- 3.49 MB
- 8页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'超大直径盾构隧道工程技术的发展傅德明周文波上海市土木工程学会摘要:论文介绍了日本、德国的直径大于14m的盾构法隧道工程技术的开发及在越江跨海和城市地下道路工程中的应用过程。近6年来,我国上海在越江道路隧道工程中采用φ14.89m盾构施工2条双层4来4去8车道的超大断面隧道;又在长江底下采用2台φ15.43m盾构连续掘进2条长7.5km的3来3去6车道的超大断面隧道;还在市中心外滩道路下掘进了1条双层3来3去的车行隧道。论文展望了国内外超大断面盾构隧道工程技术的发展和应用前景。矚慫润厲钐瘗睞枥庑赖。关键词:盾构隧道超大直径工程技术1.超大直径盾构隧道工程技术的发展国外盾构法隧道工程技术在近20年来向大深度、大断面、长距离的方向发展并建成一批超大直径的海底隧道和城市道路隧道。世界上第一个直径大于14m的超大直径盾构隧道工程是日本东京湾的海底道路隧道工程[1]。长9.4km的隧道采用8台φ14.14m泥水盾构掘进施工,于1996年竣工,见图1所示。盾构采用先进的自动掘进管理系统、自动测量管理系统和自动拼装系统,8台盾构各掘进了约2.6km并在海底实现了对接,体现了高新技术在盾构法隧道工程中的应用。隧道最大埋深60m,在粘土和砂性土中掘进,隧道管片分为11块,厚度65cm,结构计算采用弹性地基梁模型,接头弹簧系数经管片接头实验取得。聞創沟燴鐺險爱氇谴净。图1a东京湾道路隧道工程平、剖面图1997年6月,日本东京营团地铁7号线麻布站工程[2],采用1台Φ14.18m母子式泥水盾构掘进机,掘进一条长364m的3线地铁隧道后进入通风井,然后从大盾构中推出Φ9.70m的盾构掘进777m的双线隧道。这是世界是第一台大直径的母子式盾构,体现了盾构技术的新发展。残骛楼諍锩瀨濟溆塹籟。
图1b东京湾道路隧道φ14.14m泥水盾构图2易北河第4隧道φ14.2m复合型泥水盾构1997年开工的德国汉堡易北河第4隧道工程[1],长度2.6km,河底最小覆土仅为7m(小于0.5D),采用海瑞克公司制造的φ14.2m复合型泥水盾构,见图2所示。穿越的地层为坚硬的粘土、砾石,含水丰富,透水系数大,掘进施工十分困难。盾构机中心设有3m直径的先行小刀盘,泥水舱下部设有可破碎直径达1200mm巨砾的破碎机。另一项新技术是地震测量系统,称为“声波软土测探系统”(SSP),可为整条隧道推进过程采集数据测量,提供盾构前20-30m的三维反射图象。这台盾构掘进机还设计了在常压状态下的刀盘更换设施。盾构技术体现了国际先进水平。易北河第4隧道工程于2003年竣工。该φ14.2m复合型泥水盾构经维修保养后于2003年用于俄罗斯莫斯科lefortovo地下道路隧道工程,掘进长度2.5km,为单管3车道隧道;以后又在莫斯科西部掘进2条2.2km的道路隧道。φ14.2m复合型泥水盾构总共掘进4条道路隧道,总长度9.5km。酽锕极額閉镇桧猪訣锥。荷兰格累恩哈特隧道,是阿姆斯特丹到布鲁赛尔高速铁路隧道工程,长度7,156m,中间设3座工作竖井,穿越地层为砂土,隧道埋深30m,采用法国NFM厂制造的外径14.87m泥水气平衡盾构掘进机,见图3所示。掘进施工相当顺利,日掘进速度约10m,隧道于2005年竣工。彈贸摄尔霁毙攬砖卤庑。马德里M30地下道路隧道工程一期南环线,2条3来3去隧道各长3.67km,穿越地层为坚硬、有裂隙的灰色或绿色泥灰岩质粘土和石膏。北隧道采用德国海瑞克制作的Φ15.2m世界最大双子星土压盾构,于2005年11月盾构始发施工,2007年3月北隧道建成通车。南隧道采用日本三菱重工制作的15.2m土压盾构掘进了3664m,创日进度46M的纪录。謀荞抟箧飆鐸怼类蒋薔。
