• 1.96 MB
  • 96页

框架结构毕业设计(1)

  • 96页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'目录一、前言----------------------------------1二、内容摘要------------------------------2三、设计总说明----------------------------131.建筑设计说明------------------------------132.结构设计说明------------------------------15四、设计计算书--------------------------------1.工程总体概述---------------------------------2.结构平面布置图-------------------------------------3.荷载统计------------------------------------------4.框架结构内力计算---------------------------------5.内力组合---------------------------------------6.截面设计及配筋设计-----------------------------7.板的设计-------------------------------------8.基础设计-------------------------------------9.楼梯设计-------------------------------------五、参考文献-------------------------------------六、致谢辞---------------------------------------一.前言 毕业设计是大学本科教育培养目标实现的重要阶段,是毕业前的综合学习阶段,是深化、拓宽、综合教和学的重要过程,是对大学期间所学专业知识的全面总结。本组毕业设计题目为《**市某集团办公楼框架结构设计》。在毕设前期,我温习了《结构力学》、《钢筋混凝土》、《建筑结构抗震设计》等知识,并借阅了《抗震规范》、《混凝土规范》、《荷载规范》等规范。在毕设中期,我们通过所学的基本理论、专业知识和基本技能进行建筑、结构设计,本组在校成员齐心协力、分工合作,发挥了大家的团队精神。在毕设后期,主要进行设计手稿的整理,并用电脑绘图并得到老师的审批和指正,使我圆满的完成了任务,在此表示衷心的感谢。毕业设计的三个月里,在指导老师的帮助下,经过资料查阅、设计计算、论文撰写以及外文的翻译,加深了对新规范、规程、手册等相关内容的理解。巩固了专业知识、提高了综合分析、解决问题的能力。在绘图时熟练掌握了AutoCAD,天正,及PKPM以上所有这些从不同方面达到了毕业设计的目的与要求。框架结构设计的计算工作量很大,在计算过程中以手算为主,辅以一些计算软件的校正。由于自己水平有限,难免有不妥和疏忽之处,敬请各位老师批评指正。二零零七年六月十日二内容摘要本设计主要进行了结构方案中横向框架2轴框架的抗震设计。在确定框架布局之后,先进行了层间荷载代表值的计算,接着利用顶点位移法求出自震周期,进而按底部剪力法计算水平地震荷载作用下大小,进而求出在水平荷载作用下的结构内力(弯矩、剪力、轴力)。接着计算竖向荷载(恒载及活荷载)作用下的结构内力,。是找出最不利的一组或几组内力组合。选取最安全的结果计算配筋并绘图。此外还进行了结构方案中的室内楼梯的设计。完成了平台板,梯段板,平台梁等构件的内力和配筋计算及施工图绘制。关键词:框架结构设计抗震设计Abstract Thepurposeofthedesignistodotheanti-seismicdesigninthelongitudinalframesofaxis2.Whenthedirectionsoftheframesisdetermined,firstlytheweightofeachflooriscalculated.Thenthevibratecycleiscalculatedbyutilizingthepeak-displacementmethod,thenmakingtheamountofthehorizontalseismicforcecanbegotbywayofthebottom-shearforcemethod.Theseismicforcecanbeassignedaccordingtotheshearingstiffnessoftheframesofthedifferentaxis.Thentheinternalforce(bendingmoment,shearingforceandaxialforce)inthestructureunderthehorizontalloadscanbeeasilycalculated.Afterthedeterminationoftheinternalforceunderthedeadandliveloads,thecombinationofinternalforcecanbemadebyusingtheExcelsoftware,whosepurposeistofindoneorseveralsetsofthemostadverseinternalforceofthewalllimbsandthecoterminousgirders,whichwillbethebasisofprotractingthereinforcingdrawingsofthecomponents.Thedesignofthestairsisalsobeapproachedbycalculatingtheinternalforceandreinforcingsuchcomponentsaslandingslab,stepboardandlandinggirderwhoseshopdrawingsarecompletedintheend.致谢:首先衷心的感谢我的导师石老师,在她的指导和帮助下,我得以顺利完成毕业设计的任务,虽然我本身的专业能力有限,但我想挑战一下自己,选择设计办公楼,从建筑设计到结构设计,每进一步都得到了老师的支持与鼓励。设计中遇到了太多的困难,在石老师的指导下得以克服并解决。由于设计工程量大,时间紧,任务重,不免有疏忽和差错和不足的地方,恳请领导提出宝贵意见,在此不胜感激。科技资料翻译一、科技资料原文:StructuralSystemstoresistlateralloadsCommonlyUsedstructuralSystemsWithloadsmeasuredintensofthousandskips,thereislittleroominthedesignofhigh-risebuildingsforexcessivelycomplexthoughts.Indeed,thebetterhigh-risebuildingscarrytheuniversaltraitsofsimplicityofthoughtandclarityofexpression.Itdoesnotfollowthatthereisnoroomforgrandthoughts.Indeed,itiswithsuchgrandthoughtsthatthenewfamilyofhigh-risebuildingshasevolved.Perhapsmoreimportant,thenewconceptsofbutafewyears agohavebecomecommonplaceintoday’stechnology.Omittingsomeconceptsthatarerelatedstrictlytothematerialsofconstruction,themostcommonlyusedstructuralsystemsusedinhigh-risebuildingscanbecategorizedasfollows:1.Moment-resistingframes.2.Bracedframes,includingeccentricallybracedframes.3.Shearwalls,includingsteelplateshearwalls.4.Tube-in-tubestructures.5.Tube-in-tubestructures.6.Core-interactivestructures.7.Cellularorbundled-tubesystems.Particularlywiththerecenttrendtowardmorecomplexforms,butinresponsealsototheneedforincreasedstiffnesstoresisttheforcesfromwindandearthquake,mosthigh-risebuildingshavestructuralsystemsbuiltupofcombinationsofframes,bracedbents,shearwalls,andrelatedsystems.Further,forthetallerbuildings,themajoritiesarecomposedofinteractiveelementsinthree-dimensionalarrays.Themethodofcombiningtheseelementsistheveryessenceofthedesignprocessforhigh-risebuildings.Thesecombinationsneedevolveinresponsetoenvironmental,functional,andcostconsiderationssoastoprovideefficientstructuresthatprovokethearchitecturaldevelopmenttonewheights.Thisisnottosaythatimaginativestructuraldesigncancreategreatarchitecture.Tothecontrary,manyexamplesoffinearchitecturehavebeencreatedwithonlymoderatesupportfromthestructuralengineer,whileonlyfinestructure,notgreatarchitecture,canbedevelopedwithoutthegeniusandtheleadershipofatalentedarchitect.Inanyevent,thebestofbothisneededtoformulateatrulyextraordinarydesignofahigh-risebuilding.Whilecomprehensivediscussionsofthesesevensystemsaregenerallyavailableintheliterature,furtherdiscussioniswarrantedhere.The essenceofthedesignprocessisdistributedthroughoutthediscussion.Moment-ResistingFramesPerhapsthemostcommonlyusedsysteminlow-tomedium-risebuildings,themoment-resistingframe,ischaracterizedbylinearhorizontalandverticalmembersconnectedessentiallyrigidlyattheirjoints.Suchframesareusedasastand-alonesystemorincombinationwithothersystemssoastoprovidetheneededresistancetohorizontalloads.Inthetallerofhigh-risebuildings,thesystemislikelytobefoundinappropriateforastand-alonesystem,thisbecauseofthedifficultyinmobilizingsufficientstiffnessunderlateralforces.AnalysiscanbeaccomplishedbySTRESS,STRUDL,orahostofotherappropriatecomputerprograms;analysisbytheso-calledportalmethodofthecantilevermethodhasnoplaceintoday’stechnology.Becauseoftheintrinsicflexibilityofthecolumn/girderintersection,andbecausepreliminarydesignsshouldaimtohighlightweaknessesofsystems,itisnotunusualtousecenter-to-centerdimensionsfortheframeinthepreliminaryanalysis.Ofcourse,inthelatterphasesofdesign,arealisticappraisalin-jointdeformationisessential.BracedFramesThebracedframe,intrinsicallystifferthanthemoment–resistingframe,findsalsogreaterapplicationtohigher-risebuildings.Thesystemischaracterizedbylinearhorizontal,vertical,anddiagonalmembers,connectedsimplyorrigidlyattheirjoints.Itisusedcommonlyinconjunctionwithothersystemsfortallerbuildingsandasastand-alonesysteminlow-tomedium-risebuildings.Whiletheuseofstructuralsteelinbracedframesiscommon,concreteframesaremorelikelytobeofthelarger-scalevariety.Ofspecialinterestinareasofhighseismicityistheuseofthe