026.3417701.87692241.510.02510.34742093.551727.299476026.3423728.21692241.510.03420.32231942.289625.999866026.3429754.55692241.510.04210.28811736.189500.195956026.3435780.89692241.510.05100.24601482.480364.689946211.1241992.01126241.250.03300.19501211.168236.177836443.9248435.93126241.250.03840.16201043.915169.114226443.9254879.85126241.250.04350.1230796.46998.443516597.4861477.33706160.970.08010.0801528.45842.329515123.7294340.1620故按能量法计算结构基本自振周期为:T1=2α0=119`
第一节水平地震作用及楼层地震剪力的计算由于本结构高度不超过40m,质量和刚度沿高度分布比较均与,变形以剪切变形为主。结构地震反应以第一振型反应为主,故可采用底部剪力法计算水平地震作用。一、计算结构等效总重力何在代表值=二、计算水平地震影响系数本地区抗震设防烈度为8度,设计基本地震加速度为0.2g。所属设计地震分组为第一组,建筑场地为一类,设计特征周期为0.25s,查表得=0.16,=0.25s故,所以三、计算总水平地震作用标准值(即底部剪力)四、计算作用在个质点上的水平地震作用标准值由于需要考虑顶部附加水平地震作用又查表知顶部附加水平地震作用系数为0.13,所以顶部附加水平地震作用为:,即可知顶部修正后的地震:各质点横向水平地震作用按下式计算:地震作用下各楼层水平地震层间剪力为:具体计算过程检下表119`
层次1034.505649.19194897.0550.1641510.223510.223931.256026.34188323.1250.1586493.1221003.343827.956026.34168436.2030.1418440.8871444.230724.656026.34148549.2810.1251388.9631833.193621.356026.34128662.3590.1083336.7282169.921518.056026.34108775.4270.0916284.8052454.726414.756211.1291614.020.0771239.7202694.446311.456443.9273782.8840.0621193.0822887.52828.156443.9252517.9480.0442137.4273024.95514.856597.4831997.7780.026983.6383019.0261477.331187556.091第二节水平地震作用下的位移验算水平地震作用下框架结构的层间位移(Δu)k和顶点位移ui分别按下列公式计算:(Δu)i;各层的层间弹性位移角根据<<建筑抗震设计规范>>考虑砖填充墙抗侧移力作用的框架层间弹性位移角限制=1.18181,横向水平地震作用下的位移验算过程见下表(表十)。119`
表十层次10510.223692241.510.73724.82433000.223391003.343692241.511.44924.08733000.439181444.230692241.512.08622.63833000.632171833.193692241.512.64820.55233000.802462169.921692241.513.13317.90433000.949452454.726692241.513.54614.77133001.074542694.446126241.252.13611.22533000.647332887.528126241.252.2899.80933000.696423024.955126241.252.3986.80033000.726713019.02706160.974.4024.40248500.9076由此可见,层间位移均小于规范限制,即满足要求。第三节水平地震作用下的框架内力计算一、框架柱端剪力及弯矩的计算(以第8轴线框架为例)框架柱端剪力及弯矩分别按下列公式计算:119`
式中:-框架柱的标准反弯点高度比-上下层梁的线刚度变化的反弯点高度比的修正值,-上下层高度变化时反弯点高度比的修正值-指柱底弯矩-指柱顶弯矩二、框架梁梁端弯矩及梁剪力,柱轴力的计算梁端弯矩按下列公式计算:其中:为节点左右的梁端弯矩分别是节点左右的梁的线刚度梁剪力按下列公式计算:柱轴力按下式计算:分别是节点左右的两端剪力梁端弯矩、剪力及柱轴力计算结果见表十三、十四(表中弯矩单位为)查表得各柱的的取值及y的计算结果见表十一。表十一119`
类型层次k边柱101.20080.41000000.410091.20080.45000000.450081.20080.46000000.460071.20080.50000000.500061.20080.50000000.500051.20080.50000000.500040.31240.50000000.500030.31240.50000000.500020.31240.50000000.500010.45910.62000-0.1000-0.1000.5200层次y0y1y2y3y中柱104.19660.45000000.450094.19660.50000000.500084.19660.50000000.500074.19660.50000000.500064.19660.50000000.500054.19660.50000000.500041.09190.50000000.500031.09190.50000000.500021.09190.50000000.500011.60470.55000-0.1000-0.10000.4500119`
则该轴横向框架内力的计算如下:表中弯矩单位,剪力。轴力单位为,刚度单位为类别边柱103.3510.223692241.5129278.2370.04221.430.41008.7812.6493.31003.343692241.5129278.2370.04242.140.450018.9623.1883.31444.230692241.5129278.2370.04260.660.460027.9032.7673.31833.193692241.5129278.2370.04276.990.500038.4938.5063.32169.921692241.5129278.2370.04291.110.500045.5545.5653.32454.726692241.5129278.2370.042103.100.500051.5551.5543.32694.446126241.2527064.6610.02156.580.500028.2928.2933.32887.528126241.2527064.6610.02160.640.500030.3230.3223.33024.955126241.2527064.6610.02163.520.500031.7631.7614.853019.02706160.9724611.1600.034105.710.520054.9750.74中柱103.3510.223692241.5135296.4850.03425.510.450011.4814.0393.31003.343692241.5135296.4850.05050.170.500025.0825.0983.31444.230692241.5135296.4850.05072.220.500036.1136.1173.31833.193692241.5135296.4850.05094.160.500047.0847.0863.32169.921692241.5135296.4850.050108.460.500054.2354.2353.32454.726692241.5135296.4850.050122.740.500061.3761.3743.3126241.250.080215.56119`
2694.446104552.5290.5000107.78107.7833.32887.528126241.25104552.5290.080231.000.5000115.50115.5023.33024.955126241.25104552.5290.080241.000.5000120.50120.5014.853019.02706160.9736847.3230.052161.670.450072.7588.77表十三中间横梁层次10014.035.685.687.027.02911.4825.095.685.6818.2918.29825.0836.115.685.6830.6030.60736.1147.085.685.6841.6041.60647.0854.235.685.6850.6650.66554.2361.375.685.6857.8057.80461.37107.785.685.6884.5884.583107.78115.505.685.68111.64111.642115.50120.505.685.68118.00118.001120.5088.775.685.68104.64104.64边横梁10012.64014.17012.6498.7823.18014.17031.96818.9632.76014.17051.72727.9038.50014.17066.40638.4945.56014.17084.05545.5551.55014.17097.10451.5528.29014.17079.84119`
328.2930.32014.17058.61230.7631.76014.17062.52131.7650.74014.17082.50表十四层次边横梁中间横梁框架柱边柱中柱1012.647.026.03.287.027.022.45.843.282.20931.9618.296.08.3718.2918.292.415.2411.659.07851.7230.606.013.7230.6030.602.425.5025.3720.85766.4041.606.018.0041.6041.602.434.6643.3737.52684.0550.666.022.4550.6650.662.442.2165.8257.28597.1057.806.025.8257.8057.802.448.1791.6479.63479.8484.586.027.4084.5884.582.470.48119.04122.71358.61111.646.028.38111.64111.642.493.03147.42187.36262.52118.006.030.09118.00118.002.498.33177.51255.60182.50104.646.031.19104.64104.642.487.20208.70311.61119`
第五章竖向荷载作用下框架结构内力计算第一节、计算单元的选择取8号轴横向框架进行计算,计算简图如图七所示,计算单元宽度为7.2m,由于房间内布置有次梁(),故直接传给该框架的楼面荷载如图中水平阴影所示,计算单元范围内的其余楼面荷载则通过次梁和纵向框架以集中力的形式传给横向框架,作用于各节点上,由于纵向框架的中心线与柱的中心线不重合,所以在框架节点上还作用有集中力矩。图七横向框架计算单元119`
第二节荷载计算一、横在计算恒载作用下各层框架梁上的荷载分布如图8所示:图八、恒载作用下各层框架梁上的荷载分布图中分别为边横梁和走道梁自重,为均布荷载形式分别为屋面板和走道板传给横梁的梯形荷载形式和三角形荷载分别为由边纵梁,中纵梁直接传给柱的横载,它包括主梁自重,次梁自重,楼板重等荷载。分别为由于纵向框架梁的中心线与柱的中心线不重合在框架节点上产生的集中力矩(一)、屋面框架梁线荷载标准值;屋面恒荷载标准值:边横梁自重:梁侧粉刷:因此作用在顶层框架梁上的线荷载为:=4.826=4.826119`
=6.293.6=22.644=6.292.4=15.096(二)、楼面框架线荷载标准值;楼面恒载标准值:4.34边梁自重:梁侧粉刷:边跨填充墙自重:二~九层0.2(3.3-0.6)5.5+(3.3-0.65)170.002=3.062因此作用在中间各层框架梁上的线荷载为:二~九层:=7.888=4.826=6.293.6=15.624=6.292.4=110.416一层:=10.620=4.826=6.293.6=15.624=6.292.4=10.416(三)、屋面框架节点集中荷载标准值;边柱连系梁自重:0.30.67.225=32.4梁侧粉刷:(0.018+0.02)(0.6-0.12)7.2=0.131连系梁传来屋面自重:[(0.53.61.95+0.5(1.05+3.0)1.95]26.29=93.83119`
因此作用在顶层框架梁上的线荷载为:=126.361顶层边节点集中荷载;中柱连系梁自重:0.30.67.225=32.4梁侧粉刷:(0.018+0.02)(0.6-0.12)7.2=0.131连系梁传来屋面自重:[(0.53.61.95+0.5(1.35+3.61.95+0.5(2.4+3.6)1.35]26.29=155.816顶层中间节点集中荷载:=188.347(四)、楼面框架节点集中荷载标准值;1、中柱连系梁自重:0.30.67.225=32.4梁侧粉刷:(0.018+0.02)(0.6-0.12)7.2=0.131墙体自重:二~十层[7.2(3.3-0.65)-1.82.12.0]2.296=26.450门窗自重:1.82.10.452=3.24框架柱自重(包含粉刷):五~十层0.50.53.325+0.530.023.317=22.308二~四层0.70.73.325+0.530.023.317=42.108连续梁传来楼面自重[(0.53.61.95+0.5(1.35+3.6)1.95]24.34=72.35因此中间边层节点集中荷载:五~十层=84.529二~四层=104.3292、中柱连系梁自重:0.30.67.225=32.4梁侧粉刷:(0.018+0.02)(0.6-0.12)7.2=0.131墙体自重:119`
二~十层[7.2(3.3-0.65)-0.92.1]1.746=30.642门窗自重:80.92.10.45=6.80框架柱自重(包含粉刷):五~十层0.50.53.325+0.530.023.317=22.308二~四层0.70.73.325+0.530.023.317=42.108连续梁传来楼面自重:[(0.53.61.95)+0.5(1.35+3.6)1.95+0.5(2.4+3.6)1.35]24.34=107.512因此中间层中间节点集中荷载:五~九层=92.281一~四层=112.081(四)、各层集中荷载作用下集中力矩的计算(由于纵向框架的中心线与柱的中心线不重合在框架节点上产生的集中力矩)第十层:=126.361(0.5-0.3)/2=12.636=188.347(0.5-0.3)/2=18.835五~九层:=84.529(0.5-0.3)/2=8.453=92.281(0.5-0.3)/2=9.228第四层:=84.529(0.7-0.3)/2=16.906=92.281(0.7-0.3)/2=18.456一~三层:=104.329(0.7-0.3)/2=20.866=112.081(0.7-0.3)/2=22.416二、活载计算活荷载作用下各层框架梁上的荷载分布如图9所示:119`
图九活荷载作用下框架梁上的荷载分布图中:分别为屋面板和走道板传给横梁的梯形荷载和三角形荷载分别为由边纵梁,中纵梁直接传给柱的活荷载分别为由于纵向框架梁的中心线与柱的中心线不重合在框架节点上产生的集中力矩(一)、屋面框架梁线荷载标准值屋面活荷载标准值:0.5故、=0.53.6=1.8=0.52.4=1.2(二)、楼面框架梁线荷载标准值楼面活荷载标准值:0.5故、=2.03.6=7.2=2.52.4=6.0屋面框架节点集中荷载标准值:=[(0.53.61.8+0.5(1.2+3)1.8]20.5=4.32=[(0.53.61.8+0.5(1.2+3)1.8+0.5(2.4+3.6)1.2]20.5=7.92(三)、楼面框架节点集中荷载标准值:=[(0.53.61.8+0.5(1.2+3)1.8]22.0=28.08119`
=[(0.53.61.8+0.5(1.2+3)1.8]22.0+0.5(2.4+3.6)1.222.5=46.08(一)、各层集中荷载作用下集中力矩的计算(由于纵向框架梁的中心线与柱的中心线不重合在框架节点上产生的集中力矩)第十层:=4.32(0.5-0.3)/2=0.432=7.92(0.5-0.3)/2=0.792五~九层:=28.08(0.5-0.3)/2=2.808=46.08(0.5-0.3)/2=4.608一~四层:=28.08(0.7-0.3)/2=5.616=46.08(0.7-0.3)/2=9.216第三节、内力计算竖向荷载作用下的内力计算采用分层法,由于结构和荷载大致对称,故计算时可利用对称性取二分之一框架结构进行计算:假定作用在某一层框架梁上的竖向荷载值对本楼层的梁以及与本楼层相连的框架柱产生弯矩和剪力,而对其他楼层的框架梁和各层的框架柱都不产生弯矩和剪力;按照叠加原理,多层多跨框架在多层竖向荷载同时作用下的内力,可以看成是各层竖向荷载单独作用下的内力的叠加;因此,框架结构在竖向荷载作用下,可按各层开口刚架单元进行计算;各开口刚架的上下端均视为固定支撑,并作一下修正:①除底层外的其他各层框架柱的线刚度均乘以0.9的折减系数,②除底层外的其他各层框架柱的弯矩传递系数均取为1/3.结构计算简图及节点编号如图十所示如下:119`