图3荷兰绿色心脏隧道φ14.87m盾构图4马德里M30地下道路隧道Φ15.2m双子星土压盾构厦礴恳蹒骈時盡继價骚。国外直径超过14m的盾构隧道工程完成7项,掘进长度约43.7km。采用盾构13台,其中11台为泥水平衡盾构,仅2台为土压盾构。7项工程中,5项为道路隧道,1项为铁路隧道,1项为地铁隧道,见表1。茕桢广鳓鯡选块网羈泪。表1国外超大直径盾构隧道工程一览表工程名称盾构直径、机型隧道长度(km)埋深(m)建设时间东京湾道路隧道8台14.14m泥水盾构9.4×2601989-1996东京地铁7号线14.18m母子泥水盾构1.1421997-1999易北河第4隧道莫斯科地下道路隧道14.2m泥水盾构2.562.5+2.2×2411995-20032003-2009绿色心脏隧道14.9m泥水盾构7352001-2006马德里M30环线隧道2台15.01m土压盾构3.67×22004-2007总计13台43.71.我国的超大直径盾构隧道工程建设2.1直径14.5m的上海上中路隧道工程2004年,上海上中路越江隧道工程引进当时世界最大直径的φ14.87m泥水加压盾构(曾用于荷兰绿心隧道工程掘进7.15km),在黄浦江下掘进施工2条隧道,掘进长度1250m,隧道结构为双管双层双向8车道[3],见图5所示。上、下两层车道宽度3.25m×2+3.5m×2,通行净高≥4.5m设计车速80km/h。隧道衬砌采用单层衬砌,为通用环楔形管片,采用全圆周错缝拼装工艺。圆形隧道的下层车道板结构采用预制构件和现浇钢筋混凝土相结合的形式。隧道穿越地层为饱和含水的淤泥质粘土、淤泥质粉质粘土、,隧道最大埋深45m,最浅覆土8.6m。2009年建成通车。鹅娅尽損鹌惨歷茏鴛賴。图5上中路隧道双层4车道结构和盾构始发2008年,上海中环线军工路隧道,再次采用该台φ14.87m泥水加压盾构掘进2条越江道路隧道,掘进长度1525m,2010年建成通车。1台二手的φ14.87m泥水加压盾构经维修保养后在4年内用于2项工程4条隧道5550m的掘进施工。如加上荷兰绿心隧道7156m,该台盾构共计掘进长度达12.7km。籟丛妈羥为贍偾蛏练淨。
2.2直径15m的上海长江隧道工程2005年,上海长江隧桥工程开工,其中隧道段长8.95km,设计车速80km/h[4]。全线道路为双向6车道,见图5所示。隧道最大埋深55m,穿越地层为软弱的淤泥质粘土、淤泥质粉质粘土、粘质粉土、砂质粉土。圆隧道衬砌环外径15000mm,环宽2000mm,壁厚650mm。采用装配式钢筋混凝土通用楔形管片错缝拼装,混凝土强度等级C60,抗渗等级S12。衬砌圆环共分为10块,根据埋深不同,分浅埋、中埋、深埋和超深埋管片。管片环、纵向采用斜螺栓连接。环间采用38根T30纵向螺栓连接,块与块间以2根T39的环向螺栓相连。衬砌管片接缝采用压缩永久变形小、应力松弛小、耐老化性能佳的三元乙丙橡胶条与遇水膨胀橡胶条组成两道防水线。在浅覆土地段、地层变化位置和连接通道处衬砌环间增设了剪力销,以提高特殊区段衬砌环间的抗剪能力,减少环间高差。預頌圣鉉儐歲龈讶骅籴。图5隧道衬砌结构和示意图隧道采用世界最大直径15.43m泥水气平衡盾构施工,掘进长度7470m,该工程特点带来的技术难点表现为:超大断面盾构衬砌结构设计、开挖面稳定、隧道抗浮、管片制作与拼装等;7.47km的一次掘进中其关键部件的检修、三维轴线控制、隧道通风与降温、公路与轨道交通共用隧道火灾控制与救援疏散、施工等;高水压下软土复杂地质条件,需要考虑隧道防水、耐久性等难题。多工序隧道内部结构阶梯流水同步施工、施工风险防范与控制、全寿命周期隧道建养一体化管理等问题。长江隧桥工程于2009年11月建成通车,见图6所示。渗釤呛俨匀谔鱉调硯錦。图6上海长江隧道15.43m泥水盾构和隧道通车2.3南京长江隧道工程