eccentricbracedframe.Again,analysiscanbebySTRESS,STRUDL,oranyoneofaseriesoftwo–orthreedimensionalanalysiscomputerprograms.Andagain,center-to-centerdimensionsareusedcommonlyinthepreliminaryanalysis.ShearwallsTheshearwallisyetanotherstepforwardalongaprogressionofever-stifferstructuralsystems.Thesystemischaracterizedbyrelativelythin,generally(butnotalways)concreteelementsthatprovidebothstructuralstrengthandseparationbetweenbuildingfunctions.Inhigh-risebuildings,shearwallsystemstendtohavearelativelyhighaspectratio,thatis,theirheighttendstobelargecomparedtotheirwidth.Lackingtensioninthefoundationsystem,anystructuralelementislimitedinitsabilitytoresistoverturningmomentbythewidthofthesystemandbythegravityloadsupportedbytheelement.Limitedtoanarrowoverturning,Oneobvioususeofthesystem,whichdoeshavetheneededwidth,isintheexteriorwallsofbuilding,wheretherequirementforwindowsiskeptsmall.Structuralsteelshearwalls,generallystiffenedagainstbucklingbyaconcreteoverlay,havefoundapplicationwhereshearloadsarehigh.Thesystem,intrinsicallymoreeconomicalthansteelbracing,isparticularlyeffectiveincarryingshearloadsdownthroughthetallerfloorsintheareasimmediatelyabovegrade.Thesystemhasthefurtheradvantageofhavinghighductilityafeatureofparticularimportanceinareasofhighseismicity.Theanalysisofshearwallsystemsismadecomplexbecauseoftheinevitablepresenceoflargeopeningsthroughthesewalls.Preliminaryanalysiscanbebytruss-analogy,bythefiniteelementmethod,orbymakinguseofaproprietarycomputerprogramdesignedtoconsidertheinteraction,orcoupling,ofshearwalls. FramedorBracedTubesTheconceptoftheframedorbracedorbracedtubeeruptedintothetechnologywiththeIBMBuildinginPittsburgh,butwasfollowedimmediatelywiththetwin110-storytowersoftheWorldTradeCenter,NewYorkandanumberofotherbuildings.Thesystemischaracterizedbythree–dimensionalframes,bracedframes,orshearwalls,formingaclosedsurfacemoreorlesscylindricalinnature,butofnearlyanyplanconfiguration.Becausethosecolumnsthatresistlateralforcesareplacedasfaraspossiblefromthecancroidsofthesystem,theoverallmomentofinertiaisincreasedandstiffnessisveryhigh.Theanalysisoftubularstructuresisdoneusingthree-dimensionalconcepts,orbytwo-dimensionalanalogy,wherepossible,whichevermethodisused,itmustbecapableofaccountingfortheeffectsofshearlag.Thepresenceofshearlag,detectedfirstinaircraftstructures,isaseriouslimitationinthestiffnessofframedtubes.Theconcepthaslimitedrecentapplicationsofframedtubestotheshearof60stories.Designershavedevelopedvarioustechniquesforreducingtheeffectsofshearlag,mostnoticeablytheuseofbelttrusses.Thissystemfindsapplicationinbuildingsperhaps40storiesandhigher.However,exceptforpossibleaestheticconsiderations,belttrussesinterferewithnearlyeverybuildingfunctionassociatedwiththeoutsidewall;thetrussesareplacedoftenatmechanicalfloors,mushtothedisapprovalofthedesignersofthemechanicalsystems.Nevertheless,asacost-effectivestructuralsystem,thebelttrussworkswellandwilllikelyfindcontinuedapprovalfromdesigners.Numerousstudieshavesoughttooptimizethelocationofthesetrusses,withtheoptimumlocationverydependentonthenumberoftrussesprovided.Experiencewouldindicate,however,thatthelocationofthesetrussesisprovidedbytheoptimizationofmechanicalsystemsandbyaestheticconsiderations,astheeconomicsofthestructuralsystemis nothighlysensitivetobelttrusslocation.Tube-in-TubeStructuresThetubularframingsystemmobilizeseverycolumnintheexteriorwallinresistingover-turningandshearingforces.Theterm‘tube-in-tube’islargelyself-explanatoryinthatasecondringofcolumns,theringsurroundingthecentralservicecoreofthebuilding,isusedasaninnerframedorbracedtube.Thepurposeofthesecondtubeistoincreaseresistancetooverturningandtoincreaselateralstiffness.Thetubesneednotbeofthesamecharacter;thatis,onetubecouldbeframed,whiletheothercouldbebraced.Inconsideringthissystem,isimportanttounderstandclearlythedifferencebetweentheshearandtheflexuralcomponentsofdeflection,thetermsbeingtakenfrombeamanalogy.Inaframedtube,theshearcomponentofdeflectionisassociatedwiththebendingdeformationofcolumnsandgirders(i.e,thewebsoftheframedtube)whiletheflexuralcomponentisassociatedwiththeaxialshorteningandlengtheningofcolumns(i.e,theflangesoftheframedtube).Inabracedtube,theshearcomponentofdeflectionisassociatedwiththeaxialdeformationofdiagonalswhiletheflexuralcomponentofdeflectionisassociatedwiththeaxialshorteningandlengtheningofcolumns.Followingbeamanalogy,ifplanesurfacesremainplane(i.e,thefloorslabs),thenaxialstressesinthecolumnsoftheoutertube,beingfartherformtheneutralaxis,willbesubstantiallylargerthantheaxialstressesintheinnertube.However,inthetube-in-tubedesign,whenoptimized,theaxialstressesintheinnerringofcolumnsmaybeashigh,orevenhigher,thantheaxialstressesintheouterring.Thisseeminganomalyisassociatedwithdifferencesintheshearingcomponentofstiffnessbetweenthetwosystems.Thisiseasiesttounder-standwheretheinnertubeisconceivedasabraced(i.e,shear-stiff)tubewhiletheoutertubeisconceivedasaframed(i.e,shear-flexible)tube. CoreInteractiveStructuresCoreinteractivestructuresareaspecialcaseofatube-in-tubewhereinthetwotubesarecoupledtogetherwithsomeformofthree-dimensionalspaceframe.Indeed,thesystemisusedoftenwhereintheshearstiffnessoftheoutertubeiszero.TheUnitedStatesSteelBuilding,Pittsburgh,illustratesthesystemverywell.Here,theinnertubeisabracedframe,theoutertubehasnoshearstiffness,andthetwosystemsarecouplediftheywereconsideredassystemspassinginastraightlinefromthe“hat”structure.Notethattheexteriorcolumnswouldbeimproperlymodelediftheywereconsideredassystemspassinginastraightlinefromthe“hat”tothefoundations;thesecolumnsareperhaps15%stifferastheyfollowtheelasticcurveofthebracedcore.Notealsothattheaxialforcesassociatedwiththelateralforcesintheinnercolumnschangefromtensiontocompressionovertheheightofthetube,withtheinflectionpointatabout5/8oftheheightofthetube.Theoutercolumns,ofcourse,carrythesameaxialforceunderlateralloadforthefullheightofthecolumnsbecausethecolumnsbecausetheshearstiffnessofthesystemisclosetozero.Thespacestructuresofoutriggergirdersortrusses,thatconnecttheinnertubetotheoutertube,arelocatedoftenatseverallevelsinthebuilding.TheAT&Theadquartersisanexampleofanastonishingarrayofinteractiveelements:1.Thestructuralsystemis94ft(28.6m)wide,196ft(59.7m)long,and601ft(183.3m)high.2.Twoinnertubesareprovided,each31ft(9.4m)by40ft(12.2m),centered90ft(27.4m)apartinthelongdirectionofthebuilding.3.Theinnertubesarebracedintheshortdirection,butwithzeroshearstiffnessinthelongdirection.4.Asingleoutertubeissupplied,whichencirclesthebuilding perimeter.5.Theoutertubeisamoment-resistingframe,butwithzeroshearstiffnessforthecenter50ft(15.2m)ofeachofthelongsides.6.Aspace-trusshatstructureisprovidedatthetopofthebuilding.7.Asimilarspacetrussislocatednearthebottomofthebuilding8.Theentireassemblyislaterallysupportedatthebaseontwinsteel-platetubes,becausetheshearstiffnessoftheoutertubegoestozeroatthebaseofthebuilding.CellularstructuresAclassicexampleofacellularstructureistheSearsTower,Chicago,abundledtubestructureofnineseparatetubes.WhiletheSearsTowercontainsninenearlyidenticaltubes,thebasicstructuralsystemhasspecialapplicationforbuildingsofirregularshape,astheseveraltubesneednotbesimilarinplanshape,Itisnotuncommonthatsomeoftheindividualtubesoneofthestrengthsandoneoftheweaknessesofthesystem.Thisspecialweaknessofthissystem,particularlyinframedtubes,hastodowiththeconceptofdifferentialcolumnshortening.Theshorteningofacolumnunderloadisgivenbytheexpression△=ΣfL/EForbuildingsof12ft(3.66m)floor-to-floordistancesandanaveragecompressivestressof15ksi(138MPa),theshorteningofacolumnunderloadis15(12)(12)/29,000or0.074in(1.9mm)perstory.At50stories,thecolumnwillhaveshortenedto3.7in.(94mm)lessthanitsunstressedlength.Whereonecellofabundledtubesystemis,say,50storieshighandanadjacentcellis,say,100storieshigh,thosecolumnsneartheboundarybetween.thetwosystemsneedtohavethisdifferentialdeflectionreconciled.Majorstructuralworkhasbeenfoundtobeneededatsuchlocations. Inatleastonebuilding,theRialtoProject,Melbourne,thestructuralengineerfounditnecessarytoverticallypre-stressthelowerheightcolumnssoastoreconcilethedifferentialdeflectionsofcolumnsincloseproximitywiththepost-tensioningoftheshortercolumnsimulatingtheweighttobeaddedontoadjacent,highercolumns.二、原文翻译:抗侧向荷载的结构体系常用的结构体系若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。确实,较好的高层建筑普遍具有构思简单、表现明晰的特点。这并不是说没有进行宏观构思的余地。实际上,正是因为有了这种宏观的构思,新奇的高层建筑体系才得以发展,可能更重要的是:几年以前才出现的一些新概念在今天的技术中已经变得平常了。如果忽略一些与建筑材料密切相关的概念不谈,高层建筑里最为常用的结构体系便可分为如下几类:1.抗弯矩框架。2.支撑框架,包括偏心支撑框架。3.剪力墙,包括钢板剪力墙。4.筒中框架。5.筒中筒结构。6.核心交互结构。7.框格体系或束筒体系。特别是由于最近趋向于更复杂的建筑形式,同时也需要增加刚度以抵抗几力和地震力,大多数高层建筑都具有由框架、支撑构架、剪力墙和相关体系相结合而构成的体系。而且,就较高的建筑物而言,大多数都是由交互式构件组成三维陈列。将这些构件结合起来的方法正是高层建筑设计方法的本质。其结合方式需要在考虑环境、功能和费用后再发展,以便提供促使建筑发展达到新高度的有效结构。这并不是说富于想象力的结构设计就能够创造出伟大建筑。正 相反,有许多例优美的建筑仅得到结构工程师适当的支持就被创造出来了,然而,如果没有天赋甚厚的建筑师的创造力的指导,那么,得以发展的就只能是好的结构,并非是伟大的建筑。无论如何,要想创造出高层建筑真正非凡的设计,两者都需要最好的。虽然在文献中通常可以见到有关这七种体系的全面性讨论,但是在这里还值得进一步讨论。设计方法的本质贯穿于整个讨论。设计方法的本质贯穿于整个讨论中。抗弯矩框架抗弯矩框架也许是低,中高度的建筑中常用的体系,它具有线性水平构件和垂直构件在接头处基本刚接之特点。这种框架用作独立的体系,或者和其他体系结合起来使用,以便提供所需要水平荷载抵抗力。对于较高的高层建筑,可能会发现该本系不宜作为独立体系,这是因为在侧向力的作用下难以调动足够的刚度。我们可以利用STRESS,STRUDL或者其他大量合适的计算机程序进行结构分析。所谓的门架法分析或悬臂法分析在当今的技术中无一席之地,由于柱梁节点固有柔性,并且由于初步设计应该力求突出体系的弱点,所以在初析中使用框架的中心距尺寸设计是司空惯的。当然,在设计的后期阶段,实际地评价结点的变形很有必要。支撑框架支撑框架实际上刚度比抗弯矩框架强,在高层建筑中也得到更广泛的应用。这种体系以其结点处铰接或则接的线性水平构件、垂直构件和斜撑构件而具特色,它通常与其他体系共同用于较高的建筑,并且作为一种独立的体系用在低、中高度的建筑中。三.建筑设计说明部分一、工程概况:1、工程名称:泰安市某集团办公楼;2、工程位置:泰安市;3、工程总面积:4562㎡,主楼85,高19.09m,每层层高3.6m 4、结构形式:现浇整体框架。二、建筑物功能与特点:该拟建的建筑位于泰安市市内,设计内容:此楼为办公楼,此建筑占地面积912.4m2,总建筑面积为4562m21、平面设计建筑朝向为南北向,平面布置满足长宽比小于5,采用纵向3.9m、横向6.0m、2.4m、6.0m的柱距,满足建筑开间模数和进深的要求。2、立面设计该建筑立面为了满足采光和美观需求,设置了大面积的玻璃窗。外墙面根据《98J1——工程做法》选用面砖饰面,不同分隔区采用不同的颜色区隔,以增强美感。3、防火防火等级为二级,安全疏散距离满足房门至外部出口或封闭楼梯间最大距离小于35m,大房间设前后两个门,小房间设一个门,满足防火要求;室内消火栓设在走廊两侧,每层两侧及中间设3个消火栓,最大间距25m,满足间距50m的要求。4、抗震建筑的平立面布置规则,建筑的质量分布和刚度变化均匀,楼层没有错层,满足抗震要求。5、屋面屋面形式为平屋顶;平屋顶排水坡度为2%,排水坡度的形式为垫置坡度,排水方式为内排水。屋面做法采用《98J1——工程做法》中柔性防水,聚苯乙烯泡沫塑料板保温层屋面。三、设计资料(一)、自然条件1、工程地质条件:详见地质勘查报告。2、抗震设防:7度3、防火等级:二级4、建筑物类型:乙类 5、基本风压:W20=0.40KN/m,主导风向:西北风6、基本雪压:S20=0.35KN/m7、冻土深度:-0.6m8、地下水位:最低:-1.7m最高:-1.5m9、气象条件:年平均温度:12oC最高温度:42oC最低温度:-12oC年总降雨量:710mm10、楼面活荷:办公室:2.0KN/m2;走道:2.0KN/m2。(二)、工程做法1、屋面做法——高聚物改性沥青卷材防水①4厚高聚物改性沥青卷材防水层(带砂、小片石,作为保护层)②20厚1:3水泥砂浆层找平层③1:6水泥焦渣找2%坡,最薄处30厚④50厚聚苯乙烯泡沫塑料板保温层⑤钢筋混凝土基层2、楼面做法(1)房间、走道楼面——现制水磨石①12厚1:2.5水泥磨石楼面磨光打蜡②素水泥浆结合层一道③20厚1:3水泥砂浆找平层,上卧分隔条。④40厚C20细石混凝土垫层(后浇层)⑤钢筋混凝土楼板(2)卫生间楼面——铺地砖①8厚地砖楼面,干水泥擦缝②撒素水泥面(洒适量清水)③20厚1:4干硬性水泥砂浆结合层④60厚C20细石混凝土向地漏找平,最薄处30厚⑤聚氨酯三遍涂膜防水层厚1.5~1.8或用其他防水涂料防水层,防水层周边卷起高150⑥20厚1:3水泥砂浆找平层,四周抹小八字角⑦现浇钢筋混凝土楼板 (3)内外墙面做法——纸筋(麻刀)灰墙面①刷内墙涂料②2厚纸筋(麻刀)灰抹面③9厚1:3石灰膏砂浆④5厚1:3:9水泥石膏砂浆打底划出纹理⑤加气混凝土界面处理剂一道(4)散水做法:混凝土散水①50厚C15混凝土撒1:1水泥砂子,压实赶光②150厚3:7灰土垫层③素土夯实向外坡4%四.结构设计计算书一、结构布置及结构计算简图的确定,构平面布置如图1所示。