图十、结构计算简图注:图中数字为线刚度,单位节点分配系数如下表所示;表十五层次10987654321A节点刚度左梁0000000000右梁5.685.685.685.685.685.685.685.685.685.68上柱04.54.54.54.54.517.117.117.113.0119`
下柱4.54.54.54.54.54.517.117.117.113.0B节点刚度左梁5.685.685.685.685.685.685.685.685.685.68右梁28.3428.3428.3428.3428.3428.3428.3428.3428.3428.34上柱04.54.54.54.54.517.117.117.113.0下柱4.54.54.54.54.54.517.117.117.113.0A节点分配系数左梁0000000000右梁0.5580.3870.3870.3870.3870.3870.2080.1420.1420.159上柱00.3070.3070.3070.3070.3070.1650.4280.4280.478下柱0.4420.3060.3060.3060.3060.3060.6270.4300.4300.363B节点分配系数左梁0.1470.1320.1320.1320.1320.1320.1020.0830.0830.089右梁0.7360.6590.6590.6590.6590.6590.5100.4150.4150.442上柱00.1050.1050.1050.1050.1050.0810.2510.2510.267下柱0.1170.1040.1040.1040.1040.1040.3070.2510.2510.202各层开口刚架的内力计算采用弯矩分配法,连接于同一节点各杆件的弯矩分配系数按各杆件的转动刚度计算,其中远端固定杆件,远端定向支撑杆件,为杆件的线刚度,各杆件的线刚度如上图所示,梁上分布的荷载矩形和梯形或三角形两部分组成,在求固端弯矩时可根据固端弯矩相等的原则先将梯形分布荷载和三角形分布荷载转化为等效均布荷载,等效荷载的计算方法如下:119`
图十一=+(1-2)=+0.847=+(1-2)=+0.624=(1-2)=0.847=(1-2)=0.847(边横梁=0.3,走道梁=0.5)故各层的等效均布荷载为;一层:=10.62+0.84715.62=23.85=4.826+0.62410.410=11.32=0.8477.2=6.10=0.6246.0=3.74二~九层:=7.888+0.84715.624=21.12=4.826+0.62410.410=11.32=0.8477.2=6.10119`
=0.6246.0=3.74十层:=4.826+0.84722.644=24.00=4.826+0.62415.096=14.25=0.8471.8=6.10=0.6241.2=3.74中横梁固端弯矩需由建筑结构静力计算手册查表进行叠加得到,即以下几种情况:119`
由此可计算各层框架梁的固端弯矩如下;一层:(恒载作用下)二~九层:(横在作用下)第十层:(横在作用下)一~九层:(活载作用下)第十层:(活载作用下)将分层法求得的弯矩图叠加,可得整榀框架结构在恒载或活载作用下的弯矩图,叠加后框架内各节点弯矩不一定能达到平衡,为了提高精度,将节点不平衡弯矩再进行一次分配,予以修正,即可得到该榀框架在竖向恒载或活载作用下的弯矩图。恒载作用下分层法计算过程如下;119`
按照框架结构的合理破坏形式,在梁端出现塑性铰是允许的,为了便于浇筑混凝土,也往往希望节点处梁的负弯矩钢筋放的少一些。因此,一般对梁端弯矩进行调幅。在求得结构的梁端弯矩后,应根据求得的支座弯矩和各跨的实际情况按平衡条件计算梁跨中弯矩,因为弯矩包络图需要找到最大值,故对于跨中弯矩,应在调幅前后取大值进行内力组合。计算得恒载和活载作用下框架梁固端弯矩及跨中弯矩如下表十九所示:表中梁端弯矩均是绝对值,跨中弯矩以下部受拉为正弯矩。弯矩单位,梯形或三角形荷载单位为,力单位为KN.表十八荷载类型层次梁编号荷载值跨中弯矩恒载第十层35.570.832.0124.0014.2554.23-60.5071.970.864.7770.760.863.68第九层45.340.840.8121.1211.3239.91-42.2764.930.858.4450.420.845.38第八层45.340.840.8121.1211.3239.91-42.2764.930.858.4450.420.845.38第七层45.340.840.8121.1211.3239.91-42.2764.930.858.4450.420.845.38第六层45.340.840.8121.1211.3239.91-42.2764.930.858.4450.420.845.38119`
第五层45.340.840.8121.1211.3239.91-42.2764.930.858.4450.420.845.38第四层57.190.851.4721.1211.3236.17-33.4560.560.854.5041.600.837.44第三层60.520.854.4721.1211.3234.82-26.5959.930.853.9434.740.831.27第二层60.520.854.4721.1211.3234.82-26.5959.930.853.9434.740.831.27第一层66.960.860.2621.1211.3240.02-32.7767.660.860.8940.920.836.83活第十层2.420.82.181.520.753.10-0.10119`
载5.070.84.560.590.80.53第九层8.430.87.596.103.7412.95-14.4320.570.818.5117.130.815.42第八层8.430.87.596.103.7412.95-14.4320.570.818.5117.130.815.42第七层8.430.87.596.103.7412.95-14.4320.570.818.5117.130.815.42第六层8.430.87.596.103.7412.95-14.4320.570.818.5117.130.815.42第五层8.430.87.596.103.7412.95-14.4320.570.818.5117.130.815.42第四层16.880.815.196.103.7410.52-11.0716.990.815.2913.770.812.39第三层17.440.815.706.103.7410.20-8.3517.070.815.3611.040.89.94第二层17.440.815.706.103.7410.20-8.3517.070.815.3611.040.89.94119`
第一层17.280.815.556.103.7410.29-9.1217.030.813.6211.810.810.63框架的剪力和框架柱的轴力由竖向荷载作用下整个框架的弯矩图(调幅后)及实际荷载情况求得如下;梁端剪力见下表:表中弯矩为绝对值,梁端剪力以内力图基线上为正下为负。弯矩单位,梯形或三角形荷载单位为,力单位为。表十九荷载类型层次梁编号荷载值梁端剪力恒载第十层35.5724.0014.2566.071.97-78.070.7617.1第九层45.3421.1211.3260.164.93-66.250.4213.58第八层45.3421.1211.3260.164.93-66.250.4213.58第七层45.3421.1211.3260.164.93-66.250.4213.58第六层45.3421.1211.3260.164.93-66.2119`
50.4213.58第五层45.3421.1211.3260.164.93-66.250.4213.58第四层57.1921.1211.3262.860.56-63.9241.6013.85第三层60.5221.1211.3263.9559.93-62.7734.7413.58第二层60.5221.1211.3263.9559.93-62.7734.7413.58第一层66.9621.1211.3270.0467.66-71.4440.9213.58活第十层2.421.520.753.23119`
载5.07-5.890.590.9第九层8.436.103.7421.7420.57-14.817.134.49第八层8.436.103.7421.7420.57-14.817.134.49第七层8.436.103.7421.7420.57-14.817.134.49第六层8.436.103.7421.7420.57-14.817.134.49第五层8.436.103.7421.7420.57-14.817.134.49第四层16.886.103.7418.1916.99-18.4113.774.49第三层17.446.103.7418.6717.07-17.9311.044.49第二层17.446.103.7418.6717.07-17.93119`
11.044.49第一层17.286.103.7418.5517.03-18.0511.814.49柱轴力见下表:(单位为,柱轴力以受压为正)表二十荷载类型层次边柱中柱梁端剪力集中力柱自重柱顶轴力柱底轴力梁端剪力集中力柱自重柱顶轴力柱底轴力恒载1066.0126.3622.99192.36215.3556.44126.3622.99283.45306.44960.184.5322.99336.99359.9850.1284.5322.99455.93478.92860.184.5322.99481.62504.6150.1284.5322.99628.41651.40760.184.5322.99626.25649.2450.1284.5322.99800.89823.88660.184.5322.99770.88793.8750.1284.5322.99973.37996.36560.184.5322.99915.51938.5050.1284.5322.991145.851168.84462.8104.3343.641082.641126.2860.34104.3343.641336.131379.77363.95104.3343.641250.921294.5665.32104.3343.641524.561568.20263.95104.3343.641419.201462.8465.32104.3343.641712.991756.63170.4104.3363.641593.371657.2172.39104.3363.641910.091973.73103.234.3207.557.551.324.32014.7114.71119`
活载921.7428.08057.3757.3716.3428.08080.1480.14821.7428.080107.19107.1916.3428.080145.57145.57721.7428.080157.01157.0116.3428.080211.00211.00621.7428.080206.83206.8316.3428.080276.43276.43521.7428.080256.65256.6516.3428.080341.86341.86418.1928.080302.92302.9220.1328.080410.84410.84318.6728.080349.67349.6724.3128.080479.34479.34268.6728.080396.42396.4225.1228.080547.84547.84118.5528.080443.05443.0526.0028.080616.46616.46第六章、内力组合与调整第一节结构的抗震等级的确定该结构为框架结构,高度大于30m,,设防烈度为8度,根据<<建筑抗震设计规范>>,本方案为一级抗震等级。第二节框架梁、柱内力组合本方案考虑了三种内力组合,即,分别记为第一组合,第二组合,第三组合。框架梁内力组合取各跨梁端和跨中为控制截面;框架柱内力组合取每层柱顶和柱底两个控制截面,同时在截面设计时,应采用构件端部截面的内力而不是轴线处的内力进行计算,故还应取梁的梁端框架柱边缘截面作为框架梁的控制截面。119`
梁端、柱边的剪力和弯矩应按下式计算:式中分别表示梁端柱边截面的剪力和弯矩分别表示内力计算得到的梁端柱轴线截面的剪力和弯矩为作用在梁上的竖向均布荷载或活载经此修正后梁端弯矩和剪力如下表所示:表二十一荷载类型层次梁编号梁端剪力V恒载第十层-32.01-48.5166.024.000.560.064.7745.2778.024.000.572.0-63.68-67.9617.114.250.513.54第九层-40.81-55.8460.121.120.554.8258.4441.7966.6212.120.561.34-45.38-48.7813.5811.320.510.75第八层-40.81-55.8460.121.120.554.8258.4441.7966.6212.120.561.34-45.38-48.7813.5811.320.510.75第七层-40.81-55.8460.121.120.554.8258.4441.7966.6212.120.561.34-45.38-48.7813.5811.320.510.75119`
第六层-40.81-55.8460.121.120.554.8258.4441.7966.6212.120.561.34-45.38-48.7813.5811.320.510.75第五层-40.81-55.8460.121.120.554.8258.4441.7966.6212.120.561.34-45.38-48.7813.5811.320.510.75第四层-51.47-73.4562.821.120.755.4154.5032.1363.9212.120.756.53-37.44-42.2913.5811.320.79.62第三层-54.47-76.8563.9521.120.756.5653.9431.9762.7712.120.755.38-31.27-36.0213.5811.320.79.62第二层-54.47-76.8563.9521.120.756.5653.9431.9762.7712.120.755.38-31.27-36.0213.5811.320.79.62第一层-60.26-84.7770.0421.120.762.6560.8935.8971.4412.120.764.05-36.83-41.6813.5811.320.79.62第十层-2.18-2.993.231.520.52.85119`
活载4.563.095.891.520.55.51-0.53-0.760.90.750.50.71第九层-7.59-13.0321.746.10.520.2118.5114.0814.866.10.513.33-15.42-16.544.493.740.53.55第八层-7.59-13.0321.746.10.520.2118.5114.0814.866.10.513.33-15.42-16.544.493.740.53.55第七层-7.59-13.0321.746.10.520.2118.5114.0814.866.10.513.33-15.42-16.544.493.740.53.55第六层-7.59-13.0321.746.10.520.2118.5114.0814.866.10.513.33-15.42-16.544.493.740.53.55第五层-7.59-13.0321.746.10.520.2118.5114.0814.866.10.513.33-15.42-16.544.493.740.53.55第四层-15.19-21.5618.196.10.716.0515.298.8518.416.10.716.27-12.39-13.964.493.740.73.18第三层-15.70-22.2318.676.10.716.5315.369.0817.936.10.715.79-9.94-11.514.493.740.73.18119`
第二层-15.70-22.3318.676.10.716.5315.369.0817.936.10.715.79-9.94-11.514.493.740.73.18第一层-15.55-22.0418.556.10.716.4113.627.3018.056.10.715.91-10.63-12.204.493.740.73.18框架梁内力组合如下下表:表中弯矩单位为,剪力单位为,弯矩以下部受拉为正,上部受拉为负,剪力以绘制的剪力图基线为界,以上为正,以下为负。表二十二层次截面内力SGKSQKSek(1)Sek(2)第一组合第二组合第三组合1210AM-32.01-2.1812.6-12.6-22.032-54.792-45.3499-41.464V602.85-3.33.367.7176.2983.79375.99跨中M54.233.1-2.842.8461.38468.76876.248569.416V-0.736-0.03-3.33.3-5.17323.4068-1.023-0.9252B左M-64.71-4.56-77-86.752-68.552-91.8273-84.036V-725.51-3.33.3-90.69-82.11-91.8002-78.686B右M-63.68-0.537-7-67.316-85.516-86.4874-77.158V13.540.71-5.845.848.65623.8418.974817.242跨中M-60.5-0.100-72.6-72.6-81.773-72.74119`