南京长江隧道位于南京长江大桥与三桥之间,连接河西新城区—江心洲—浦口区。工程通道总长约6.2km,按6车道城市快速通道规模建设,设计车速80km/h,采用“左汊盾构隧道+右汊桥梁”方案。左汊盾构隧道长度3835m,隧道外径14.5m,为双管3来3去6车道,采用2台14.9m泥水盾构施工[5]。盾构于2007年12月始发推进,隧道最大埋深56m,穿越地层复杂,有软弱的淤泥质粉质粘土、细砂、粉细砂,也有砾砂、粘土混卵石。盾构掘进砾砂和卵石地层时,对刀具的磨损较大。南京长江隧道于2010年5月建成通车。铙誅卧泻噦圣骋贶頂廡。图7南京长江隧道示意图和盾构掘进施工2.4上海外滩地下道路隧道工程2007年,上海外滩道路隧道(3来3去6车道)开工建设,其北段1098m为盾构隧道,采用φ14.27m土压平衡盾构施工[6],为国内首次采用大直径土压平衡盾构在城市密集区施工,成功完成“1桥2隧33栋”等建构筑物的穿越施工,浦江饭店桩基与盾构边线仅1.7m,见图8所示。隧道的最小覆土厚度仅为8.52m,约为0.6D,属于浅覆土施工。外滩隧道于2010年3月28日建成运营,缓解了交通拥堵,改善了外滩景观。擁締凤袜备訊顎轮烂蔷。图8外滩道路隧道示意图和穿越建筑物施工2009年,上海虹桥综合交通枢纽迎宾三路隧道工程(双层3来3去6车道)开工建设,又一次采用φ14.27m土压平衡盾构,盾构成功穿越七莘路高架、北横泾、机场滑行道、机场主跑道、机场航油管、停机坪、101铁路及历史保护建筑物,掘进长度1862m。迎宾三路隧道于2011年3月22日全线贯通。贓熱俣阃歲匱阊邺镓騷。近6年来,我国超大直径盾构隧道建成通车运营5项,其中上海4项,南京1项,采用盾构掘进机6台,掘进长度达37km,见表2。接近了国外20年来超大直径隧道工程的总长度43.7km。坛摶乡囂忏蒌鍥铃氈淚。表2我国超大直径盾构隧道工程一览表
工程名称盾构直径、机型隧道长度(km)埋深(m)建设时间上海上中路隧道军工路隧道1台14.89m泥水盾构1.25×21.525×223-432005-20092008-2010上海长江隧道2台15.43m泥水盾构7.47×223-552005-2009南京长江隧道2台14.9m泥水盾构3.835×2562005-2010上海外滩道路隧道迎宾三路隧道1台14.27m土压盾构1.0981.6822007-20102009-2011杭州钱江隧道1台15.43m泥水盾构3.02×22008-2011总计6台37.53目前正在施工的超大直径盾构隧道还有上海的长江西路越江隧道和虹梅南路越江隧道工程,南京纬三路过江通道工程。蜡變黲癟報伥铉锚鈰赘。1.超大直径盾构隧道工程的发展趋势3.1国外超大直径盾构隧道工程的发展趋势在超大直径盾构隧道建造方面,意大利连接佛罗伦萨和博洛尼亚A1高速公路的sparvo隧道,长2.5km,为2条3车道的隧道工程,采用1台德国海瑞克制造的φ15.55m土压盾构掘进施工,2011年始发,计划2015年建成通车。買鲷鴯譖昙膚遙闫撷凄。美国西雅图金郡拟修建一条长3.5km的大直径地下道路隧道(SR99),预计2011开始施工,2015年通车,盾构隧道直径为16.5m,为上下双层二来二去四车道隧道,见图9所示。隧道工程采用日本日立造船公司制造的φ17.52m土压盾构掘进施工。綾镝鯛駕櫬鹕踪韦辚糴。图9西雅图地下道路隧道剖面图俄罗斯圣彼得堡穿越涅瓦河的奥洛夫斯基隧道,设计为双层三来三去六车道隧道,将采用德国海瑞克公司制造的世界最大直径的φ19.25m混合型盾构掘进施工。盾构将在2013年春季始发,计划于2016年建成运营。驅踬髏彦浃绥譎饴憂锦。拟建的白令海峡海底隧道长103km,可以从俄罗斯的西伯利亚连接美国的阿拉斯加。白令海峡长约60km,宽35~86km,平均水深42m,最大水深52m。海底隧道将包括一条高速铁路和一条高速公路、多条输油管道,海底隧道将由俄罗斯和美国、加拿大共同修建,拟采用19.2m盾构掘进机施工。隧道建成后将形成从伦敦到纽约跨越四分之三个地球的终极铁路。猫虿驢绘燈鮒诛髅貺庑。