000600004442100066600639003900390039003900390039007200390039003900390039003900390062300图1结构平面布置图2、确定梁柱截面尺寸:主梁:边跨(AB,CD)梁:h=(1/8~1/12)l=(1/8~1/12)×6000=750mm~500mm取h=600mm,b=(1/3~1/2)l=(1/3~1/2)×600=200~300,取b=250mm中跨(BC)梁:h=(1/8~1/12)l=(1/8~1/12)×2400=300mm~200mm 取h=400mm,b=250mm连系梁:边柱(A轴,D轴),中柱(B轴,C轴)上连系梁:h=(1/12~1/15)l=(1/12~1/15)×3900=325mm~260mm取h=400mm,b>400/4=100取b=250mm柱截面:H=4600mm,b=(1/15~1/20)H=(1/8~1/12)×4600=306mm~230mm取b×h=300mm×450mm现浇楼板厚100mm,满足h/l01≥1/503、计算简图的确定(见图2)根据地质资料,确定基础顶面离室外地面为700mm,由此求得底层层高为5.5m。各梁柱构件的线刚度经计算后列于图2,其中在求梁截面惯性矩时考虑到现浇楼板的作用,梁取I=2I0(I0为不考虑楼板翼缘作用的梁截面惯性矩)。1343AB,CD跨梁:i2E0.250.60/61510Em121343BC跨梁:i2E0.250.4/2.411.1110Em121343中部各层柱:iE0.300.45/3.66.3310Em121343首层柱:iE0.30.45/4.64.9510Em121511.1156.336.336.336.331511.11536006.336.336.336.3331511.1156006.336.336.336.331511.11536006.336.336.336.3331511.1156004.954.954.954.954600注:图中数字为线刚度,单位:×10-4Em3Ec=3.25×104N/mm2Eb=3.00×104N/mm2图2:结构计算简图 二、荷载计算1、恒载计算(1)屋面框架梁线荷载标准值:三毡四油上铺小石子防水层0.35KN/m220厚1:3水泥砂浆层找平层0.02×20=0.4KN/m2120厚膨胀珍珠岩保温层0.12×7=0.84KN/m2100厚现浇钢筋混凝土楼板0.1×25=2.5KN/m2装饰层:15厚纸筋石灰抹底0.015×16=0.24KN/m22屋面恒载:4.33KN/m边跨(AB、CD跨)框架梁自重0.25×0.6×25=3.75KN/m2梁侧粉刷2×(0.6-0.1)×0.02×17=0.34KN/m2中跨框架梁自重0.25×0.4×25=2.5KN/m2梁侧粉刷2×(0.4-0.1)×0.02×17=0.2KN/m2因此,作用在顶层框架梁上的线荷载为:(图3)g5AB1=g5CD1=4.09KN/mg5BC1=2.7KN/mg5AB2=g5CD2=4.33×3.9=16.89KN/mg5CD2=4.33×2.4=10.39KN/m(2)楼面框架梁线荷载标准值20厚水泥砂浆面层0.02×20=0.40KN/m2100厚现浇钢筋混凝土楼板0.1×25=2.5KN/m215厚纸筋石灰抹底0.015×16=0.24KN/m2楼面恒载3.14KN/m2边跨(AB、CD跨)框架梁自重及梁侧粉刷4.09KN/m边跨填充墙自重0.24×(3.6-0.6)×19=13.68KN/m墙面粉刷(3.6-0.6)×0.02×2×17=2.04KN/m中跨框架梁自重及梁侧粉刷2.7KN/m 因此,作用在中间层框架梁上的线荷载为(图3):gAB1=gCD1=4.09+15.72=19.81KN/mgBC1=2.7KN/mgAB2=gCD2=3.14×3.9=12.25KN/mgBC2=3.14×2.4=7.54KN/m(3)、屋面框架节点集中荷载标准值边柱连系梁自重0.25×0.40×3.9×25=9.75KN粉刷0.02×(0.4-0.10)×2×3.9×17+0.25×0.02×3.9×17=1.13KN600高女儿墙自重0.6×3.9×0.24×19=10.67KN粉刷0.6×0.02×2×3.9×17+0.28×0.02×3.9×17=1.96KN连系梁传来屋面自重1/2×3.9×1/2×3.9×4.33=16.46KN顶层边节点集中荷载G5A=G5D=112.87KN中柱连系梁自重及粉刷9.75+0.796=10.55KN连系梁传来屋面自重1/2×(1.5+3.9)×2.4/2×4.33=16.46KN顶层中节点集中荷载G5B=G5C=41.04KN(4)楼面框架节点集中荷载标准值边柱连系梁自重及粉刷9.75+1.13=10.88KN塑钢窗自重2.1×2.2×0.45=2.08KN窗下墙自重0.24×1.0×3.6×19=16.42KN粉刷0.02×2×1×3.6×17=2.45KN窗边墙自重1.5×(3.6-1.0-0.6)×0.24×19=15.05KN粉刷0.02×2×1.5×2.2×17=2.24KN连系梁传来楼面自重1/2×3.9×1/2×3.9×3.14=11.94KN框架柱自重0.3×0.45×3.6×25=12.15KN粉刷【(0.3+0.45)×2-3×0.24】×0.02×3.6×17=0.95KN外贴面砖0.08×0.5×3.3×19.8=2.61KN中间层边节点集中荷载GD=73.98KN 中间柱连系梁自重及粉刷9.75+0.8=10.55KN内纵墙自重3.6×(3.6-0.4)×0.24×19=52.53KN粉刷3.6×3.2×2×0.02×17=7.83KN扣除门洞重加上门重-2.4×1.0×(5.24-0.2)=-12.10KN框架梁传来屋面自重1/2×3.9+3.9-2.4)×1/2×2.14×3.14=10.17KN1/2×3.9×1/2×3.9×2.14=11.94KN框架柱自重12.15KN粉刷0.95KN中间层中节点集中荷载GB=GC=94.02KN(5)恒载作用下结构计算简图(图3)2、楼面活荷载计算楼面活荷载作用下结构计算简图如图4所示。图中各荷载计算如下:(1)、屋顶板的活荷载标准值p5AB=p5CD=0.5×3.9=1.95KN/mp5BC=0.5×2.4=1.2KN/m(2)、楼面板的活荷载标准值pAB=pCD=2.0×3.9=7.8KN/mpBC=2.0×2.4=4.8KN/m图3:恒载作用下结构计算简图图4:活荷载作用下结构计算简图 4.092.74.092.01.22.0113919.814419.813.7.834.83.7.8.9.12.719.9.559.0.0922744719.819919.8177.7.814.817.877342.743644.6......0980202980887.77319.8192.7919.817367.814.8147.8.6.4.4..4..98009008228877719.8119.817.67.84.87.8.3942.794314146.9.....800980808227777....739976666.4439...8009528(3)、屋顶框架节点集中荷载标准值由连系梁传来的屋面活荷载P5A=P5D=1/2×3.9×1/2×3.9×0.5=1.90KNP5B=P5C=1/2×(1.5+3.9)×2.4/2×0.5+1/4×3.9×3.9×0.5=3.52KN(4)、楼面框架节点集中荷载标准值楼面连系梁传来的楼面活荷载PA=PD=1/2×3.9×1/2×3.9×2=7.6KNPB=PC=1/2×(1.5+3.9)×2.4/2×2+1/4×3.9×3.9×2=14.08KN3、风荷载计算风压标准值计算公式为wk=βzμsμzw0因结构高度H=18.6m<30m,B=14.4,H/B=1.29<1.5,可取βz=1.0μz可查荷载规范,按地面粗糙程度和建筑物离地面高度确定。地面粗糙程度为B类,通过插入法求得。表1离地面高度(m)51015204.057.6511.2514.8518.45风压高度系数μz1.01.01.141.251.01.01.0351.1361.216 对于矩形平面μs=1.3;将风荷载换算成作用于框架每层节点上的集中荷载,计算过程如表2所示。表中A为一榀框架各层节点的受风面积,计算结果如图5所示。横向风荷载计算表2层次β222zμsμzw0(KN/m)WK(KN/m)A(m)FwK(KN)51.01.31.2160.40.6308.645.89741.01.31.1360.40.59114.048.57131.01.31.0350.40.23814.047.92621.01.31.00.40.52014.047.42711.01.31.00.40.414.047.301转化为集中风载:(受荷面与计算单元同)五层Fw5K=0.63×3.9×(0.6+3.6/2)=5.897KN四层Fw5K=3.6×3.9×(0.63+0.591)÷2=8.571KN三层Fw5K=3.6×3.9×(0.591+0.538)÷2=7.926KN二层Fw5K=3.6×3.9×(0.538+0.52)÷2=7.427KN一层Fw5K=3.6×3.9×(0.52+0.52)÷2=7.301KN4、风载下的位移计算(1)、计算简图,见图5。(2)、柱Kc值C30,Ec值为3.0×104N/mm柱Kc值计算表3层数截面混凝土惯性矩IcIc3EcIc(m)K(KNm)c(m2)强度等级hh(m4)2~50.3×0.45C302.28×10-36.33×11.899×10410.3×0.45C302.28×10-34.95×10-41.485×104 Fw5k=5.8970.6330.636Fw4k=8.5710.5910030.5916Fw3k=7.9260.5380030.5386Fw2k=7.4720.520030.526Fw1k=7.3010.5200460.5200图5:风荷载作用下结构计算简图(单位KN)(3)、梁Kb值73EIb3.00101111032.4m梁:K0.1410KNmbl2.473EIb3.00101.51036.0m梁:K7.510KNmbl6.0(4)、K及的值K及的值表4K12bKDK(kN/m)K(一般层)(一般层)c22Khc2+K层柱类型根数Kb0.5KK(底层)(底层)Kc2+K边柱15/4.95=3.030.7027564(15+11.1)底层中柱0.794854.84/4.95=5.27∑D1610.8二三15*2/(2*6.33)边柱0.54949.54四五=2.37 层(15+11.1)*2/中柱0.671178.14(2*6.33)=4.12∑D2127.6三、荷载作用下的框架内力分析荷载取设计值,它等于荷载标准值乘以相应的荷载分项系数。1、竖向恒载作用下的内力计算竖向恒载作用下的内力计算采用力矩二次分配法。(1)、荷载简化梁上分布荷载由矩形和梯形两部分组成,在求固端弯矩时,将梯形分布荷载及三角形荷载化作等效均布荷载。顶层:AB,CD跨(α=1.95/6.0=0.325)"23gg(12)g5AB5CD15AB2234.09(120.3250.325)16.8917.99KN/mBC跨"55ggg2.710.3913.09KN/m5BC5BC15BC2881~4层:AB,CD跨(α=1.95/6.0=0.325)"23gg(12)g5AB5CD15AB2234.09(120.3250.325)16.8917.99KN/mBC跨"55ggg2.710.3913.09KN/m5BC5BC15BC288(3)、弯矩分配系数弯矩分配系数表5构件名称转动刚度S(KN·m)相对转动刚度框架梁边跨4Kb=4×15×103=60×1033.030中跨4Kb=2×11.1×103=22.2×1031.21框架柱边跨4Kc=4×14.95×103=19.8×1031.000 中跨4Kc=4×6.33×103=25.32×1031.279各节点杆件分配系数见下表:各节点杆件分配系数表6节点[左梁右梁上柱下柱61.279+3.030=4.3090.7030.2973,4,51.279+3.030+1.279=5.5880.5420.2290.22921.279+3.030+1.000=5.3090.5710.2410.188123.030+1.121+1.279=5.430.5880.2060.2369,10,113.030+1.279+1.21+1.279=6.7090.4520.1660.1910.19183.030+1.279+1.121+1.000=6.430.4710.1780.1990.156(4)、杆件固端弯矩固端弯矩计算表7AB跨BC跨固端弯矩固端弯矩简图简图MF=MJ(KN/m)MF=MK(KN/m)1顶21.59KN/21/3×15.71×1.2212×21.59×6.0=15.71KN/m层m=7.5464.77中11/3×8.5×1.22=17KN/m12×17×6.62=518.5KN/m层4.08(5)、杆件固端弯矩分配与传递上柱下柱右梁左梁上柱下柱右梁 0.2970.7030.5580.2360.206-64.7764.77-7.5419.2445.5331.93-13.511.795.85-15.9722.77-4.483.037.81-10.20-4.32-3.7728.1-28.145.41-21.9-23.10.2290.2290.5420.4520.1910.1910.166-5151-4.0811.6811.6827.64-21.21-8.96-8.96-7.795.845.84-10.6113.82-6.78-4.48-1.11-1.11-2.63-1.16-0.49-4.32-0.4220.1916.41-36.642.45-16.23-14.18-11.790.2290.2290.5420.4520.1910.1910.166-5151-4.0811.6811.6827.64-21.21-8.96-8.96-7.795.845.84-10.6113.82-4.48-4.48-0.25-0.25-0.057-2.20-0.93-0.93-0.8017.2717.27-34.5441.41-14.62-14.62-12.170.2290.2290.5420.4520.1910.1910.166-5151-4.0811.6811.6827.64-21.21-8.96-8.96-7.295.846.15-10.6113.82-4.48-4.67-0.32-0.32-0.74-2.11-0.89-0.89-0.7817.217.51-34.7141.5-14.33-14.77-12.150.2410.1880.5710.4520.1910.1910.166-5151-4.0812.299.5929.12-22.10-9.34-7.32-8.165.84-10.6114.56-4.48-4.481.260.982.97-4.75-2.01-1.57-1.7519.3910.5629.9538.71-15.83-8.89-13.995.28-4.45图6恒载力矩分配与传递1传递系数:远端固定,传递系数为2远端滑动铰质,传递系数为-1。