V00-5.845.84-7.5927.592009AM-40.81-7.5932-32-7.372-90.572-62.5317-59.598V54.820.21-8.48.454.8476.6893.785894.054跨中M39.9112.95-6.876.8738.96156.82366.569566.022V0.7530.13-8.48.4-10.016411.82361.143951.0856B左M-58.44-18.51-18.318.3-93.918-46.338-97.0338-96.042V-61.34-13.33-8.48.4-84.528-62.688-95.8724-92.27B右M-45.38-15.4218.3-18.3-30.666-78.246-76.3746-76.044V10.753.55-15.215.2-6.8632.6617.991517.87跨中M-42.27-14.4300-50.724-50.724-71.2059-70.926V00-15.215.2-19.7619.76008AM-40.81-7.5951.7-51.718.238-116.182-62.5317-59.598V54.8220.21-13.713.747.97483.59493.812894.078跨中M39.9112.95-10.5610.5634.16461.6266.569566.022V0.7530.13-13.713.7-16.906418.71361.143951.0856B左M-58.44-18.51-30.630.6-109.908-30.348-97.0338-96.042V-61.34-13.33-13.713.7-91.418-55.798-95.8724-92.27B右M-45.38-15.4230.6-30.6-14.676-94.236-76.3746-76.044V10.753.55-25.525.5-20.2546.0517.991517.87跨中M-42.27-14.4300-50.724-50.724-71.2059-70.926V00-25.525.5-33.1533.1500119`
7AM-40.81-7.5966.4-66.437.348-135.292-62.5317-59.598V54.8220.21-181842.38489.18493.812894.078跨中M39.9112.95-12.4212.4231.74664.03866.569566.022V0.7530.13-1818-22.496424.30361.143951.0856B左M-58.44-18.51-41.641.6-124.208-16.048-97.0338-96.042V-61.34-13.33-1818-97.008-50.208-95.8724-92.27B右M-45.38-15.4241.6-41.6-0.376-108.536-76.3746-76.044V10.753.55-34.734.7-32.2158.0117.991517.87跨中M-42.27-14.4300-50.724-50.724-71.2059-70.926V00-34.734.7-45.1145.11006AM-40.81-7.5984-8460.228-158.172-62.5317-59.598V54.8220.21-22.422.436.66494.90493.812894.078跨中M39.9112.95-16.6316.326.27369.08266.569566.022V0.7530.13-22.422.4-28.216430.02361.143951.0856B左M-58.44-18.51-50.750.7-136.038-4.218-97.0338-96.042V-61.34-13.33-22.422.4-102.728-44.488-95.8724-92.27B右M-45.38-15.4250.7-50.711.454-120.366-76.3746-76.044V10.753.55-42.242.2-41.9667.7617.991517.87跨中M-42.27-14.4300-50.724-50.724-71.2059-70.926V00-42.242.2-54.8654.86005AM-40.81-7.5997.1-97.177.258-175.202-62.5317-59.598119`
V54.8220.21-25.825.832.24499.32493.812894.078跨中M39.9112.95-9.69.6235.41260.39866.569566.022V0.7530.13-25.825-32.636433.40361.143951.0856B左M-58.44-18.51-57.857.8-145.2685.012-97.0338-96.042V-61.34-13.33-25.825.8-107.148-40.068-95.8724-92.27B右M-45.38-15.4257.8-57.820.684-129.596-76.3746-76.044V10.753.55-48.248.2-49.7675.5617.991517.87跨中M-42.27-14.4300-50.724-50.724-71.2059-70.926V00-48.248.2-62.6662.66004AM-51.47-15.1979.8-79.841.976-165.504-84.3707-83.03V55.4116.05-27.427.430.872102.11290.532588.962跨中M36.1710.05-20.1820.1817.1769.63858.678557.474V0.8650.15-27.427.4-34.58236.6581.314751.248B左M-54.5-15.29-84.684.6-175.3844.58-88.5592-86.806V-56.53-16.27-27.427.4-103.456-32.216-92.2601-90.614B右M-37.44-12.3984.6-84.665.052-154.908-62.6862-62.274V9.623.18-70.570.5-80.106103.19416.103415.996跨中M-33.45-11.0700-40.14-40.14-56.0061-55.638V00-70.570.5-91.6591.65003AM-54.47-15.758.6-58.610.816-141.544-88.9205-87.344V56.5616.53-28.428.430.952104.79292.555491.014119`
跨中M34.8210.2-26.4226.427.43876.1357.00356.064V0.8220.137-28.428.4-35.933637.90641.243961.1782B左M-53.94-15.36-116.6116.6-216.30886.852-87.8718-86.232V-55.38-15.79-28.428.4-103.376-29.536-90.2372-88.562B右M-31.27-9.94116.6-116.6114.056-189.104-51.9557-51.44V9.623.18-9393-109.356132.44416.103415.996跨中M-26.59-8.3500-31.908-31.908-44.0795-43.598V00-9393-120.9120.9002AM-54.47-15.762.5-62.515.886-146.614-88.9205-87.344V56.5616.53-30.130.128.742107.00292.555491.014跨中M34.8210.2-27.6527.655.83977.72957.00356.064V0.8220.137-30.130.1-38.143640.11641.243961.1782B左M-53.94-15.36-118118-218.12888.672-87.8718-86.232V-55.38-15.79-30.130.1-105.586-27.326-90.2372-88.562B右M-31.27-9.94118-118115.876-190.924-51.9557-51.44V9.623.18-98.398.3-116.246139.33416.103415.996跨中M-26.59-8.3500-31.908-31.908-44.0795-43.598V00-98.398.3-127.79127.79001AM-60.26-15.5582.5-82.534.938-179.562-96.59-94.082V62.6516.41-31.231.234.62115.74100.659398.154跨中M40.0210.29-10.9310.9333.81562.23364.111262.43119`
V0.8220.137-31.231.2-39.573641.54641.243961.1782B左M-60.8913.6-104.6104.6-209.04862.912-68.8735-54.028V64.05-15.91-31.231.236.3117.4270.875754.586B右M-36.83-10.63104.6-104.691.784-180.176-60.1379-59.078V9.623.18-87.287.2-101.816124.90416.103415.996跨中M-32.77-9.1200-39.324-39.324-53.1771-52.092V00-87.287.2-113.36113.3600框架边柱内力组合结果如下表:表中弯矩单位为,轴力单位为,弯矩以左侧受拉为正,右侧受拉为负,轴力以受压为正,受拉为负。表二十三层次截面内力SgkSqkSek(1)Sek(2)第一组合第二组合第三组合1210柱顶M22.971.98-12.6412.6411.13243.99632.949930.336N192.367.55-3.283.28226.568235.096267.085241.402柱底M-18.5-5.428.78-8.78-10.786-33.614-30.2866-29.788N215.357.55-3.283.28254.156262.684298.1215268.999柱顶M18.55.29-23.1823.18-7.93452.33430.159229.606N57.37-11.6511.65389.243484.706119`
336.99419.533511.1591柱底M-18.5-0.5318.96-18.962.448-46.848-25.4944-22.942N359.9857.37-11.6511.65416.831447.121542.1956512.2948柱顶M18.55.29-32.7632.76-20.38864.78830.159229.606N481.62107.19-25.3725.37544.963610.925755.2332728.01柱底M-18.5-0.5327.9-27.914.07-58.47-25.4944-22.942N504.61107.19-25.3725.37572.551638.513786.2697755.5987柱顶M18.55.29-38.538.5-27.8572.2530.159229.606N626.25157.01-43.5143.51694.937808.063999.3073971.314柱底M-18.5-0.5338.49-38.4927.837-72.237-25.4944-22.942N649.24157.01-43.5143.51722.525835.6511030.3438998.9026柱顶M18.55.29-45.5645.56-37.02881.42830.159229.606N770.88206.83-65.8265.82839.491010.6221243.38141214.618柱底M-18.5-0.5345.55-45.5537.015-81.415-25.4944-22.942N793.87206.83-65.8265.82867.0781038.211274.41791242.2065柱顶M18.55.29-51.5551.55-44.81589.21530.159229.606N915.51256.65-91.6491.64979.481217.7441487.45551457.922柱底M-18.5-0.5351.55-51.5544.815-89.215-25.4944-22.942N938.5256.65-91.6491.641007.0681245.3321518.4921485.514柱顶M8.42.34-28.2928.29-26.69746.85713.633213.356N1082.64302.92-119.04119.041144.4161453.921758.42561723.256柱底M-31.88-8.8628.29-28.29-1.479-75.033-51.7208-50.66119`
3柱顶M19.835.29-30.3230.32-15.6263.21231.954731.202N1250.92349.67-147.42147.421309.4581692.752031.41861990.642柱底M-19.83-5.2930.32-30.3215.62-63.212-31.9547-31.202N1294.56349.67-147.42147.421361.8261745.1182090.33262043.012柱顶M19.835.29-31.7631.76-17.49265.08431.954731.202N1419.2396.42-147.42147.421511.3941894.6862304.41162258.028柱底M-19.83-5.2931.76-31.7617.492-65.084-31.9547-31.202N1462.84396.42-177.51177.511524.6451986.1712363.32562310.3961柱顶M26.196.6450.74-50.7497.39-34.53441.863740.724N1593.57443.05-208.7208.71640.9742183.5942585.50852532.554柱底M-19.9-5.0454.97-54.9747.581-95.341-31.8042-30.936N1657.21443.05-208.7208.71717.3422259.9622671.42252608.922框架中柱内力组合结果如下表:表中弯矩单位为,轴力单位为,弯矩以左侧受拉为正,右侧受拉为负,轴力以受压为正,受拉为负。表二十四层次截面内力SgkSqkSek(1)Sek(2)第一组合第二组合第三组合1210柱顶M-11.57-0.59-14.0314.03-32.1234.355-16.1977-14.71N283.4514.71-2.22.2337.28343397.0733360.734柱底M8.042.8311.48-11.4824.572-5.27613.627413.61N306.4414.71-2.22.2364.868370.588428.1098388.322119`
9柱顶M-8.04-2.83-25.0925.09-42.26522.969-13.6274-13.61N455.9380.14-9.079.07535.325558.907694.0427659.312柱底M8.042.8325.08-25.0842.252-22.95613.627413.61N478.9280.14-9.079.07562.913586.495725.0792686.98柱顶M-8.04-2.83-36.1136.11-56.59137.295-13.6274-13.61N628.41145.57-20.8520.85726.987781.197991.0121957.89柱底M8.042.8336.11-36.1156.591-37.29513.627413.61N651.4145.57-20.8520.85754.575808.7851022.0486985.4787柱顶M-8.04-2.83-47.0847.08-70.85251.556-13.6274-13.61N800.89211-37.5237.52912.2921009.8441287.98151256.468柱底M8.042.8347.08-47.0870.852-51.55613.627413.61N823.88211-37.5237.52939.881037.4321319.0181284.0566柱顶M-8.04-2.83-54.2354.23-80.14760.851-13.6274-13.61N973.37276.43-57.2857.281093.581242.5081584.95091555.046柱M8.042.8354.23-54.2380.147-60.85113.627413.61底N996.36276.43-57.2857.281121.1681270.0961615.98741582.6345柱顶M-8.04-2.83-61.3761.37-89.42970.133-13.6274-13.61N1145.85341.86-79.6379.631271.5011478.5391881.92031853.624柱底M8.042.8361.37-61.3789.429-70.13313.627413.61N1168.84341.86-79.6379.631299.0891506.1271912.95681881.2124柱顶M-6.61-13.77-107.78107.78-148.046132.182-22.4181-27.21119`