随着盾构隧道断面的增大,单管双层隧道结构已成为发展趋势。西雅图的地下道路为双层二来二去四车道,外径16.5m;奥洛夫斯基隧道为双层三来三去六车道隧道,外径18.7m。双层车行隧道具有断面有效利用率高、工程成本低的优点,成为发展方向。盾构制造技术的发展,为超大直径隧道提供了基础。从14m直径到15m,经历了10年,从15m发展到16m、17m、19m,仅不到5年时间。直径15m的隧道断面积为178m²,而直径19m的隧道断面积为283²m,增大了1.5倍。锹籁饗迳琐筆襖鸥娅薔。3.2我国城市超大直径盾构隧道工程的发展趋势上海正在建设的越江道路隧道有长江西路隧道、虹梅南路隧道,均为双管3来3去6车道隧道,各采用1台超大直径盾构掘进施工。在建的地下道路隧道有位于虹桥机场地区的迎宾三路隧道,为3来3去单孔隧道。拟建的南北通道全长16km,双向6车道,大部分为地下道路,北起位于东北的中环线大柏树立交,沿曲阳路下穿公平路、黄浦江、浦东南路、浦三路、杨高路后,再出地面接中环线杨高南路立交。地下道路采用超大直径隧道、单孔双层三来三去6车道布置。構氽頑黉碩饨荠龈话骛。正在建设施工的杭州钱江隧道为双管3来3去6车道,全长4.45km,主隧道外径15m,采用1台Φ15.43m泥水盾构施工,掘进长度3245m。輒峄陽檉簖疖網儂號泶。南京的纬三路过江通道工程为穿越长江的双向双层8车道隧道,南线隧道长5290m(盾构段长3995m),北线隧道长4990m(盾构段长3688m)。隧道外径14.5m,采用2台Φ14.9m泥水盾构掘进施工,见图10所示。尧侧閆繭絳闕绚勵蜆贅。图10南京纬三路过江通道工程示意图北京的道路交通拥堵已严重影响城市的发展,修建地下道路将是解决交通拥堵有效方案。北京将开建西二环、东二环、首体南路、学院南路、台基厂大街、北辰东路等6条地下道路,总长度约30km。超大直径盾构隧道将是地下道路工程建设的首选。识饒鎂錕缢灩筧嚌俨淒。4结语超大直径盾构隧道自东京湾道路隧道于1996年建成以来,已建成工程12项,总长度80km,采用盾构18台,其中15台为泥水平衡盾构,3台为土压平衡盾构。12项工程中,道路隧道占10项,铁路隧道1项,地铁工程1项。在12项道路隧道工程中,水底隧道7项,长度约50km,占超大直径盾构隧道总长度的60%。凍鈹鋨劳臘锴痫婦胫籴。从发展趋势来看,超大直径的城市道路隧道采用双层结构因断面利用率高而成为发展方向。单孔双层4车道和6车道已在国内外多项隧道工程中成功地得到应用。拟建中的白令海峡隧道工程将采用19.2m盾构掘进机施工103km,在超大直径和超长距离盾构技术领域成为世界隧道工程史上的又一次新的挑战。恥諤銪灭萦欢煬鞏鹜錦。
参考文献:[1]张凤祥.傅德明.杨国祥.盾构隧道施工技术手册.北京:人民交通出版社,2005:657~683鯊腎鑰诎褳鉀沩懼統庫。[2]江中孚.傅德明.日本盾构隧道新技术资料汇编.上海隧道工程股份有限公司技术中心,2006:11~17硕癘鄴颃诌攆檸攜驤蔹。[3]王德中.傅德明.大直径隧道与城市轨道交通工程技术.上海:同济大学出版社,2005:67~73阌擻輳嬪諫迁择楨秘騖。[4]余暄平.沈永东.大直径隧道与城市轨道交通工程技术.上海:同济大学出版社,2005:12~24氬嚕躑竄贸恳彈瀘颔澩。[5]靳世鹤.地下工程施工与风险防范技术.上海:同济大学出版社,2007:55~58[6]周文波.丁志诚.地下工程建设与环境和谐发展.上海:同济大学出版社,2009:3~17...釷鹆資贏車贖孙滅獅赘。'
您可能关注的文档
- 国内盾构隧道工程事故案例分析范文
- 盾构隧道工程技术
- 盾构隧道工程安全风险评估(南-洛区间)
- 盾构隧道工程施工组织设计方案
- 盾构隧道工程事故案例分析和风险控制
- 隧道与洞室工程盾构隧道工程实例
- 隧道与洞室工程盾构隧道工程实例
- 《盾构隧道工程实例》PPT课件
- 隧道与洞室工程盾构隧道工程实例
- 地铁盾构隧道工程收敛观测应用研究.pdf
- 北京首例长距离不截流穿湖盾构隧道工程贯通 定稿.doc
- 盾构隧道工程控制测量技术.pdf
- 大直径软土盾构隧道工程地层沉降规律分析.pdf
- 南京长江越江盾构隧道工程项目施工风险管理.pdf
- 轨道交通盾构隧道工程施工质量验收标准.doc
- 超大直径盾构隧道工程技术发展.doc
- 隧道与洞室工程盾构隧道工程.ppt
- 超大直径盾构隧道工程技术的发展.docx