弯矩分配:恒载作用下,框架的弯矩分配计算见图6,框架的弯矩见图7;活载作用下,框架的弯矩分配计算见图,框架的弯矩见图。在竖向荷载作用下,考虑框架梁端的塑性内力分布,取弯矩调幅系数为0.8,调幅后,恒载及活载弯矩图见恒载作用下框架弯矩图及活载用框架弯矩图内数值。求得杆端内力后,通过静力平衡条件,可求得相应的剪力和轴力,见图8,9,10。梁端剪力及柱轴力计算梁端剪力V=Vq+Vm1式中:Vq——梁上均布荷载引起的剪力,Vq=2ql;M-M左右Vm——梁端弯矩引起的剪力,Vm=l 柱轴力N=V+P式中:V——梁端剪力;P——节点集中力及柱自重。下图为恒载下框架弯矩图6图6恒载下框架弯矩图2、竖向活荷载作用下的内力计算(1)荷载简化"2323p(12)p(120.3250.325)1.951.60KN/m5AB5CD"55pp1.20.75KN/m8GF8GF88"2323p(12)g(120.3250.325)7.86.42KN/mABAB"55pp4.83.0KN/mBCBC88 图7调幅后恒载下框架弯矩图(2)杆件固端弯矩固端弯矩计算表8AB跨BC跨固端弯矩固端弯矩简图简图M0=MJ(KN/m)MJ=MK(KN/m)211/3×1.05×1.2=2.44KN/m12×2.44×6.02=6.721.05KN/m0.5121/3×4.2×1.22=8.99KN/m12×8.99×6.0=4.2KN/m2.0226.994、风载下内力计算风荷载作用下的结构计算如图5所示。内力计算采用D值法,计算过程见图和图,其中可通过有关表格查得反弯点高度y0。风荷载下的弯矩图见图。柱轴力和梁剪力图见图9、图10 0.2970.7030.5580.2360.206-6.726.72-0.51.9894.708-2.963-1.253-1.0943.085-1.7292.018-2.035-1.0940.525-0.9540.0095-0.0040.00354.684.684.80-3.27-1.530.2290.2290.5420.4520.1910.1910.166-26.95-26.95-2.026.1726.17214.607-9.632-4.07-4.07-3.5380.9953.086-5.6196.280.6272.0350.3520.3520.833-4.042-1.708-1.708-1.4847.519.61-17.1215.71-5.15-3.75-6.810.2290.2290.5420.4520.1910.1910.166-26.95-26.95-2.026.1726.17214.607-9.632-4.07-4.07-3.5382.6452.645-4.8166.28-2.035-2.035-0.109-0.109-0.257-4.042-1.708-1.708-0.3677.837.83-15.6618.7-6.50-6.50-5.700.2290.2290.5420.4520.1910.1910.166-26.95-26.95-2.026.1726.17214.607-9.632-4.07-4.07-3.5382.6452.645-4.8166.28-2.035-2.121-0.14-0.14-0.332-0.96-0.406-0.406-1.4847.807.93-15.7318.79-6.5-6.60-5.690.2410.1880.5710.470.1990.1560.174-26.95-26.95-2.025.5674.34313.19-10.037-4.241-3.324-3.7092.6456-5.01965.95-2.037-0.874-0.682-2.085-2.148-0.907-0.711-0.7937.349.66-16.1017.51-7.18-4.04-6.294.83-2.02图8活载弯矩分配图(KN/m) 43.1162.067.3414.5243.1143.5262.0661.007.3414.5243.0243.5262.0661.007.2514.6243.1343.6061.9061.018.0113.8543.5061.1746.8066.837.7614.1147.2166.07ABCD图9:恒载下梁的剪力图(KN)109.84135.25135.25109.84125.56150.97150.97125.56248.64310.27310.27248.64264.36325.99325.99264.36387.27486.46486.46387.27402.99502.18502.18402.99525.92662.63662.63525.92541.64678.35678.35541.64677.38838.13838.13677.38697.47697.47858.22858.22ABCD图10:恒载下柱的轴力图(KN) 图12:活荷载作用下的弯矩图(KNm)图12:活荷调幅后的弯矩图(KNm) 图13:活荷载下梁的剪力图(KN)图14:活荷载下柱的轴力图(KN) 四、风荷载作用下的内力计算:设计值×1.4(1)风荷载的计算简图见下图所示,其计算采用D值法,计算过程见下表8层力总Fwk(KN)KaD(KN/m)总D(KN/m)V=D/总D*号总Fwk边2.370.5494951.8458.256柱42552中4.120.67117812.29柱边2.370.5494954.52420.255柱42552中4.120.67117815.60柱边2.370.5494956.99331.352柱42552中4.120.67117818.69柱边2.370.5494959.31241.749柱42552中4.120.671178111.56柱边3.030.702756012.21151.974柱32216中5.270.794854813.79柱(2)求反弯点高度:由本结构的风荷载简图知其分布接近于均布荷载.故Y0由<<工民建专业毕业设计手册>>(杨志勇主编,武汉工业大学出版社)中的表5-2-4查得.本结构的各层横梁的 线刚度相同.则Y1=Y2=Y3=0.因此柱底至反弯点高度YH=Y0H.计算反弯点高度见下表:9表:9反弯点高度Y0H层号柱号KY0YH=Y0H边柱2.370.4191.515中柱4.120.451.62边柱2.370.451.624中柱4.120.51.8边柱2.370.51.83中柱4.120.51.8边柱2.370.51.82中柱4.120.51.8边柱3.030.552.531中柱5.270.552.533.风荷载作用下的框架内力计算过程求的各柱的反弯点高度YH和杆端剪力Vjk后,即可求的各杆端弯矩.再根据节点平衡条件求得梁端弯矩.例如5层边柱:M51=V51×Y51;M52=V51×(H-Y51)梁端弯矩与其线刚度成正比对于中柱:Mb左=(Mij上+Mij下)Ib左/(Ib左+Ib右)Mb右=(Mij上+Mij下)Ib右/(Ib左+Ib右)对于边柱Mb=Mij上+Mij下风荷载作用下的弯矩图剪力图.轴力图如下 2.603.854.533.851.931.622.788.9511.093.7111.7311.0914.217.3212.5815.641.89.0710.520.9612.5816.7620.8129.3415.6415.4928.3816.7625.9028.5520.8120.9842.6631.6534.89ABCD图17:风荷载下弯矩图(KNm) 0.971.611.842.290.640.973.375.244.525.62.514.345.698.756.998.695.5710.038.3812.99.3111.5610.0918.4111.8417.4812.5213.7915.7330.25ABCD图18:风荷载下柱的轴力和梁的剪力图四、地震作用下荷载计算本设计仅考虑水平地震作用即可,并可采用基底剪力法计算水平地震作用力。由于该结构的刚度比较均匀,可取一个计算单元进行计算。1、分层计算重力荷载代表值:第五层GE5值为整个框架结构第五层上半层以上所有构件的重量及活荷载的重量,一到四层类同.各层重力荷载代表值为:G5=框架梁及自重+屋面自重+女儿墙自重+女儿墙粉刷+柱的自重+窗及窗下墙+连系梁自重+活荷载=4.09×6.0×2+2.7×2.4+4.33×3.9×(6×2+2.9)+(10.67+1.96)+0.3×0.45×3.6×25/2×4+(0.24×3.6×3.9×19)÷2×2+0.02×2×3.6×3.9×17÷2×2+(2.08+16.42+2.45+15.05+2.24)÷2+4×(9.75+1.13)=486.89KNG4~2=4.09×6.0×2+2.7×2.4+3.77×3.9×(6×2+2.9)+0.3×0.45×3.6×25×4+0.95×4+2×(11.22+64.02+9.55+19.12)+4×(9.75+1.13)=571.02KNG1=4.09×6.0×2+2.7×2.4+3.77×3.9×(6×2+2.9)+0.3×0.45×(3.6+4.6)×25 ×4+0.3×0.45×4.1×0.02×17×2+2×(11.22+64.02+9.55+19.12)×(4.6/3.6)+4×(9.75+1.13)=603.21KNGE5=G5+0.5QK=486.89+0.5×(14.4×3.9/2)=500.93KNGE4=G4+0.5QK=571.02+0.5×(14.4×3.9/2)=627.18KNGE2=GE3=GE4=627.18KNGE1=G1+0.5QK=603.21+0.5×(14.4×3.9/2)=659.37KN(3)等效重力荷载对于对于层建筑,其等效重力荷载GEq=0.85GEi=0.85×(659.37+627.18×3+500.93)=2585.56KN2、自振周期计算按顶点位移法计算,考虑填充墙对刚度的影响,取基本周期调整系数α0=0.6。计算公式为T11.70T,式中T为顶点位移(单位为m),按D值法计算,见表5。横向框架顶点位移计算表9nGi层次Gi(KN)Gi(KN)Diii1(m)i(m)iD5500.93500.93425500.01180.234627.181128.11425520.02650.21823627.181755.29425500.04130.19172627.182382.47425520.05600.15041659.373041.84322160.09440.0944T1.70.80.58670.78s13、横向地震作用地震作用按7度Ⅱ类场地,地震动参数区划的特征周期分组按三组考虑,则Tg=0.45,αmax=0.08,采用底部剪力法计算。由于5Tg=2.25>T1=0.57>Tg=0.45s,故地震影响系数Tg0.9a()nmaxT1 0.9(0.45/0.57)10.080.0065计算水平地震作用力为:FEk=aGEq=0.065×2585.56=168.06KNGHiiFFinEkGiHii1由于T1<1.4Tg=1.4Tg=1.4×0.45=0.63所以不考虑顶部附加地震作用计算结果列于表6。各层地震作用及楼层地震剪力表10hiHiGiGHFiViii层次GiHi(m)(m)(KN)GiHi(KN)(KN)53.619500.939517.670.27446.0759.8943.615.4627.169658.2640.27846.76120.6833.611.8627.167400.7240.21335.83167.2623.68.2627.165142.7120.14824.9199.6314.64.6651.376081.00.08614.51218.484.