N1336.13410.84-122.71122.711443.8331762.8792206.39872178.532柱底M25.031107.78-107.78170.15-110.07834.770531.436N1379.77410.84-122.71122.711496.2011815.2472265.31272230.93柱顶M-21-11.04-115.5115.5-175.35124.95-39.1692-40.656N1524.56479.34-187.63187.631585.5532073.3912527.90922500.548柱底M216.68115.5-115.5175.35-124.9534.896434.552N1568.2479.84-187.63187.631637.9212125.7592587.31322553.6162柱顶M-21-11.04-120.5120.5-181.85131.45-39.1692-40.656N1712.91547.84-255.6255.61723.2122387.7722849.31172822.468柱底M216.68120.5-120.5181.85-131.4534.896434.552N1756.63547.84-255.6255.61775.6762440.2362908.33372874.9321柱顶M-40.92-11.81-88.7788.77-164.50566.297-66.8158-65.638N1910.09616.46-311.61311.611887.0152697.2013182.75233155.152柱底M24.725.472.75-72.75124.239-64.91138.66437.224N1973.73616.46-311.61311.611963.3832773.5693268.66633231.52第七章构件设计第一节框架梁截面设计一、梁的不利内力组合框架梁截面设计采用的最不利内力应为如下:跨间、支座、支座、调整后剪力二、梁正截面受弯承载力计算:119`
考虑地震作用组合的框架柱和框支柱,其抗震正截面承载力应按规范规定计算,但在承载力计算公式的右边,均应除以相应的正截面承载力抗震调整系数。抗震设计中,对于楼面现浇的框架结构,梁支座负弯矩按矩形截面计算纵筋数量。跨中正弯矩按T形截面计算纵筋数量,跨中截面的计算弯矩,应取该跨的跨间最大正弯矩,依据上述理论可得:跨间最大弯矩处应按T形截面设计,翼缘计算宽度,按跨度考虑。取=6.0/3=2000mm,梁内纵向钢筋选Ⅳ级热轧钢筋,(=360)对于横梁所以,对于边横梁:11.672000120(565-120/2)/0.75=2698.7>故各层横梁均属于第一类T形截面。故下部跨间截面按单筋T形截面计算:且还应同时满足以及梁端截面受压区相对高度的要求,使其符合一级抗震要求。而在支座处应将下部跨间截面钢筋伸入支座,作为支座负弯矩作用下的受压钢筋,再按双筋截面计算相应的受拉钢筋。框架梁配筋计算见下表:表二十五层次截面MasAs最小配筋实际配筋As0.3%bh0.65bhft/fy10边横梁76.250.00720.00720.9964376.22540510.254Ф1461581.770.00775403Ф16603119`
中横梁0.00770.9962403.56510.259边横梁66.570.00620.00620.9969328.31540510.254Ф14615中横梁71.270.00670.00670.9967351.57540510.253Ф166038边横梁66.570.00620.00620.9969328.31540510.254Ф14615中横梁71.270.00670.00670.9967351.57540510.253Ф166037边横梁66.570.00620.00620.9969328.31540510.254Ф14615中横梁71.270.00670.00670.9967351.57540510.253Ф166036边横梁66.570.00620.00620.9969328.31540510.254Ф14615中横梁71.270.00670.00670.9967351.57540510.253Ф166035边横梁66.570.00620.00620.9969328.31540510.254Ф14615中横梁71.270.00670.00670.9967351.57540510.253Ф166034边横梁58.690.00550.00550.9972289.34540510.254Ф14615中横梁560.00530.00530.9974276.04540510.253Ф166033边横梁570.00530.00530.9973280.99540510.254Ф14615中横梁44.080.00410.00410.9979217.16540510.253Ф166032边横梁570.00530.00530.9973280.99540510.254Ф14615中横梁44.080.00410.00410.9979217.16540510.253Ф166031边横梁64.110.00600.00600.9970316.14540510.254Ф14615中横梁53.180.00500.00500.9975262.11540510.253Ф16603119`
框架梁支座处配筋计算见表二十八.表二十六层次截面M0.75MAs’asAs最小配筋实际配筋As0.4%0.8bhft/fy10A54.7941.096150.0040.004647.187206284Ф16804B左86.7565.066150.0060.006665.957206284Ф16804B右85.5264.146030.0060.006653.237206284Ф168049A90.5767.936150.0060.006668.207206284Ф16804B左93.9270.446150.0070.007670.167206284Ф16804B右78.2558.696030.0060.006648.967206284Ф168048A116.1887.146150.0080.008683.247206284Ф16804B左109.9182.436150.0080.008679.567206284Ф16804B右94.2470.686030.0070.007658.357206284Ф168047A135.29101.476150.0100.010694.467206284Ф16804B左124.2193.166150.0090.009687.967206284Ф16804B右108.5481.416030.0080.008666.757206284Ф168046A158.17118.636150.0110.011707.907206284Ф16804B左136.04102.036150.0100.010694.907206284Ф16804B右120.3790.286030.0080.008673.707206284Ф168045A175.2131.406150.0120.012717.917206284Ф16804B左145.27108.956150.0100.010700.337206284Ф16804B右129.697.206030.0090.009679.127206284Ф16804119`
4A165.5124.136150.0120.012712.217206284Ф16804B左175.38131.546150.0120.012718.017206284Ф16804B右154.91116.186030.0110.011693.997206284Ф168043A141.54106.166150.0100.010698.137206284Ф16804B左216.31162.236150.0150.015742.057206284Ф16804B右189.1141.836030.0130.013714.077206284Ф168042A146.61109.966150.0100.010701.117206284Ф16804B左218.12163.596150.0150.015743.117206284Ф16804B右190.24142.686030.0130.013714.747206284Ф168041A179.56134.676150.0130.013720.477206284Ф16804B左209.05156.796150.0150.015737.797206284Ф16804B右180.18135.146030.0130.013708.837206284Ф16804各层框架梁的斜截面受剪计算见下表:表二十七层次截面V0.7ftbh0选配箍筋实配10边横梁88.59197.8200.226φ8@1500.67中横梁91.16197.8200.226φ8@1500.679边横梁79.34197.8200.226φ8@1500.67中横梁41.00197.8200.226φ8@1500.678边横梁85.53197.8200.226φ8@1500.67中横梁18.99197.8200.226φ8@1500.677边横梁93.33197.8200.226φ8@1500.67中横梁147.85197.8200.226φ8@1500.676边横梁100.9197.8200.226φ8@1500.67中横梁162.80197.8200.226φ8@1500.675边横梁106.30197.8200.226φ8@1500.67119`
中横梁174.46197.8200.226φ8@1500.674边横梁105.21197.8200.226φ8@1500.67中横梁228.70197.820.1820.226φ8@1500.673边横梁107.71197.8200.226φ8@1500.67中横梁276.96197.820.4670.226φ8@1500.672边横梁109.27197.8200.226φ8@1500.67中横梁279.53197.820.4820.226φ8@1500.671边横梁111.24197.8200.226φ8@1500.67中横梁264.37197.820.3930.226φ8@1500.67根据抗震要求,需要对梁端箍筋进行加密,加密区按1.5h和500mm两者中的大值取用,由于梁高为650mm,这里加密区长度取1000mm,加密区箍筋最大间距:本工程为一级抗震,要求加密区箍筋最大间距为纵向钢筋直径的8倍,梁高的1/4和150mm三者中的最小值,这里加密区箍筋间距取100mm.四、纵向构造钢筋的配置纵向构造钢筋又称腰筋,当梁的腹板高度≥450mm时,在梁的两个侧面应沿高度配置纵向构造钢筋,每侧纵向构造钢筋的截面面积不应小于腹板截面面积的0.1%,且其间距不宜大于200mm。本工程中横梁=600-35-120=445mm<450mm,故不用配置纵向构造筋。第二节框架柱截面设计一、框架柱的截面尺寸验算本方案属于一级抗震框架,剪跨比宜大于1,轴压比限值为0.7各层框架柱剪跨比和轴压比的验算见下表:(注意,表中和N都不应考虑抗震调整系数)具体验算过程见下表层次柱号bh0fcMVNM/Vh010A50046016.74434.49192.362.770.05B50046016.733.1225.2283.452.860.079A50046016.752.3363.54336.991.790.09B50046016.742.2737.57455.932.450.128A50046016.764.7954.78481.622.570.13B50046016.756.5950.3628.412.450.167A50046016.772.2564.22626.252.450.16119`
B50046016.770.8562.98800.892.450.216A50046016.781.4272.37770.882.450.20B50046016.780.1571.24973.372.450.255A50046016.789.2279.31915.512.450.24B50046016.789.3479.51145.852.440.304A70066016.746.8654.171082.641.310.14B70066016.7148.05141.421336.131.590.173A70066016.763.2156.191250.921.700.16B70066016.7175.35155.861524.561.700.202A70066016.765.0857.851419.21.700.18B70066016.7181.85161.641712.991.700.221A70066016.734.5336.671593.571.430.21B70066016.7164.51128.331910.091.940.25由上表可见各层柱的剪跨比和轴压比均满足规范要求。二、框架柱的正截面承载力计算遵循强柱弱梁的设计原则,为了保证框架柱的受弯承载力大于梁的受弯承载力,避免柱中出现塑性铰而形成柱铰破坏机构,需要根据由梁端弯矩对柱端弯矩进行调整得到的柱端组合弯矩的调整值与静力组合的弯矩值进行比较后,选出最不利内力,进行配筋计算。本方案中考虑三种不利内力组合:和相应的N、和相应的和相应的M.(考虑地震作用组合的内力均应先乘以).本方案采用矩形对称配筋截面对于以上三种内力组合可能出现大偏心受压和小偏心受压两种破坏形态。计算步骤为先计算出二阶效应调整系数,求出调整后的弯矩,再求出0.3,初步判断构件的偏心类型,当>0.3时,可按大偏心受压情况计算;当<0.3时,可按小偏心受压情况计算,然后按相应的公式判断初步的假设是否正确,如果正确则可求出需要配置的钢筋的面积,如过假设不正确,则是另外一种情况,再计算出钢筋面积。框架柱的边柱配筋计算见下表:119`
层次109876b500500500500500500500500500500500500500500500h0460460460460460460460460460460460460460460460组合一二三一二三一二三一二三一二三M133.6130.2929.7946.8525.4922.9458.4725.4922.9472.2525.4922.9481.4225.4922.94M244.0032.9530.3452.3330.1629.6164.7930.1629.6172.2330.1629.6181.4230.1629.61N262.68298.12268.99447.12542.20512.29638.51786.27755.60835.651030.34998.901038.211274.421242.21Cm0.930.980.990.970.950.930.970.950.931.000.950.931.000.950.93ea202020202020202020202020202020ζc7.957.007.764.673.854.073.272.652.762.502.032.092.011.641.68lc3.303.303.303.303.303.303.303.303.303.303.303.303.303.303.30h500.00500.00500.00500.00500.00500.00500.00500.00500.00500.00500.00500.00500.00500.00500.00ηns7.076.376.954.583.964.133.513.043.122.922.562.612.542.262.29Cm*ηc6.576.216.914.433.783.853.402.902.912.922.442.432.542.162.14M289.18204.70209.61232.01113.86114.05220.5687.4986.27210.7173.6072.00207.0965.0263.32e01100.86686.62779.25518.89209.99222.63345.42111.28114.18252.1571.4372.08199.4751.0250.97119`
ei1120.86706.62799.25538.89229.99242.63365.42131.28134.18272.1591.4392.08219.4771.0270.97e1330.86916.621009.25748.89439.99452.63575.42341.28344.18482.15301.43302.08429.47281.02280.970.3h0138.00138.00138.00138.00138.00138.00138.00138.00138.00138.00138.00138.00138.00138.00138.00判断偏心大大大大大大大小小小小小小小小X31.4635.7032.2153.5564.9361.3576.47Xb238.00238.00238.00238.00238.00238.00238.00238.00238.00238.00238.00238.00238.00238.00238.002as’80.0080.0080.0080.0080.0080.0080.0080.0080.0080.0080.0080.0080.0080.0080.00ξb0.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.518ξ0.9800.9780.8740.9940.9930.8831.0031.002As-923.438-1043.97-945.486-1534.68-1837.84-1743.71-2134.411024.341096.371125.771236.581246.771210.211240.991233.99最小配筋500500500500500500500500500500500500500500500实配单侧4φ204φ204φ204φ204φ204φ204φ204φ204φ204φ204φ204φ204φ204φ204φ20119`
实际面积125612561256125612561256125612561256125612561256125612561256层次54321b500500500700700700700700700700700700700700700h0460460460660660660660660660660660660660660660组合一二三一二三一二三一二三一二三M189.2125.4922.9446.8613.6313.3663.2131.9531.2065.0831.9531.2034.5331.8030.94M289.2130.1629.6175.0351.7250.6663.2131.9531.2065.0831.9531.2095.3441.8640.72N1245.331518.491485.511506.291817.341775.621745.122090.332043.014898.244193.524666.682259.962671.422608.92Cm1.000.950.930.890.780.781.001.001.001.001.001.000.810.930.93ea20202023.323.323.323.323.323.323.323.323.323.323.323.3ζc1.681.371.411.391.151.181.201.001.020.430.500.450.920.780.80lc3.303.303.303.303.303.303.303.303.303.303.303.304.854.854.85h500.00500.00500.00700.00700.00700.00700.00700.00700.00700.00700.00700.00700.00700.00700.00ηns2.292.062.081.691.571.581.591.501.511.211.251.221.461.391.40Cm*ηc2.291.961.941.501.221.231.591.501.511.211.251.221.181.291.30M204.0559.2057.47112.4363.3062.53100.7947.8147.0578.8739.8638.14112.4953.9352.81119`
e0163.8538.9938.6974.6434.8335.2157.7522.8723.0316.109.518.1749.7820.1920.24ei183.8558.9958.6997.9458.1358.5181.0546.1746.3339.4032.8131.4773.0843.4943.54e393.85268.99268.69407.94368.13368.51391.05356.17356.33349.40342.81341.47383.08353.49353.540.3h0138.00138.00138.00198.00198.00198.00198.00198.00198.00198.00198.00198.00198.00198.00198.00判断偏心小小小小小小小小小小小小小小小XXb238.00238.00238.00341.80341.80341.80341.80341.80341.80341.80341.80341.80341.80341.80341.802as’80.0080.0080.0080.0080.0080.0080.0080.0080.0080.0080.0080.0080.0080.0080.00ξb0.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.518ξ0.8901.0001.0000.8921.0001.0000.8950.9621.0000.9001.0001.0000.9261.0001.000As1249.221234.371256.131268.491282.161296.311364.491350.331310.011361.131359.171410.771390.441490.431502.11最小配筋500500500980980980980980980980980980980980980实配单侧4φ204φ204φ204φ224φ224φ224φ224φ224φ224φ224φ224φ224φ224φ224φ22实际面积125612561256152015201520152015201520152015201520152015201520119`
框架柱中柱配筋见下表:层次109876b500500500500500500500500500500500500500500500h0460460460460460460460460460460460460460460460组合一二三一二三一二三一二三一二三M132.1213.6313.6142.2513.6313.6156.5913.6313.6170.8513.6313.6180.1513.6313.61M224.5716.2014.7142.2513.6313.6156.5913.6313.6170.8513.6313.6180.1513.6313.61N364.87428.11388.32562.91725.08686.90754.581022.05985.48939.881319.021284.061121.171615.991582.63Cm1.090.950.981.001.001.001.001.001.001.001.001.001.001.001.00ea20.0020.0020.0020.0020.0020.0020.0020.0020.0020.0020.0020.0020.0020.0020.00ζc5.724.885.383.712.883.042.772.042.122.221.581.631.861.291.32lc3.303.303.303.303.303.303.303.303.303.303.303.303.303.303.30h500.00500.00500.00500.00500.00500.00500.00500.00500.00500.00500.00500.00500.00500.00500.00ηns2.012.302.431.602.142.181.451.941.971.361.801.821.311.701.71Cm*ηc2.192.192.381.602.142.181.451.941.971.361.801.821.311.701.71M53.9335.4734.9767.6629.2229.6281.9926.5026.7596.2824.5924.76105.2923.1723.28119`
e0147.8182.8690.04120.1940.2943.13108.6625.9327.15102.4418.6419.2893.9114.3414.71ei167.81102.86110.04140.1960.2963.13128.6645.9347.15122.4438.6439.28113.9134.3434.71e377.81312.86320.04350.19270.29273.13338.66255.93257.15332.44248.64249.28323.91244.34244.710.3h0138.00138.00138.00138.00138.00138.00138.00138.00138.00138.00138.00138.00138.00138.00138.00判断偏心大小小大小小小小小小小小小小小X43.7067.41Xb238.28238.282as’808080808080808080808080808080ξb0.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.518ξ0.8300.8960.8870.8560.9560.9510.8670.9800.9780.8740.9940.9930.8831.0031.002As906.05880.06816.19846.37865.28880.34899.00980.31966.28959.48968.42979.43991.33996.261099.13最小配筋500500500500500500500500500500500500500500500实配单侧4φ204φ204φ204φ204φ204φ204φ204φ204φ204φ204φ204φ204φ204φ204φ20119`
实际面积125612561256125612561256125612561256125612561256125612561256层次54321b500500500700700700700700700700700700700700700h0460460460660660660660660660660660660660660660组合一二三一二三一二三一二三一二三M189.4313.6313.61148.0522.4227.21175.35124.9534.55181.8534.9034.55124.2438.6637.22M289.4313.6313.61170.1534.7731.44175.35124.9540.66181.8539.1740.66164.5166.8265.64N1299.091912.961881.211496.202265.312230.901637.922587.312553.621775.682908.332874.931963.383268.673231.52Cm1.001.001.000.960.890.961.001.000.951.000.970.950.930.870.87ea20.0020.0020.0023.3023.3023.3023.3023.3023.3023.3023.3023.3023.3023.3023.30ζc1.611.091.112.731.811.832.501.581.602.301.411.422.081.251.27lc3.303.303.303.303.303.303.303.303.303.303.303.304.854.854.85h500.00500.00500.00700.00700.00700.00700.00700.00700.00700.00700.00700.00700.00700.00700.00ηns1.281.621.631.231.531.551.221.251.461.211.431.431.221.321.33Cm*ηc1.281.621.631.181.361.491.221.251.401.211.381.361.131.161.16119`
M114.3622.0822.16200.3347.4446.86213.26156.0856.72219.4554.2455.47185.8977.2175.82e088.0311.5411.78133.8920.9421.01130.2060.3322.21123.5918.6519.3094.6823.6223.46ei108.0331.5431.78157.1944.2444.31153.5083.6345.51146.8941.9542.60117.9846.9246.76e318.03241.54241.78467.19354.24354.31463.50393.63355.51456.89351.95352.60427.98356.92356.760.3h0138.00138.00138.00198.00198.00198.00198.00198.00198.00198.00198.00198.00198.00198.00198.00判断偏心小小小小小小小小小小小小小小小XXb2as’808080808080808080808080808080ξb0.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.5180.518ξ0.8901.0001.0000.8921.0001.0000.8950.9621.0000.9001.0001.0000.9261.0001.000As1131.971022.161239.461265.181426.311679.191256.371286.671293.441321.201321.771375.611432.341472.551501.97最小配筋500500500980980980980980980980980980980980980实配单侧4φ204φ204φ204φ224φ224φ224φ224φ224φ224φ224φ224φ224φ224φ224φ22119`
实际面积125612561256152015201520152015201520152015201520152015201520二、框架柱斜截面承载力计算(一)考虑地震作用组合的框架柱和框支柱的受剪截面应符和下列条件:剪跨比的框架柱≦(二)考虑地震作用组合的框架柱和框支柱的斜截面抗震受剪承载力应符合下列规定:式中:---框架柱和框支柱的计算剪跨比,取;此处,M宜取上、下端考虑地震作用组合的弯矩设计值的较大值,V取与M对应的剪力设计值,为柱截面有效高度;当框架结构中的框架柱的反弯点在柱层高范围内时,可取,此处,为净高;当时,取;当时,取;N----考虑地震作用组合的框架柱和框支柱轴向压力设计值,当时,取框架柱斜截面配筋计算见下表:119`
边柱层次10987654321V34.4963.5454.7864.2272.3779.3154.1756.1957.8536.67(0.2fcbh)/γRE982.3529412982.3529412982.3529412982.3529412982.3529412982.35294121636.61636.61636.61636.6剪跨比λ2.77331.79042.57122.44572.44582.44551.31071.70441.70451.4267轴压比0.05010.08770.12540.16300.20070.23840.14030.16210.18390.20650.3fcA1252.51252.51252.51252.51252.51252.52454.92454.92454.92454.9N192.36336.99481.62626.25770.88915.511082.641250.921419.21593.571.75ftbh0/(λ+1)+0.07N180.9366091250.0547121210.6659951227.2307875237.3533963247.488963625.1210519556.9195954568.6873285634.6180221ρmin0.00180.00180.00180.00180.00180.00180.00180.00180.00180.0018实配箍筋φ8@100φ8@100φ8@100φ8@100φ8@100φ8@100φ8@100φ8@100φ8@100φ8@10050.350.350.350.350.350.350.350.350.350.3s1001001001001001001001001001000.0020.0020.0020.0020.0020.0020.0020.0020.0020.002119`
中柱层次10987654321V25.237.5750.362.9871.2479.5141.42155.86161.64128.33(0.2fcbh)/γRE982.3529412982.3529412982.3529412982.3529412982.3529412982.35294121636.61636.61636.61636.6剪跨比λ2.85712.44592.44582.44562.44582.44301.58621.70461.70461.9423轴压比0.07380.11870.16360.20850.25340.29830.17320.19760.22200.24760.3fcA1252.51252.51252.51252.51252.51252.52454.92454.92454.92454.9N283.45455.93628.41800.89973.371145.851336.131524.561712.991910.091.75ftbh0/(+1)+0.07N183.6739074215.3013432227.3807411239.464685251.5255711263.7493082584.346791576.044195589.2388139565.1162677ρmin0.00180.00180.00180.00180.00180.00180.00180.00180.00180.0018实配箍筋φ8@100φ8@100φ8@100φ8@100φ8@100φ8@100φ8@100φ8@100φ8@100φ8@100Asv50.350.350.350.350.350.350.350.350.350.3s100100100100100100100100100100ρsv0.0020.0020.0020.0020.0020.0020.0020.0020.0020.002为保证结构延性,要求对柱上、下两端箍筋进行加密,加密区范围:要求取,对于底层柱,不小于柱净高的1/3.故底层柱取2000mm,以上各层取600mm.第三节框架梁、柱节点核心区截面抗震验算一、一级抗震等级的框架应进行节点核心区抗震受剪承载力计算。119`