横向水平地震作用下的框架内力计算荷载的计算简图见下图所示,其计算采用D值法,计算过程见下表表11层力总Fwk(KN)KaD(KN/m)总D(KN/m)V=D/总D*号总Fwk边2.370.54949513.36559.89柱42552中4.120.671178116.59柱边2.370.54949526.914120.68柱42552 中4.120.671178133.43柱边2.370.54949537.33167.26柱42552中4.120.671178146.33柱边2.370.54949544.522199.63柱42552中4.120.671178155.3柱边3.030.702756051.341218.48柱32216中5.270.794854857.9柱(2)求反弯点高度:由本结构的地震作用荷载简图知其分布接近于均布荷载.故Y0由<<工民建专业毕业设计手册>>(杨志勇主编,武汉工业大学出版社)中的表5-2-4查得.本结构的各层横梁的线刚度相同.则Y1=Y2=Y3=0.因此柱底至反弯点高度YH=Y0H.计算反弯点高度见下表:12反弯点高度Y0H表12层号柱号KY0YH=Y0H边柱2.370.4191.515中柱4.120.451.62边柱2.370.451.624中柱4.120.51.8 边柱2.370.51.83中柱4.120.51.8边柱2.370.51.82中柱4.120.51.8边柱3.030.552.531中柱5.270.552.532.603.854.533.851.931.622.788.9511.093.7111.7311.0914.217.3212.5815.641.89.0710.520.9620.8112.5816.7629.3415.6415.4928.3816.7625.9028.5520.8120.9842.6631.6534.89ABCD图21:地震作用下弯矩图(KNm) 7.811.6313.3616.593.837.821.2232.9626.9133.4315.5729.0231.3648.7237.346.3332.6660.6542.0864.259.3155.355.33102.7352.0977.744.5257.980.94154.82ABCD图22:地震作用下柱轴力和梁剪力图六、内力组合根据以上内力计算结果,即可进行各梁柱各控制截面上的内力组合,其中梁的控制截面为梁端及跨中。柱每层有两个控制截面,即柱顶和柱底。。内力组合见表13到表 表13五层横梁内力组合杆件名称A5B5B5C5截面位置A5跨中B5左B5右跨中内力种类M(KN·m)V(KN)M(KN·m)M(KN·m)V(KN)M(KN·m)V(KN)M(KN·m)恒荷载①-22.4861.8672.49-36.33-67.66-18.1818.85-14.15活荷载②-3.746.575.94-4.48-6.87-1.431.03-1.24风荷载(左风)③3.85-0.970.625-2.6-0.971.93-1.610风荷载(右风)④-3.850.97-0.6252.60.97-1.931.610水平地震作用(左向)⑤27.92-7.84.52-18.89-7.813.96-11.630水平地震作用(右向)⑥-27.927.8-4.5218.897.8-13.9611.6301.2恒载+内1.4活载+①+②+(③或④)×0.8力0.8×1.4风载-29.362.2378.93-42.89-75.31-21.1521.27-15.39组1.2恒载+合1.4活载+①+②+(⑤或⑥)1.3水平地震-54.1476.2582.95-59.7-82.33-33.7531.51-15.51 四层横梁内力组合杆件名称A4B4B4C4截面位置A4跨中B4左B4右跨中内力种类M(KN·m)V(KN)M(KN·m)M(KN·m)V(KN)M(KN·m)V(KN)M(KN·m)恒荷载①-29.2850.0244.37-34-51.98-9.4310.22-6.79活荷载②-13.726.7527.23-14.66-27.15-6.364.93-5.9风荷载(左风)③11.73-3.371.61-8.51-3.376.29-5.240风荷载(右风)④-11.733.37-1.618.513.37-6.295.240水平地震作用(左向)⑤73.82-21.2210.15-53.52-21.2239.55-32.960水平地震作用(右向)⑥-73.8221.22-10.1553.5221.22-39.5532.9601.2恒载+内1.4活载+①+②+(③或④)×0.8力0.8×1.4风载-52.3679.4972.89-55.47-81.83-20.8219.34-12.69组1.2恒载+合1.4活载+①+②+(⑤或⑥)1.3水平地震-116.897.9981.75-102.18-100.35-55.3448.11-12.69三层横梁内力组合 杆件名称A3B3B3C3截面位置A3跨中B3左B3右跨中内力种类M(KN·m)V(KN)M(KN·m)M(KN·m)V(KN)M(KN·m)V(KN)M(KN·m)恒荷载①-27.6349.8546.24-33.13-52.15-9.7410.22-7.22活荷载②-14.6226.3624.46-17.45-27.55-5.323.63-4.36风荷载(左风)③19.9-5.692.85-14.21-5.6910.5-8.750风荷载(右风)④-19.95.69-2.8514.215.69-10.58.750水平地震作用(左向)⑤110.73-31.6315.82-79.09-31.6358.46-48.720水平地震作用(右向)⑥-110.7331.63-15.8279.0931.63-58.4648.7201.2恒载+内1.4活载+①+②+(③或④)×0.8力0.8×1.4风载-58.1480.7672.98-61.9584.25-23.4620.85-11.61组1.2恒载+合1.4活载+①+②+(⑤或⑥)1.3水平地震-152.98107.8486.52-129.67-111.33-73.5262.57-11.61 二层横梁内力组合杆件名称A2B2B2C2截面位置A2跨中B2左B2右跨中内力种类M(KN·m)V(KN)M(KN·m)M(KN·m)V(KN)M(KN·m)V(KN)M(KN·m)恒荷载①-27.7749.8746.08-33.13-52.31-9.7410.22-7.22活荷载②-14.6826.3624.35-17.54-27.55-5.373.62-4.34风荷载(左风)③29.34-8.384.19-20.96-8.3815.49-12.90风荷载(右风)④-26.348.38-4.1920.968.38-15.4912.90水平地震作用(左向)⑤147.28-42.0821.05-105.18-42.0877.75-64.250水平地震作用(右向)⑥-147.2842.08-21.05105.1842.08-77.7564.2501.2恒载+内1.4活载+①+②+(③或④)×0.8力0.8×1.4风载-65.9282.9373.78-67.44-86.56-27.524.16-11.56组1.2恒载+合1.4活载+①+②+(⑤或⑥)1.3水平地震-189.73118.3191.48-155.85-121.94-92.5978.09-11.56 一层横梁内力组合杆件名称A1B1B1C1截面位置A1跨中B1左B1右跨中内力种类M(KN·m)V(KN)M(KN·m)M(KN·m)V(KN)M(KN·m)V(KN)M(KN·m)恒荷载①-23.9649.5450.6-30.96-52.46-11.9910.22-9.43活荷载②-15.0326.6525-16.34-27.25-5.874.32-5.18风荷载(左风)③42.66-11.847.14-28.38-11.8420.96-17.480风荷载(右风)④-42.6611.84-7.1428.3811.84-20.9617.480水平地震作用(左向)⑤186.41-52.0930.13-126.15-52.0993.24-77.70水平地震作用(右向)⑥-186.4152.09-30.13126.1552.09-93.2477.701.2恒载+内1.4活载+①+②+(③或④)×0.8力0.8×1.4风载-73.1285.76181.31-70.04-89.23-34.6328.52-14.61组1.2恒载+合1.4活载+①+②+(⑤或⑥)1.3水平地震-225.4128.28105.73-173.45-131.8-111.192.24-14.61 一层柱内力组合杆件名称A1A0B1B0截面位置上端下端剪力上端下端剪力内力种类MNMNVMNMNV恒荷载①10.56589.36-5.28609.45-4.41-8.89838.13-4.45858.223.7活荷载②11.27157.51-5.64157.51-3.68-4.71103.342.36103.34-1.54风荷载(左风)③-25.90-30.2531.65-30.2512.52-28.55-15.7334.89-15.7313.79风荷载(右风)④25.930.25-31.6530.25-12.5228.5515.73-34.8915.73-13.79水平地震(左向)⑤-106.27-154.82129.89-154.8251.34-119.85-80.94146.49-80.9457.9水平地震(右向)⑥106.27154.82-129.89154.82-51.34119.8580.94-146.4980.94-57.91.2恒载+①+②+④×0.8①+②+③×0.8内1.4活载+|M|max42.55771.06-36.24791.16-18.11-36.44925.7434.72948.98-8.87力0.8×1.4①+②+④×0.8①+②+④×0.8组风风载Nmax42.55771.06-36.24791.16-18.119.24954.05-21.1974.14-11.59合①+②+③×0.8①+②+③×0.8 Nmin1.11722.6614.4742.761.93-36.44925.7434.72948.98-8.871.2恒载+①+②+⑥①+②+⑤1.4活载+|M|max128.1901.69-140.81921.78-59.43-133.45860.53153.77880.6260.061.3水平①+②+⑥①+②+⑥地震Nmax128.1901.69-140.81921.78-59.43106.251022.41-139.681042.5-55.74①+②+⑤①+②+⑤Nmin-84.44592.04118.97612.1643.25-133.45860.53153.77880.6260.06二层柱内力组合杆件名称A2A1B2B1截面位置上端下端剪力上端下端剪力内力种类MNMNVMNMNV恒荷载①17.51469.76-19.39485.48-10.29-14.77662.6315.83678.358.5活荷载②9.25120.62-8.56120.62-4.95-7.779.318.3879.314.47风荷载(左风)③-16.67-18.4116.67-18.419.31-20.81-10.0920.81-10.0911.56风荷载(右风)④16.6718.41-16.6718.41-9.3120.8110.09-20.8110.09-11.56水平地震(左向)⑤-80.14-102.7380.14-102.7344.52-99.54-55.3399.54-55.3355.3 水平地震(右向)⑥80.14102.73-80.14102.73-44.5299.5455.33-99.5455.33-55.31.2恒载+①+②+④×0.8①+②+③×0.8内1.4活载+|M|max40.1605.11-41.29620.83-22.69-39.12733.8740.86749.5922.22力0.8×1.4①+②+④×0.8①+②+④×0.8组风风载Nmax40.1605.11-41.29620.83-22.69-5.82750.017.56765.733.72合①+②+③×0.8①+②+③×0.8Nmin13.28575.65-14.61591.37-7.79-39.12733.8740.86749.5922.221.2恒载+①+②+⑥①+②+⑤1.4活载+|M|max106.9693.11-108.09708.84-59.76-122.01686.61123.75702.3368.271.3水平①+②+⑥①+②+⑥地震Nmax106.9693.11-108.09708.84-59.76-122.01797.27-75.33812.99-42.33①+②+⑤①+②+⑤Nmin-53.38487.6552.19503.3879.28-122.01686.61123.75702.3368.27三层柱内力组合杆件名称A3A2B13B2截面位置上端下端剪力上端下端剪力 