框架柱、梁节点核心区考虑抗震等级的剪力设计值,应按下列规定计算:对于一级抗震等级顶层中间节点和端节点其他层中间节点和端节点式中--考虑地震作用组合的框架节点左、右两侧的梁端弯矩设计值--梁的截面有效高度。截面高度,当节点两侧梁高不相同时,取其平均值;---节点上柱和下柱反弯点之间的距离;--梁纵向受压钢筋合力点至截面近边的距离框架梁柱节点核心区受剪的水平截面应符合下列条件:式中--框架节点核心区的截面高度,可取验算方向的柱截面高度,即;--框架节点核心区的截面有效验算宽度,当时,可取;当时,可取中较小值。当梁与柱的中线不重合,且偏心距时,可取三者中的最小值;此处为验算方向梁截面宽度,为该侧柱截面宽度。--正交梁对节点的约束影响系数;当楼板为现浇,梁柱中线重合、四侧各梁截面宽度不小于该侧柱截面宽度的1/2,且正交方向梁高度不小于较高框架梁高度的3/4时,可取,对8度设防烈度,宜取,当不满足上述约束条件时,应取。框架梁柱节点的抗震受剪承载力,应符合下列规定:119`
式中N---对应于考虑地震作用剪力设计值的节点上柱底部的轴向力设计值:当N为压力时,取轴向压力设计值的较小值,且当时,取;当N为拉力时,取;---核心区有效验算宽度范围内同一截面验算方向箍筋各肢的全部截面面积.119`
层次10987654321节点边节点中节点边节点中节点边节点中节点边节点中节点边节点中节点边节点中节点边节点中节点边节点中节点边节点中节点边节点中节点hb600600600600600600600600600600600600600600600600600600600600hb0560560560560560560560560560560560560560560560560560560560560Hc2.782.062.833.143.113.223.162.223.283.33.163.223.163.172.973.142.913.242.342.63Mb1068.55046.34030.35016.0504.2205.01044.58086.85088.67062.91Mbr54.7985.5290.5778.25116.1894.24135.24108.54158.17120.37175.2129.6165.5154.91141.54189.1146.61190.92179.56180.18∑Mb54.79154.0790.57124.59116.18124.59135.24124.59158.17124.59175.2134.61165.5199.49141.54275.95146.61279.59179.56243.09Vjbj500500500500500500500500500500500500700700700700700700700700hj500500500500500500500500500500500500700700700700700700700700ηj11.511.511.511.511.511.511.511.511.511.5(0.3ηjhjbjfc)/γRE1473.5294122210.2941181473.5294122210.2941181473.5294122210.2941181473.5294122210.2941181473.5294122210.2941181473.5294122210.2941182888.1176474332.1764712888.1176474332.1764712888.1176474332.1764712888.1176474332.176471119`
配箍筋4φ10@1004φ10@1004φ10@1004φ10@1004φ10@1004φ10@1004φ10@1004φ10@1004φ10@1004φ10@1004φ10@1004φ10@1004φ12@1004φ12@1004φ12@1004φ12@1004φ12@1004φ12@1004φ12@1004φ12@100Asv314314314314314314314314314314314314452.4452.4452.4452.4452.4452.4452.4452.40.5fcbchc2087.52087.52087.52087.52087.52087.52087.52087.52087.52087.52087.52087.54091.54091.54091.54091.54091.54091.54091.54091.5N00262.684370.588447.121586.495638.513808.785835.6511037.4321038.211270.0961245.3321506.1271506.2881815.2471745.1182125.7591986.1712440.236(1.1ηjftbjhj+0.05ηjNbj/bj+fyvAsvj(hb0-as)/s)/γRE774.638990.513787.77221018.307796.99411034.5806.56371051.172816.42061068.32826.54851085.771402.5171876.3251415.5651899.5091427.5071922.7981439.5591946.384结论合格合格合格合格合格合格合格合格合格合格合格合格合格合格合格合格合格合格合格合格119`
119`
第四节楼盖设计一、荷载计算1楼面楼板:走道板:卫生间楼板:2屋面不上人屋面:电梯机房楼板:二、计算跨度根据不同的支撑情况,整个屋盖中共有A、B、C、D、E五种板。内跨,边跨,其中为净跨,为板厚。各板的计算跨度列于下表:119`
ABCDE短边方向2.463.62.463.63.4长边方向7.26.07.26.06.0长短跨比值2.91.672.91.671.760.110.360.110.360.323、弯矩计算首先假定边缘板带跨中配筋率与中间板带相同,支座截面配筋率不随板带而变,取同一数值;跨中钢筋在离支座处间隔弯起;取,取,然后利用下列公式计算:三边连续,一长边简支,跨中弯矩为:三边连续,一短边简支,跨中弯矩为:两相邻边连续,另两相邻边简支,此时的两个方向的跨中弯矩分别取上述两种情况的弯矩值。A区格板:119`
B区格板:其它按同理进行计算,计算结果列于下表:按塑性绞线法计算的正截面受弯承载力设计值()119`
ABCDEM1u6.6m15.562m16.826m15.562m15.559m1M2u0.198m10.972m10.203m10.972m10.816m1M1u′-14.4m1-12m1-14.4m1-12m1-12.0m1M1u”-14.4m1-12m1-14.4m1-12m1-12.0m1M2u′0.528m10000M2u”0.528m1-2.592m10.541m1-2.592m1-2.176m1m11.853.281.853.2743.748m2u0.2041.180.2041.1791.199m1u′-3.7-6.56-3.7-6.548-7.496m1u”-3.7-6.56-3.7-6.548-7.496m2u′-0.480000m2u”-0.48-2.36-0.408-2.358-2.3984、截面设计令。截面有效高度:保护层厚度取15mm,假定选用钢筋,则方向跨中截面的,方向的跨中截面的,支座截面的。截面设计用的弯矩值:板的四周与梁整浇,弯矩可进行适当的折减。为了便于计算,取。,。各区格板的配筋计算列于下表。119`
h/mmm/kN.m折减系数设计弯矩/KN.mAs/mm2配筋实际面积跨中A区格l01方向1001.850.21.4852.44φ8@200251l02方向900.2040.20.166.42φ8@200251B区格l01方向1003.280.12.9592.97φ8@200251l02方向901.180.11.0637.16φ8@200251C区格l01方向1001.851.8552.44φ8@200251l02方向900.2040.206.42φ8@200251D区格l01方向1003.2743.2792.80φ8@200251l02方向901.1791.1837.13φ8@200251E区格l01方向1003.7480.23.00106.24φ8@200251l02方向901.1990.20.9637.76φ8@200251支座A-A100-0.480.2-0.3813.61φ8@200251A-B100-3.70.1-3.33104.88φ8@200251A-C100-0.480.1-0.4313.61φ8@200251A-E100-6.56-6.56185.94φ8@200251B-B100-6.560.1-5.90185.94φ8@200251B-C100-3.70.1-3.33104.88φ8@200251B-D100-2.360-2.3666.89φ8@200251B-E100-2.398-2.4067.97φ8@200251C-D100-6.5480.1-5.89185.60φ8@200251119`
第五节、楼梯设计一、梯段板设计取板厚,约为板的水平长度的1/30--1/25。板倾斜角的正切。取1m宽板带计算。1、荷载计算恒荷载分项系数,活荷载分项系数。梯段板的荷载荷载种类荷载标准值(kN/m)恒荷载水磨石面层三角形踏步混凝土斜板板底抹灰小计6.6活荷载3.5总荷载设计值2、截面设计板水平计算跨度,弯矩设计值,板的有效高度。,,,选配Φ10@100,119`
分布钢筋每级踏步1根Φ8。二、平台板设计设平台板厚,取1m宽板带计算。1、荷载计算恒荷载分项系数,活荷载分项系数。平台板的荷载荷载种类荷载标准值(kN/m)恒荷载水磨石面层70mm厚混凝土板板底抹灰小计2.74活荷载3.5总荷载设计值2、截面设计平台板计算跨度,弯矩设计值,板的有效高度。,,选配Φ6@140,三、平台梁设计设平台梁的截面尺寸为200mm×350mm1、荷载计算恒荷载分项系数,活荷载分项系数。119`
平台梁的荷载荷载种类荷载标准值(kN/m)恒荷载梁自重梁侧粉刷平台板传来梯段板传来小计13.10活荷载总荷载设计值2、截面设计计算跨度,弯矩设计值,剪力设计值截面按倒L形计算,梁的有效高度。经判别属于第一类T形截面梁。,,选配3Φ16,配置Φ6@200箍筋,则斜截面受剪承载力满足要求。119`
第三篇基础设计部分第一章设计资料一、上部结构资料本设计为太原某高层旅馆,整体结构为框架结构,上部为十层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级梁、柱均为C35。一层层高3.9m,二至十层层高为3.3m。抗震设防烈度为8度。二、建筑物场地资料(1)建筑地基的土层分布情况及各土层物理、力学指标见下表;地基各土层物理、力学指标土层序号土层名称层底埋深容重含水量%孔隙比e液性指数抗剪强度承载力特征值压缩模量比贯入阻力粘聚力内摩擦角1杂填土0.817.028.00.91702粉土2.018.027.80.810.483025.0906.30.593粉土6.017.838.81.091.181418.01054.30.574粉质粘土14.917.053.11.511.291310.51302.00.635粉质粘土20.018.035.41.020.801618.51405.82.276粉质粘土24.018.524.70.710.313625.01708.84.767粉质粘土34.018.035.51.020.872222.11104.9(2)本工程地质场地类别为III类;(3)根据地质资料,该地区地下水埋深在2.5米以下;(4)最大冻土深度为1.12米;(5)基本风压为,基本雪压为第二章选择桩型、桩端持力层、承台埋深1.因为框架跨度大,柱底荷载大,地质条件差,地基承载力不高,不宜采用浅基础,根据施工场地、地基条件以及场地周围环境条件,故选择柱下桩基础,且根据地质条件采用混凝土预制桩。119`
2.依据地基土的分布,第六层粉质粘土,厚度为4.0m,,压缩模量为,比较适合作桩端持力层。桩端全断面进入持力层4.0m(>2d),工程桩入土深度为,故:。由于地下水位为离地表2.5m,为了使地下水对承台没有影响,所以选择承台顶进入地表0.5m,即承台埋深为0.5m,桩基的有效桩长即为24.0-1.5=22.5m。3.桩截面尺寸选用:初步选用桩尺寸为10001000mm,混凝土强度采用C35,钢筋采用HRB400,桩基以及土层分布示意如图所示。图1桩基以及土层分布示意第三章轴线①-⑤,⑧-12桩及承台的设计第一节确定单桩极限承载力标准值本设计属于乙级建筑桩基,当根据土的物理指标与承载力参数之间的经验关系确定单桩竖向极限承载力标准值时,宜按下式计算:119`
式中:—桩侧第层土的极限侧阻力标准值,如无当地经验时,可按表51取值;—极限端阻力标准值,如无当地经验时,可按下表取值。极限桩侧、桩端阻力标准值土层序号土层名称孔隙比液限指数经验参数1杂填土0.91202粉土0.810.48643粉土1.091.18444粉质粘土1.511.29365粉质粘土1.020.80506粉质粘土0.710.31823600按经验参数法确定单桩竖向极限承载力标准值:故所以所以最终按经验参数法计算单桩承载力设计值,即采用初步确定桩数。第二节确定桩数、布桩和承台底面尺寸(1).桩数确定和布桩桩底荷载设计值如下:最大轴力组合:最大轴力,弯矩,剪力;最大弯矩组合:轴力,最大弯矩,剪力。按最大轴力组合的荷载初步计算桩数,由于柱子是偏心受压,故考虑一定的系数,规范中建议取1.1-1.2,现取1.2的系数。(根),故初步取1根119`
(2).承台底面尺寸独立柱下桩基承台的最小宽度不应小于500mm,边桩中心至承台边缘的距离不应小于桩的直径或边长,且桩的外边缘至承台边缘的距离不应小于150mm。取承台长2.0m,宽2.0m。为满足承台的基本刚度、桩与承台的连接等构造需要,柱下独立桩基础承台的最小厚度为300mm,其最小埋深为500mm。取承台埋深1.7m,承台高度h=1.0m,桩顶伸入承台100mm,钢筋保护层厚度取70mm,则承台有效高度为:。最后确定承台平面尺寸以及桩的排列见下图。119`
图2桩位平面布置图第三节桩顶作用验算(1).按最大轴力组合验算最大轴力组合荷载:最大轴力3268.67KN,弯矩38.66KN,剪力,承台高度为1.0m等厚,荷载作用于承台顶面。本工程安全等级为二级,建筑物的重要性系数。建筑物的室内外高差为0.45m,所以承台的埋d=0.5+0.45=0.95m,作用在承台底形心处的竖向力有F、G。KN作用在承台底形心处的弯矩:,桩顶受力计算如下:119`
满足要求。满足要求。(2).按最大弯矩组合验算最大弯矩组合荷载:轴力,最大弯矩95.34KN.m,剪力。作用在承台底形心处的弯矩:,桩顶受力计算如下:满足要求。满足要求。第四章桩基础沉降验算1.B、C柱下桩基沉降验算(1)基底附加压力的计算119`
地基内应力分布宜采用各同性均质线性变形体理论,按实体深基础(桩距不大于6d)计算。实体深基础桩底平面处的基底附加压力按下式计算:式中:—等代实体基深基础的附加基底压力—等代实体深基础的自重(水下按有效重度计)—等代实体深基础的底面积—等代实体深基础底面处的土自重应力值(水下按土的有效重度计)—等代实体深基础的长度和宽度,按公式,计算—桩长—扩散角,一般采用桩所穿越的土层的内摩擦角的1/4,当存在多层土时,土层内摩擦角按其厚度取加权平均值—由群桩外围所确定的外围长度和宽度本设计中,,,,,119`
,(2)基础沉降的验算①、将等代实体基础以下的土层分为八层,第一层的自重应力,附加应力;第二层的自重应力,附加应力;第三层的自重应力,附加应力;第四层的自重应力,附加应力;第五层的自重应力,附加应力;第六层的自重应力,附加应力;第七层的自重应力,附加应力;第八层的自重应力,附加应力;②按式计算地基各分层压缩量,第一至二层第二至三层第三至四层第四至五层第五至六层119`
第六至七层第七至八层(3)桩基最终沉降量2.A、D柱下桩基沉降验算计算方法同B、C沉降验算,桩基最终沉降量3.沉降验算,满足要求。第五章桩身结构设计计算两端桩长各21.5m,采用单点吊立的强度进行桩身配筋设计。吊立位置在距桩顶、桩端平面0.293L处,起吊时桩身最大正负弯矩,其中K=1.3;。即为每延米桩的自重(1.2为恒载分项系数)。桩身采用混凝土强度C35,钢筋采用HRB400,所以:桩身截面有效高度,桩身受拉主筋选用6Ф25(),因此整个截面的主筋用12Ф25,119`
,配筋率为%0.6%,其他构造要求配筋见施工图。桩身强度故满足要求六、承台设计承台受弯承载力计算承台最大弯,所以,选用20Ф20,(双向布置)。第六章轴线⑥-⑦桩及承台的设计第一节确定单桩极限承载力标准值本设计属于乙级建筑桩基,当根据土的物理指标与承载力参数之间的经验关系确定单桩竖向极限承载力标准值时,宜按下式计算:式中:—桩侧第层土的极限侧阻力标准值,如无当地经验时,可按表51取值;—极限端阻力标准值,如无当地经验时,可按下表取值。极限桩侧、桩端阻力标准值土层序号土层名称孔隙比液限指数经验参数1杂填土0.91302粉土0.810.48663粉土1.091.18464粉质粘土1.511.29405粉质粘土1.020.80556粉质粘土0.710.31863600按经验参数法确定单桩竖向极限承载力标准值:119`
所以所以最终按经验参数法计算单桩承载力设计值,即采用初步确2、确定桩数、布桩和承台底面尺寸(1).桩数确定和布桩桩底荷载设计值如下:最大轴力组合:最大轴力,弯矩,剪力;最大弯矩组合:轴力,最大弯矩,剪力。按最大轴力组合的荷载初步计算桩数,由于柱子是偏心受压,故考虑一定的系数,规范中建议取1.1-1.2,现取1.2的系数。(根),故初步取2根(2).承台底面尺寸独立柱下桩基承台的最小宽度不应小于500mm,边桩中心至承台边缘的距离不应小于桩的直径或边长,且桩的外边缘至承台边缘的距离不应小于150mm。取承台长6.0m,宽2.0m。为满足承台的基本刚度、桩与承台的连接等构造需要,柱下独立桩基础承台的最小厚度为300mm,其最小埋深为500mm。取承台埋深0.5m,承台高度h=1.0m,桩顶伸入承台50mm,钢筋保护层厚度取70mm,则承台有效高度为:。最后确定承台平面尺寸以及桩的排列见图19119`
图3桩位平面布置图第二节桩顶作用验算(1)、按最大轴力组合验算最大轴力组合荷载:最大轴力3268.67KN,弯矩38.66KN,剪力,承台高度为1.0m等厚,荷载作用于承台顶面。本工程安全等级为二级,建筑物的重要性系数。建筑物的室内外高差为0.45m,所以承台的埋d=0.5+0.45=0.95m,作用在承台底形心处的竖向力有F、G。作用在承台底形心处的弯矩:,(3)桩顶受力计算如下:119`
满足要求。满足要求。(2).按最大弯矩组合验算最大弯矩组合荷载:轴力,最大弯矩95.34KN.m,剪力。作用在承台底形心处的弯矩:,桩顶受力计算如下:满足要求。满足要求。第三节桩基础沉降验算1.B、C柱下桩基沉降验算(1)基底附加压力的计算119`
地基内应力分布宜采用各同性均质线性变形体理论,按实体深基础(桩距不大于6d)计算。实体深基础桩底平面处的基底附加压力按下式计算:式中:—等代实体基深基础的附加基底压力—等代实体深基础的自重(水下按有效重度计)—等代实体深基础的底面积—等代实体深基础底面处的土自重应力值(水下按土的有效重度计)—等代实体深基础的长度和宽度,按公式,计算—桩长—扩散角,一般采用桩所穿越的土层的内摩擦角的1/4,当存在多层土时,土层内摩擦角按其厚度取加权平均值—由群桩外围所确定的外围长度和宽度本设计中,,,,,,119`
(2)基础沉降的验算①、将等代实体基础以下的土层分为八层,第一层的自重应力,附加应力;第二层的自重应力,附加应力;第三层的自重应力,附加应力;第四层的自重应力,附加应力;第五层的自重应力,附加应力;第六层的自重应力,附加应力;第七层的自重应力,附加应力;第八层的自重应力,附加应力;②按式计算地基各分层压缩量,第一至二层第二至三层第三至四层第四至五层第五至六层第六至七层第七至八层119`
(3)桩基最终沉降量2.A、D柱下桩基沉降验算计算方法同B、C沉降验算,桩基最终沉降量3.沉降验算,满足要求。第四节桩身结构设计计算两端桩长各22.5m,采用单点吊立的强度进行桩身配筋设计。吊立位置在距桩顶、桩端平面0.293L处,起吊时桩身最大正负弯矩,其中K=1.3;。即为每延米桩的自重(1.2为恒载分项系数)。桩身采用混凝土强度C35,钢筋采用HRB400,所以:桩身截面有效高度,桩身受拉主筋选用6Ф25(),因此整个截面的主筋用12Ф25,,配筋率为%0.6%,其他构造要求配筋见施工图。桩身强度故满足要求119`
十、承台设计1.承台受弯承载力计算承台最大弯,所以,选用30Ф20,(双向布置)。第五节承台设计(1).承台受冲切承载力验算①.柱边冲切计算:由桩的受力可知,桩顶最大反力1711.16KN,平均反力N=1706.3KN;承台厚度H=1.0m,计算截面处的有效高度冲切受冲切承载力截面高度影响系数,冲垮比与冲切系数的计算:()则满足要求。②.角桩向上冲切119`
则③.承台受剪切承载力验算受剪切承载力截面高度影响系数计算:剪切系数;则满足要求。④.承台受弯承载力计算承台最大弯矩,所以,选用,整个承台宽度范围内钢筋取39根,即(双向布置)。119`
致谢经过几个月忙碌,本次毕业设计即将接近尾声,作为一个本科生的毕业设计,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有导师的严格督促和精心指导,以及一起学习的同学们的支持,想要完成此次设计是很困难的。在这里首先要感谢张永胜老师和贺武斌老师,他们平日里工作事情繁多,但在毕业设计阶段两位老师都给予了我悉心的指导。框架结构的设计是一个比较常见的概念,很多资料都可以自己去翻阅,但有时候问题考虑的不周全,往往会发生错误,但老师们总能及时纠正我设计中的不足,并给予精心的指导。在此,除了敬佩张永胜老师和贺武斌老师的专业水平外,他们治学严谨的作风和科学研究的精神也是值得我们学习的。其次要感谢和我一起做毕业设计的同学,他们在毕业设计过程中所表现出来的执着的精神让我很受鼓舞。还要感谢大学四年来的所有老师,为让我们学好土木工程专业他们做出了很大的努力,正是因为有他们的辛勤耕耘,这次设计才会顺利完成。最后感谢母校太原理工大学对我的培养。此致敬礼学生:土木班2013年6月119`
中文1.1钢筋混凝土素混凝土是由水泥、水、细骨料、粗骨料(碎石或;卵石)、空气,通常还有其他外加剂等经过凝固硬化而成。将可塑的混凝土拌合物注入到模板内,并将其捣实,然后进行养护,以加速水泥与水的水化反应,最后获得硬化的混凝土。其最终制成品具有较高的抗压强度和较低的抗拉强度。其抗拉强度约为抗压强度的十分之一。因此,截面的受拉区必须配置抗拉钢筋和抗剪钢筋以增加钢筋混凝土构件中较弱的受拉区的强度。由于钢筋混凝土截面在均质性上与标准的木材或钢的截面存在着差异,因此,需要对结构设计的基本原理进行修改。将钢筋混凝土这种非均质截面的两种组成部分按一定比例适当布置,可以最好的利用这两种材料。这一要求是可以达到的。因混凝土由配料搅拌成湿拌合物,经过振捣并凝固硬化,可以做成任何一种需要的形状。如果拌制混凝土的各种材料配合比恰当,则混凝土制成品的强度较高,经久耐用,配置钢筋后,可以作为任何结构体系的主要构件。浇筑混凝土所需要的技术取决于即将浇筑的构件类型,诸如:柱、梁、墙、板、基础,大体积混凝土水坝或者继续延长已浇筑完毕并且已经凝固的混凝土等。对于梁、柱、墙等构件,当模板清理干净后应该在其上涂油,钢筋表面的锈及其他有害物质也应该被清除干净。浇筑基础前,应将坑底土夯实并用水浸湿6英寸,以免土壤从新浇的混凝土中吸收水分。一般情况下,除使用混凝土泵浇筑外,混凝土都应在水平方向分层浇筑,并使用插入式或表面式高频电动振捣器捣实。必须记住,过分的振捣将导致骨料离析和混凝土泌浆等现象,因而是有害的。水泥的水化作用发生在有水分存在,而且气温在50°F以上的条件下。为了保证水泥的水化作用得以进行,必须具备上述条件。如果干燥过快则会出现表面裂缝,这将有损与混凝土的强度,同时也会影响到水泥水化作用的充分进行。设计钢筋混凝土构件时显然需要处理大量的参数,诸如宽度、高度等几何尺寸,配筋的面积,钢筋的应变和混凝土的应变,钢筋的应力等等。因此,在选择混凝土截面时需要进行试算并作调整,根据施工现场条件、混凝土原材料的供应情况、业主提出的特殊要求、对建筑和净空高度的要求、所用的设计规范以及建筑物周围环境条件等最后确定截面。钢筋混凝土通常是现场浇注的合成材料,它与在工厂中制造的标准的钢结构梁、柱等不同,因此对于上面所提到的一系列因素必须予以考虑。119`
对结构体系的各个部位均需选定试算截面并进行验算,以确定该截面的名义强度是否足以承受所作用的计算荷载。由于经常需要进行多次试算,才能求出所需的截面,因此设计时第一次采用的数值将导致一系列的试算与调整工作。选择混凝土截面时,采用试算与调整过程可以使复核与设计结合在一起。因此,当试算截面选定后,每次设计都是对截面进行复核。手册、图表和微型计算机以及专用程序的使用,使这种设计方法更为简捷有效,而传统的方法则是把钢筋混凝土的复核与单纯的设计分别进行处理。1.2土方工程由于和土木工程中任何其他工种的施工方法与费用相比较,土方挖运的施工方法与费用的变化都要快得多,因此对于有事业心的人来说,土方工程是一个可以大有作为的领域。在1935年,目前采用的利用轮胎式机械设备进行土方挖运的方法大多数还没有出现。那是大部分土方是采用窄轨铁路运输,在这目前来说是很少采用的。当时主要的开挖方式是使用正铲、反铲、拉铲或抓斗等挖土机,尽管这些机械目前仍然在广泛应用,但是它们只不过是目前所采用的许多方法中的一小部分。因此,一个工程师为了使自己在土方挖运设备方面的知识跟得上时代的发展,他应当花费一些时间去研究现代的机械。一般说来,有关挖土机、装载机和运输机械的唯一可靠而又最新的资料可以从制造厂商处获得。土方工程或土方挖运工程指的是把地表面过高处的土壤挖去(挖方),并把它倾卸到地表面过低的其他地方(填方)。为了降低土方工程费用,填方量应该等于挖方量,而且挖方地点应该尽可能靠近土方量相等的填方地点,以减少运输量和填方的二次搬运。土方设计这项工作落到了从事道路设计的工程师的身上,因为土方工程的设计比其他任何工作更能决定工程造价是否低廉。根据现有的地图和标高,道路工程师应在设计绘图室中的工作也并不是徒劳的。它将帮助他在最短的时间内获得最好的方案。费用最低的运土方法是用同一台机械直接挖方取土并且卸土作为填方。这并不是经常可以做到的,但是如果能够做到则是很理想的,因为这样做既快捷又省钱。拉铲挖土机。推土机和正铲挖土机都能做到这点。拉铲挖土机的工作半径最大。推土机所推运的图的数量最多,只是运输距离很短。拉铲挖土机的缺点是只能挖比它本身低的土,不能施加压力挖入压实的土壤内,不能在陡坡上挖土,而且挖。卸都不准确。正铲挖土机介于推土机和拉铲挖土机的之间,其作用半径大于推土机,但小于拉铲挖土机。正铲挖土机能挖取竖直陡峭的工作面,这种方式对推土机司机来说是危险的,而对拉铲挖土机则是不可能的。每种机械设备应该进行最适合它的性能的作业。正铲挖土机不能挖比其停机平面低很多的土,而深挖坚实的土壤时,反铲挖土机最适用,但其卸料半径比起装有正铲的同一挖土机的卸料半径则要小很多。119`
在比较平坦的场地开挖,如果用拉铲或正铲挖土机运输距离太远时,则装有轮胎式的斗式铲运机就是比不可少的。它能在比较平的地面上挖较深的土(但只能挖机械本身下面的土),需要时可以将土运至几百米远,然后卸土并在卸土的过程中把土大致铲平。在挖掘硬土时,人们发现在开挖场地经常用一辆助推拖拉机(轮式或履带式),对返回挖土的铲运机进行助推这种施工方法是经济的。一旦铲运机装满,助推拖拉机就回到开挖的地点去帮助下一台铲运机。斗式铲运机通常是功率非常大的机械,许多厂家制造的铲运机铲斗容量为8m³,满载时可达10m³。最大的自行式铲运机铲斗容量为19立方米(满载时为25m³),由430马力的牵引发动机驱动。翻斗机可能是使用最为普遍的轮胎式运输设备,因为它们还可以被用来送混凝土或者其他建筑材料。翻斗车的车斗位于大橡胶轮胎车轮前轴的上方,尽管铰接式翻斗车的卸料方向有很多种,但大多数车斗是向前翻转的。最小的翻斗车的容量大约为0.5立方米,而最大的标准型翻斗车的容量大约为4.5m³。特殊型式的翻斗车包括容量为4m³的自装式翻斗车,和容量约为0.5m³的铰接式翻斗车。必须记住翻斗车与自卸卡车之间的区别。翻斗车车斗向前倾翻而司机坐在后方卸载,因此有时被称为后卸卡车。1.3结构的安全度规范的主要目的是提供一般性的设计原理和计算方法,以便验算结构的安全度。就目前的趋势而言,安全系数与所使用的材料性质及其组织情况无关,通常把它定义为发生破坏的条件与结构可预料的最不利的工作条件之比值。这个比值还与结构的破坏概率(危险率)成反比。破坏不仅仅指结构的整体破坏,而且还指结构不能正常的使用,或者,用更为确切的话来说,把破坏看成是结构已经达到不能继续承担其设计荷载的“极限状态”。通常有两种类型的极限状态,即:(1)强度极限状态,它相当于结构能够达到的最大承载能力。其例子包括结构的局部屈曲和整体不稳定性;某此界面失效,随后结构转变为机构;疲劳破坏;引起结构几何形状显著变化的弹性变形或塑性变形或徐变;结构对交变荷载、火灾和爆炸的敏感性。(2)使用极限状态,它对应着结构的使用功能和耐久性。器例子包括结构失稳之前的过大变形和位移;早期开裂或过大的裂缝;较大的振动和腐蚀。根据不同的安全度条件,可以把结构验算所采用的计算方法分成:(1)确定性的方法,在这种方法中,把主要参数看作非随机参数。(2)概率方法,在这种方法中,主要参数被认为是随机参数。此外,根据安全系数的不同用途,可以把结构的计算方法分为:(1)容许应力法,在这种方法中,把结构承受最大荷载时计算得到的应力与经过按规定的安全系数进行折减后的材料强度作比较。119`
(2)极限状态法,在这种方法中,结构的工作状态是以其最大强度为依据来衡量的。由理论分析确定的这一最大强度应不小于结构承受计算荷载所算得的强度(极限状态)。计算荷载等于分别乘以荷载系数的活载与恒载之和。把对应于不乘以荷载系数的活载和恒载的工作(使用)条件的应力与规定值(使用极限状态)相比较。根据前两种方法和后两种方法的四种可能组合,我们可以得到一些实用的计算方法。通常采用下面两种计算方法:确定性的方法,这种方法采用容许应力。概率方法,这种方法采用极限状态。至少在理论上,概率法的主要优点是可以科学的考虑所有随机安全系数,然后将这些随机安全系数组合成确定的安全系数。概率法取决于:(1)制作和安装过程中材料强度的随机分布(整个结构的力学性能数值的分散性);(2)截面和结构几何尺寸的不确定性(由结构制作和安装造成的误差和缺陷而引起的);对作用在结构上的活载和恒载的预测的不确定性;所采用的近似计算方法有关的不精确性(实际应力与计算应力的偏差)。此外,概率理论意味着可以基于下面几个因素来确定允许的危险率,例如:建筑物的重要性和建筑物破坏造成的危害性;(2)由于建筑物破坏使生活受到威胁的人数;(3)修复建筑的可能性;(4)建筑物的预期寿命。所有这些因素均与经济和社会条件有关,例如:(1)建筑物的初始建设费;(2)建筑物使用期限内的折旧费;(3)由于建筑物破坏而造成的物质和材料损失费;(4)在社会上造成的不良影响;(5)精神和心理上的考虑。就给定的安全系数而论,所有这些参数的确定都是以建筑物的最佳成本为依据的。但是,应该考虑到进行全概率分析的困难。对于这种分析来说,应该了解活载及其所引起的盈利的分布规律、材料的力学性能的分散性和截面的结构几何尺寸的分散性。此外,由于强度的分布规律和应力的分布规律之间的相互关系是困难的。这些实际困难可以采用两种方法来克服。第一种方法对材料和荷载采用不同的安全系数,而不需要采用概率准则;第二种方法是引入一些而简化假设的近似概率方法(半概率方法)。119`
外文翻译2.1ReinforcedConcretePlainconcreteisformedfromahardenedmixtureofcement,water,fineaggregate,coarseaggregate(crushedstoneorgravel),air,andoftenotheradmixtures.Theplasticmixisplacedandconsolidatedintheformwork,thencuredtofacilitatetheaccelerationofthechemicalhydrationreactionlfthecement/watermix,resultinginhardenedconcrete.Thefinishedproducthashighcompressivestrength,andlowresistancetotension,suchthatitstensilestrengthisapproximatelyonetenthlfitscompressivestrength.Consequently,tensileandshearreinforcementinthetensileregionsofsectionshastobeprovidedtocompensatefortheweaktensionregionsinthereinforcedconcreteelement.Itisthisdeviationinthecompositionofareinforcesconcretesectionfromthehomogeneityofstandardwoodorsteelsectionsthatrequiresamodifiedapproachtothebasicprinciplesofstructuraldesign.Thetwocomponentsoftheheterogeneousreinforcedconcretesectionaretobesoarrangedandproportionedthatoptimaluseismadeofthematerialsinvolved.Thisispossiblebecauseconcretecaneasilybegivenanydesiredshapebyplacingandcompactingthewetmixtureoftheconstituentingredientsareproperlyproportioned,thefinishedproductbecomesstrong,durable,and,incombinationwiththereinforcingbars,adaptableforuseasmainmembersofanystructuralsystem.Thetechniquesnecessaryforplacingconcretedependonthetypeofmembertobecast:thatis,whetheritisacolumn,abean,awall,aslab,afoundation.amasscolumns,oranextensionofpreviouslyplacedandhardenedconcrete.Forbeams,columns,andwalls,theformsshouldbewelloiledaftercleaningthem,andthereinforcementshouldbeclearedofrustandotherharmfulmaterials.Infoundations,theearthshouldbecompactedandthoroughlymoistenedtoabout6in.indepthtoavoidabsorptionofthemoisturepresentinthewetconcrete.Concreteshouldalwaysbeplacedinhorizontallayerswhicharecompactedbymeansofhighfrequencypower-drivenvibratorsofeithertheimmersionorexternaltype,asthecaserequires,unlessitisplacedbypumping.Itmustbekeptinmind,however,thatovervibrationcanbeharmfulsinceitcouldcause119`