内力种类MNMNVMNMNV恒荷载①17.27349.83-17.2365.55-9.58-14.62486.4614.58502.184.86活荷载②9.1483.62-9.183.62-5.06-7.58-5.06-7.5855.964.21风荷载(左风)③-12.58-10.0312.58-10.036.99-15.64--5.5715.64-5.578.69风荷载(右风)④12.5810.03-12.5810.03-6.9915.64-5.57-15.645.57-8.69水平地震(左向)⑤-67.14-60.65-67.14-60.6537.3-83.39-32.6683.39-32.6646.33水平地震(右向)⑥67.1460.6567.1460.65-37.383.3932.66-83.3932.66-46.331.2恒载+①+②+④×0.8①+②+③×0.8内1.4活载+|M|max36.47441.47-36.36457.19-19.99-34.64537.9634.64553.6816.02力0.8×1.4①+②+④×0.8①+②+④×0.8组风风载Nmax36.47441.47-36.36457.19-19.99-9.69546.889.65562.62.12合①+②+③×0.8①+②+③×0.8Nmin16.35425.43-16.84441.15-9.05-34.64537.9634.64553.6816.021.2恒载+①+②+⑥①+②+⑤1.4活载+|M|max93.55494.1-93.44509.82-51.94-105.59509.76105.55525.4855.41.3水平①+②+⑥①+②+⑥地震Nmax93.55494.1-93.44509.82-51.9461.19575.08-61.23590.8-37.26 ①+②+⑤①+②+⑤Nmin-40.73372.840.84388.5222.66-105.59509.76105.55525.4855.4四层柱内力组合杆件名称A4A3B4B3截面位置上端下端剪力上端下端剪力内力种类MNMNVMNMNV恒荷载①16.41229.92-17.27245.64-9.35-14.18310.2514.62325.998活荷载②9.6146.62-9.1446.62-5.21-4.3832.67.5832.63.32风荷载(左风)③-8.95-4.347.32-4.344.52-11.09-2.519.07-2.51-5.6风荷载(右风)④8.954.34-7.324.34-4.5211.092.51-9.072.515.6水平地震(左向)⑤-53.28-29.0243.59-29.0226.91-66.19-15.5754.16-15.5733.43水平地震(右向)⑥53.2829.02-43.5929.02-26.9166.1915.57-54.1615.57-33.431.2恒载+①+②+④×0.8①+②+③×0.8内1.4活载+|M|max33.18556.55-32.27295.73-18.18-27.43340.8429.46356.5815.8力0.8×1.4①+②+④×0.8①+②+④×0.8组风风载Nmax33.18556.55-32.27295.73-18.18-9.69344.8614.69360.66.84 合①+②+③×0.8①+②+③×0.8Nmin18.86549.61-20.55288.79-10.94-27.43340.8429.46356.5815.81.2恒载+①+②+⑥①+②+⑤1.4活载+|M|max79.3582.1-70321.28-41.47-84.75327.2876.36342.4844.751.3水平①+②+⑥①+②+⑥地震Nmax79.3582.1-70321.28-41.47-84.75327.28①+②+⑤①+②+⑤Nmin-27.26524.0617.18263.2412.35-84.75327.2876.36342.4844.75五层柱内力组合杆件名称A5A4B5B4截面位置上端下端剪力上端下端剪力内力种类MNMNVMNMNV恒荷载①28.1109.84-20.19125.56-13.41-22.31135.2516.73150.9710.85活荷载②4.689.23-7.559.23-3.39-3.825.966.015.962.95风荷载(左风)③-3.85-0.972.78-0.971.84-4.53-0.643.71-0.64-2.29 风荷载(右风)④3.850.97-2.780.97-1.844.530.64-3.710.642.29水平地震(左向)⑤-27.92-7.820.54-7.813.36-32.85-3.8326.88-3.8316.59水平地震(右向)⑥27.927.8-20.547.8-13.3632.853.83-26.883.83-16.591.2恒载+①+②+④×0.8①+②+③×0.8内1.4活载+|M|max35.86119.85-29.96135.57-18.27-29.75140.725.71156.4215.63力0.8×1.4①+②+④×0.8①+②+④×0.8组风风载Nmax35.86119.85-29.96135.57-18.27-22.51141.7219.77157.4411.97合①+②+③×0.8①+②+③×0.8Nmin29.7118.29-25.52134.01-15.33-29.75140.725.71156.4215.631.2恒载+①+②+⑥①+②+⑤1.4活载+|M|max60.7126.87-48.28142.59-30.16-58.98137.3949.88153.130.391.3水平①+②+⑥①+②+⑥地震Nmax60.7126.87-48.28142.59-30.166.72145.04-4.14160.76-2.73①+②+⑤①+②+⑤Nmin4.86111.27-7.2126.99-3.44-58.98137.3949.88153.130.39注:1.弯矩单位为KNm,轴力单位为KN 七框架梁柱配筋1.横梁配筋从恒梁内力组合表中选取各截面不利内力.并转化为支座边缘控制内力.其中V1=V-(g+q)×b/2,M1=M-V1×b/2.各控制截面内力设计值见下表: 楼A支座AB跨中B支座右BC跨中BC跨中层MVMMVMVM支座-225.4128.28105.73-173.45-131.8-111.192.24-14.611截面147.4223.778.85-27.6275.38-63.16支座边缘-197.85122.43105.73-145.11-125.95-90.9989.37-14.61控制截面143.417.8573.9521.7761.8260.3支座-189.73118.3191.48-155.85-121.94-92.5978.09-11.562截面104.8334.1554.51-37.7862.64-50.41支座边缘-169.83112.4691.48-129.73-116.09-75.6475.33-11.56控制截面98.9226.3047.32551.9447.55支座-152.98107.8486.52-129.67-111.33-73.5262.57-11.613截面68.4844.5828.51-48.0743.4-34.87支座边缘-130.03101.9986.52-105.94-105.48-60.5357.71控制截面59.7619.01-42.2236.2-32.02支座-116.897.9981.75102.18-100.35-55.3448.11-12.694截面30.8455.554.86-57.9123.76-17.81支座边缘-96.0792.1481.75-80.92-94.5-45.1645.25-12.69 控制截面19.66-6.85-52.0620.4-14.95支座-34.1476.2582.95-59.7-82.33-33.5731.55-15.395截面1.760.65-22.62-66.59-5.658.25支座边缘-38.1970.8982.95-42.38-76.97-27.2727.98-15.39控制截面-10.7455.29-8.84-61.23-4.64-4.48注:1.弯矩单位为KNm,轴力单位为KN 梁配筋主梁按连续梁考虑,按弹性方法进行计算。(1)计算简图由于是框架结构,梁的计算跨度就为轴线间的距离,为6.0m和2.4m,等跨,可以根据表格计算内力。采用矩形截面梁,混凝土保护层厚度取25mm,αs=35mm.各控制截面设计配筋见下表 五层梁正截面设计截面A支座AB跨中B支座左B支座右BC跨中bf×ho或bho(mm)250×5002000×565250×500250×300250×365控制截面M(KN·m)-38.1982.95-42.38-27.27-15.39控制截面γRE·M-28.6482.95-31.79-20.46-15.39αs=γRE·M/α1fcbho²0.0320.0930.0350.080.032ξ=1-(1-2αs)½0.0330.0980.0360.090.033γs=0.5(1+1-2αs)½0.980.9950.980.9550.98As=γRE·M/γsfyho194.1556216.3190.45143.4实配钢筋3Φ124Φ283Φ123Φ122Φ12实配面积3392463339339226实际配筋率%0.270.220.270.270.248要求最小配筋率0.25和55ft/fy=0.260.2和45ft/fy=0.210.25和55ft/fy=0.260.25和55ft/fy=0.260.2和45ft/fy=0.21较大值较大值较大值较大值较大值要求最大配筋率2.5%2.5%2.5%2.5%2.5%四层梁正截面设计 截面A支座AB跨中B支座左B支座右BC跨中bf×ho或bho(mm)250×5002000×565250×500250×300250×365控制截面M(KN·m)-96.0781.75-80.92-45.16-12.69控制截面γRE·M-72.3981.75-60.09-33.87-12.69αs=γRE·M/α1fcbho²0.080.0930.0670.140.0266ξ=1-(1-2αs)½0.0830.0090.070.150.027γs=0.5(1+1-2αs)½0.960.9950.9650.920.986As=γRE·M/γsfyho502.7548415.13327117.54实配钢筋3Φ184Φ284Φ123Φ122Φ12实配面积7632463452339226实际配筋率%0.490.220.360.450.248要求最小配筋率0.25和55ft/fy=0.260.2和45ft/fy=0.210.25和55ft/fy=0.260.25和55ft/fy=0.260.2和45ft/fy=0.21较大值较大值较大值较大值较大值要求最大配筋率2.5%2.5%2.5%2.5%2.5%三层梁正截面设计截面A支座AB跨中B支座左B支座右BC跨中bf×ho或bho(mm)250×5002000×565250×500250×300250×365 控制截面M(KN·m)-130.0386.52-105.94-60.53-11.61控制截面γRE·M--97.5386.52-79.46-45.4-11.61αs=γRE·M/α1fcbho²0.1090.010.0890.190.0245ξ=1-(1-2αs)½0.1160.010.930.210.0248γs=0.5(1+1-2αs)½0.940.9950.950.90.988As=γRE·M/γsfyho691.7579.7557.6448107.32实配钢筋3Φ184Φ284Φ144Φ122Φ12实配面积7632463615452226实际配筋率%0.610.220.490.60.248要求最小配筋率0.25和55ft/fy=0.260.2和45ft/fy=0.210.25和55ft/fy=0.260.25和55ft/fy=0.260.2和45ft/fy=0.21较大值较大值较大值较大值较大值要求最大配筋率2.5%2.5%2.5%2.5%2.5%二层梁正截面设计截面A支座AB跨中B支座左B支座右BC跨中 bf×ho或bho(mm)250×5002000×565250×500250×300250×365控制截面M(KN·m)-169.8391.48-129.73-45.16-11.56控制截面γRE·M--127.3791.48-97.3-33.87-11.56αs=γRE·M/α1fcbho²0.1430.010.1090.140.024ξ=1-(1-2αs)½0.1540.010.1160.150.0246γs=0.5(1+1-2αs)½0.9230.990.940.920.988As=γRE·M/γsfyho919.97613690.1327106.85实配钢筋4Φ204Φ284Φ164Φ162Φ12实配面积12502463804804226实际配筋率%0.860.220.640.640.248要求最小配筋率0.25和55ft/fy=0.260.2和45ft/fy=0.210.25和55ft/fy=0.260.25和55ft/fy=0.260.2和45ft/fy=0.21较大值较大值较大值较大值较大值要求最大配筋率2.5%2.5%2.5%2.5%2.5%一层梁正截面设计 