segregationoftheaggregateandbleedingoftheconcrete.Hydrationofthecementtakesplaceinthepresenceofmoistureattemperaturesabove50°F.Itisnecessarytomaintainsuchaconditioninorderthatthechemicalhydrationreactioncantakeplace.Ifdryingistoorapid,surfacecrackingtakesplace.Thiswouldresultinreductionofconcretestrengthduetocrackingaswellasthefailuretoattainfullchemicalhydration.autanddropitasfillwiththesamemachine.Thisisnotalwayspossible,butwhenitcanbedoneitisideal,beingbothquickandcheap.Draglines,bulldozersandfaceshovelsandothis.Thelargestradiusisobtainedwiththedragline,andthelargesttonnageofearthismovedbythebulldozer,thoughonlyovershortdistances.Thedisadvantagesofthedraglinearethatitmustdigbelowitself,itcannotdigwithforceintocompactedmaterial,itcannotdigonsteepslopws,anditsdumpinganddiggingarenotaccurate.Faceshovelsarebetweenbulldozersanddraglines,havingalargerradiusofactionthanbulldozersbutlessthandraglines.Theyareanletodigintoaverticalclifffaceinawaywhichwouldbedangeroustorabulldozeroperatorandimpossibleforadragline.Eachpieceofequipmentshouldbeleveloftheirtracksandfordeepdigsincompactmaterialabackacterismostuseful,butitsdumpingradiusisconsiderablylessthanthatofthesameescavatorfittedwithafaceshovel.Rubber-tyredbowlscrapersareindispensableforfairlyleveldiggingwherethedistanceoftransportistoomuchtoradraglineorfaceshovel.Theycandigthematerialdeeply(butonlybelowthemselves)toafairlyflatsurface,carryithundredsofmetersifneedbe,thendropitandlevelitroughlyduringthedumping.Forharddiggingitisoftenfoundeconomicaltokeepapushertractor(wheeledortracked)onthediggingsite,topusheachscraperasitreturnstodig.Assoonasthescraperisfull,thepushertractorreturnstothebeginningofthedigtoheoptohelpthenestscraper.Bowlscrapersareoftenextremelypowerfulmachines;manymakersbuildscrapersof8cubicmetersstruckcapacity,whichcarry10m³heaped.Thelargestself-propelledscrapersareof19m³struckcapacity(25m³heaped)andtheyaredrivenbyatractorengineof430horse-powers.119`
Dumpersareprobablythecommonestrubber-tyredtransportsincetheycanalsoconvenientlybeusedforcarryingconcreteorotherbuildingmaterials.Dumpershavetheearthcontaineroverthefrontaxleonlargerubber-tyredwheels,andthecontainertipsforwardsonmosttypes,thoughinarticulateddumpersthedirectionoftipcanbewidelyvaried.Thesmallestdumpershaveacapacityofabout0.5m³,andthelargeststandardtypesareofabout4.5m³.Specialtypesincludetheself-loadingdumperofupto4m³andthearticulatedtypeofabout0.5m³.Thedistinctionbetweendumpersanddumptrucksmustberemembered.dumperstipforwardsandthedriversitsbehindtheload.Dumptrucksareheavy,strengthenedtippinglorries,thedrivertravelsinfrontlftheloadandtheloadisdumpedbehindhim,sotheyaresometimescalledrear-dumptrucks.2.3SafetyofStructuresTheprincipalscopeofspecificationsistoprovidegeneralprinciplesandcomputationalmethodsinordertoverifysafetyofstructures.The“safetyfactor”,whichaccordingtomoderntrendsisindependentofthenatureandcombinationofthematerialsused,canusuallybedefinedastheratiobetweentheconditions.Thisratioisalsoproportionaltotheinverseoftheprobability(risk)offailureofthestructure.Failurehastobeconsiderednotonlyasoverallcollapseofthestructurebutalsoasunserviceabilityor,accordingtoamoreprecise.Commondefinition.Asthereachingofa“limitstate”whichcausestheconstructionnottoaccomplishthetaskitwasdesignedfor.Therearetwocategoriesoflimitstate:(1)Ultimatelimitsate,whichcorrespondstothehighestvalueoftheload-bearingcapacity.Examplesincludelocalbucklingorglobalinstabilityofthestructure;failureofsomesectionsandsubsequenttransformationofthestructureintoamechanism;failurebyfatigue;elasticorplasticdeformationorcreepthatcauseasubstantialchangeofthegeometryofthestructure;andsensitivityofthestructuretoalternatingloads,tofireandtoexplosions.(2)Servicelimitstates,whicharefunctionsoftheuseanddurabilityofthestructure.Examplesincludeexcessivedeformationsanddisplacementswithoutinstability;earlyorexcessivecracks;largevibrations;and119`
corrosion.Computationalmethodsusedtoverifystructureswithrespecttothedifferentsafetyconditionscanbeseparatedinto:(1)Deterministicmethods,inwhichthemainparametersareconsideredasnonrandomparameters.(2)Probabilisticmethods,inwhichthemainparametersareconsideredasrandomparameters.Alternatively,withrespecttothedifferentuseoffactorsofsafety,computationalmethodscanbeseparatedinto:(1)Allowablestressmethod,inwhichthestressescomputedundermaximumloadsarecomparedwiththestrengthofthematerialreducedbygivensafetyfactors.(2)Limitstatesmethod,inwhichthestructuremaybeproportionedonthebasisofitsmaximumstrength.Thisstrength,asdeterminedbyrationalanalysis,shallnotbelessthanthatrequiredtosupportafactoredloadequaltothesumofthefactoredliveloadanddeadload(ultimatestate).Thestressescorrespondingtoworking(service)conditionswithunfactoredliveanddeadloadsarecomparedwithprescribedvalues(servicelimitstate).Fromthefourpossiblecombinationsofthefirsttwoandsecondtwomethods,wecanobtainsomeusefulcomputationalmethods.Generally,twocombinationsprevail:(1)deterministicmethods,whichmakeuseofallowablestresses.(2)Probabilisticmethods,whichmakeuseoflimitstates.Themainadvantageofprobabilisticapproachesisthat,atleastintheory,itispossibletoscientificallytakeintoaccountallrandomfactorsofsafety,whicharethencombinedtodefinethesafetyfactor.probabilisticapproachesdependupon:(1)Randomdistributionofstrengthofmaterialswithrespecttotheconditionsoffabricationanderection(scatterofthevaluesofmechanicalpropertiesthroughoutthestructure);(2)Uncertaintyofthegeometryofthecross-sectionsandofthestructure(faultsandimperfectionsduetofabricationanderectionofthestructure);(3)Uncertaintyofthepredictedliveloadsanddeadloadsactingon119`
thestructure;(4)Uncertaintyrelatedtotheapproximationofthecomputationalmethodused(deviationoftheactualstressesfromcomputedstresses).Furthermore,probabilistictheoriesmeanthattheallowableriskcanbebasedonseveralfactors,suchas:(1)Importanceoftheconstructionandgravityofthedamagebyitsfailure;(2)Numberofhumanliveswhichcanbethreatenedbythisfailure;(3)Possibilityand/orlikelihoodofrepairingthestructure;(4)Predictedlifeofthestructure.Allthesefactorsarerelatedtoeconomicandsocialconsiderationssuchas:(1)Initialcostoftheconstruction;(2)Amortizationfundsforthedurationoftheconstruction;(3)Costofphysicalandmaterialdamageduetothefailureoftheconstruction;(4)Adverseimpactonsociety;(5)Moralandpsychologicalviews.Thedefinitionofalltheseparameters,foragivensafetyfactor,allowsconstructionattheoptimumcost.However,thedifficultyofcarryingoutacompleteprobabilisticanalysishastobetakenintoaccount.Forsuchananalysisthelawsofthedistributionoftheliveloadanditsinducedstresses,ofthescatterofmechanicalpropertiesofmaterials,andofthegeometryofthecross-sectionsandthestructurehavetobeknown.Furthermore,itisdifficulttointerprettheinteractionbetweenthelawofdistributionofstrengthandthatofstressesbecausebothdependuponthenatureofthematerial,onthecross-sectionsandupontheloadactingonthestructure.Thesepracticaldifficultiescanbeovercomeintwoways.Thefirstistoapplydifferentsafetyfactorstothematerialandtotheloads,withoutnecessarilyadoptingtheprobabilisticcriterion.Thesecondisanapproximateprobabilisticmethodwhichintroducessomesimplifyingassumptions(semi-probabilisticmethods).119`
119`'
您可能关注的文档
- 扬州大学土木工程结构设计毕业设计计算书
- 扬州市某连锁酒店设计计算书
- 某中学教学楼毕业设计(含计算书)
- 桥梁工程 毕业设计 计算书
- 桥梁工程毕业设计变截面连续梁桥以及迈达斯用法和简支梁桥计算书
- 武汉理工大学污水处理厂设计计算书
- 氧化沟设计说明书与计算书_secret
- 污水处理厂设计(开题报告计算书说明书全)
- 营口市实验中学教学主楼设计计算书
- 设计说明书与计算书2
- 镇江市某经济型酒店设计计算书
- 长安大学09级桥梁优秀毕业设计计算书
- 隧道毕业设计计算书
- 预拌混凝土配合比设计计算书
- 黔南州某综合楼给排水及热水系统设计计算书附cad图纸
- qtz-80-tc6013塔吊桩基础的计算书2
- 型钢悬挑脚手架(扣件式)计算书
- 工地临时供电计算书