截面A支座AB跨中B支座左B支座右BC跨中bf×ho或bho(mm)250×5002000×565250×500250×300250×365控制截面M(KN·m)-197.85105.73-145.11-90.99-14.61控制截面γRE·M-148.39105.73-108.83-68.24-14.61αs=γRE·M/α1fcbho²0.1660.0120.1220.280.029ξ=1-(1-2αs)½0.1830.01160.130.340.03γs=0.5(1+1-2αs)½0.910.990.930.830.985As=γRE·M/γsfyho194.502.71712776731129.9实配钢筋4Φ204Φ284Φ164Φ162Φ12实配面积12502463804804226实际配筋率%10.220.641.10.248要求最小配筋率0.25和55ft/fy=0.260.2和45ft/fy=0.210.25和55ft/fy=0.260.25和55ft/fy=0.260.2和45ft/fy=0.21较大值较大值较大值较大值较大值要求最大配筋率2.5%2.5%2.5%2.5%2.5%一层梁斜截面设计 截面A支座AB跨中B支座左B支座右BC跨中bf×ho或bho(mm)250×5002000×565250×500250×300250×365不利组合控制截面V122.43122.43-129.9589.3789.37控制截面γRE·V122.43122.43-129.9589.3789.37VGb62.8762.87-66.0810.3610.36剪力调整值Vb=120.05120.0576.75γRE·Vb527.67取812.99>527.67590.8>527.67374.37<527.67160.76<527.67527.67取527.67取527.67取374.37取160.76AV0.42fbhsvREt00.40.480.390.2<0s1.25fhyv0箍筋形式双肢ф8双肢ф8双肢ф8双肢ф8双肢ф8 Pv=λvfc/fyv0.0050.0030.00290.00290.0029箍筋直径间距双肢ф8@150双肢ф8@150双肢ф8@150双肢ф8@150双肢ф8@150非加密区箍筋直径间距双肢ф8@150双肢ф8@150双肢ф8@150双肢ф8@150双肢ф8@150 八.双向板肋梁楼盖设计8.1楼盖设计条件楼板厚取100mm,混凝土强度等级为C20,fc=9.6N/mm²,钢筋采用Ⅰ级钢筋,fy=210N/mm²。楼面均布活载设计值1.4x2.0KN/m²=2.8KN/m²楼面恒载设计值:20mm水泥砂浆面层重1.2x20x0.02KN/m²=0.48KN/m²100mm钢筋混凝土板重1.2x25x0.1KN/m²=3.0KN/m²15mm纸筋石灰粉底1.2x16x0.015KN/m²=0.288KN/m²3.77KN/m²8.2计算各区格板的弯矩设支承梁宽b=250mm,计算跨长lx,ly按图8.1所示坐标采用。区格Alx=3.9m,ly=2.4m,ly/lx=0.615,查表得四边固定时的弯矩系数和四边简支时的弯矩系数,如表8.1所示。表8.1四边固定时和四边简支时的弯矩系数ly/lx支承条件αxαyαˊxαˊy0.615四边固定0.00820.036-0.0571-0.0785四边简支0.02510.0798------------取钢筋混凝土的泊桑比γc=1/6,则可求得A区格板的跨中及支座弯矩如下:mx=0.0082x(g+q/2)ly²+0.0251q/2ly²+1/6x[0.036(g+q/2)ly²+0.0798q/2ly²]=[0.0082x(3.8+1.4)+0.0251x1.4]x2.4x2.4+1/6x[0.036x(3.8+1.4)+0.0798x1.4]x2.4x2.4=0.73KN.mmy=1.722+0.448x1/6=1.8KN.mmˊx=(-0.0571)x(3.8+2.8)x2.4x2.4=-2.17KN.mmˊy=(-0.0785)x(3.8+2.8)x2.4x2.4=-2.98KN.m区格Blx=3.9m,ly=6.0m,lx/ly=0.65,查表得三边固定、一边简支时的弯矩系数和四边固定时的弯矩系数,如表8.2所示。表8.2三边固定、一边简支时和四固定时的弯矩系数ly/lx支承条件αxαyαˊxαˊy0.65四边固定0.03450.0095-0.0766-0.0571 三边固定0.05130.0126-0.01124------一边简支mx=0.0345x(g+q/2)ly²+0.0513q/2ly²+1/6x[0.0095(g+q/2)ly²+0.0126q/2ly²]=[0.0345x(3.8+1.4)+0.0513x1.4]x6x6+1/6x[0.0095x(3.8+1.4)+0.0126x1.4]x6x6=9.45KN.mmy=2.413+9.04392x1/6=3.92KN.mmˊx=(-0.1124)x(3.8+2.8)x6x6=-29.53KN.mmˊy=(-0.057)x(3.8+2.8)x6x6=-13.57KN.m8.3截面设计短边方向跨中截面的ho=100-20=80mm,长边方向跨中截面的ho=100-30=70mm,支座截面的ho=80mm。考虑到周边支承梁对板的有利作用,弯矩应进行折减,A区格板四边与梁整体连结,跨中弯矩乘折减系数0.8,区格B的跨中截面及楼板边缘方向的计算跨长与垂直楼板边缘方向的跨长比Lb/L=6/3.9=1.538>1.5,故其折减系数为0.9。受拉钢筋截面As的计算,为简便起见,近似取内力臂系数γs=0.9As=M÷(0.9fyho)=M÷189ho截面配筋计算见表8.3表8.3截面配筋计算截面HoMAs配筋实/mm配/KN.mmm²mm²跨区格Lx方700.73x0.844.14Φ251A向8@200中Ly方801.8x0.895.24Φ251向8@200区格Lx方809.45x0.9562.5Φ604向10@130Ly方703.92x0.9266.7Φ279向8@180支座A-B-----808.275x0.8437.8Φ46210@170 9.楼梯设计楼梯斜板设计采用现浇整体式钢筋混凝土结构混凝土采用C20,板梁的纵向受力采用HPB235,HRB335现浇板式楼梯尺寸布置及装修做法见下图;其中楼梯板的计算跨度为lo=ln+b=3600+200=3800.(1)确定板厚:梯段板的厚度计算:h=(1/30-1/25)lo=(1/30-1/25)×3600=120-144,取h=120mm。图23楼梯平面图(1)荷载计算(取1米板带计算)楼梯斜板的倾斜角α=tg-1150/300=26.565˙cosa=0.8944恒荷载标准值:水磨石20厚面层:(0.3+0.154)×0.65/0.3=0.98kN/m混凝土踏步:0.3×0.15/2×25/0.3=1.88kN/m混凝土斜板:0.12×25×1.0/0.8944=3.354kN/m板底抹灰:0.02×17×4.094/3.6=0.39kN/m5.834kN/m 活荷载标准值:2.5kN/m荷载设计值:P=1.2×5.834+1.4×2.5=10.5kN/m9.1.2截面设计斜板的水平计算跨度lo=3.8m,弯矩设计值M=1/10Plo²=0.1×10.5×3.8㎡=15.16KN•m,ho=120-20=100mm。αs=M/afcbho²=15.16×10³×10³/1.0×9.6×1000×100²1121120.1580.173,s1fcbh01.09.9610001000.172As.791.f66210y2选配10@95,As826mm。每个踏步布置1根钢筋.9.2平台设计平台板厚取为70mm,取1m宽的板带计算。9.2.1荷载计算恒载标准值:水磨石20厚面层:0.02×1×20=0.40KN·m混凝土板:0.072511.752.15活载标准值:2.5荷载设计值:P=1.2×2.15+1.4×2.5=5.38KN·m9.2.2截面设计平台板的计算跨度:lo=ln+h/2=1.50+0.07/2=1.54m弯矩设计值:M=1/8Plo²=1/8×5.38×1.54㎡=1.595KN•m,αs=M/afcbho²=1.595×10³×10³/1.0×9.6×1000×50²1121120.1580.173,sh702050mm0As=εfcbho/fy=0.069×9.6×1000×50=157m㎡2选配6@180,A157mm,分布筋选用6@200。s 9.3平台梁设计平台梁的截面尺寸取为200×300mm9.3.1荷载计算恒载标准值:斜板传来10.5×3.6/2=18.9KN·m:平台板传来:5.38×(1.5/2+0.20)=5.11KN/m梁自重:0.2×(0.30-0.07)×25=1.15KN/m梁侧抹灰17×(0.02×2×0.3+0.02×0.2)=0.272KN/m:26KN/m9.3.2截面设计平台梁的计算跨度lo=3.9,ln=3.9-0.24=3.66lo=1.05ln=1.05×3.66=3.84m:取两者较小值lo=3.84m弯矩设计值:M=1/8Plo²=0.1×26×3.84㎡=47.92KN•mKN•m剪力设计值:Vmax=1/2Pln=1/2×26×3.66=47.58KN截面按倒L形计算:bf=lo/6=3840/6=640αs=M/afcbho²=47.92×10³×10³/1.0×9.6×1000×265²1121120.1110.118,sAs=εfcbho/fy=0.118×1.0×9.6×640×265=640.41m㎡选用Ф12@170(As=665m㎡)箍筋验算:0.7ftbho=0.7×1.1×200×256=40.81KN0.062所以满足要求。配箍率验算Psv=nAsv1/bs=56.6/200×200=14.15%>0.1%满足要求配筋见楼梯结构图8.基础设计8.1由柱传至基顶的荷载8.1.1选出最不利内力:M63.63KNm,N2145.72KN,V24.86KN8.1.2由基础梁传至基础顶面的荷载:基础梁重:1.20.250.4257.221.6KN8.1.3作用于基底的总弯矩和轴向力设计值为(假定基础高度为:H=1100mm)M63.6324.681.190.98KNmbotN2145.7221.62167.32KN8.2基础尺寸的确定:确定b和t:2167.322A(1.11.4)(11.7714.98)m240221.72b3m,l4.5m,A13.5m取进行验算Mbot90.98le0.0340.75(可以)0N2167.322234.51.76botN2167.3222160.54KN/mmf240KN/mm(满足要求)。aA13.5该建筑可不作地基变形的二级建筑物,不作地基变形验算。 8.3确定基础高度8.3.1冲切验算由于上阶底面落在柱边冲切破坏锥面之内,故仅在变阶处作冲切验算。2167.3290.982P169.53KN/mn,max13.51234.569.3.2基础抗冲验算如图所示,由于基础宽度b=3m,b2h1.50.75023m故10,故冲切破坏荷载:ll14.51.96FPA169.53(h)b169.53(0.75)3264.47KNch,MAX012222变阶处抗冲切=.94KN8.4基础配筋验算1.530.7fbmh0.71.00.917501074ht028.4.1沿长方面的配筋计算2p169.53KN/mn,max相应于柱边净反力22167.3290.980.225p161.44KN/ms113.510.132.25相应于变阶的净反力2167.3290.980.982P164.45KN/ms13.510.132.25则11M(P)(lh)2(2bbc)(169.53161.44)148n,maxs1c48(4.50.45)2(230.45)729.49KN/mm2M1729.942As13602.42mm选用14@1000.9fyh00.93007501M(169.53164.45)(4.51.96)(231.5)336.67KNm4.86336.67102As1662.57mm选用14@1000.9300750 8.4.2沿短方向的配筋计算N2167.32107.02KN/mA20.2512M1107.02(4.50.45)(24.50.45)691.19KNm246M1691.19106As13413.27mm选用14@1000.9fyh00.930075012M107.02(4.51.96)(24.52.25)323.65KNm246323.65102AS1598.26mm选用14间距100mm0.9300750基础配筋见图22图22基础配筋图参考文献[1]包世华,方鄂华等编著.高层建筑结构设计.清华大学出版社.1995:312~354[2]赵西安编著.钢筋混凝土高层建筑结构设计.中国建筑工业出版社.2000:108~141 [3]常伏德主编.建筑抗震设计实例.中国建筑工业出版社.2000:429~491[4]彭少民主编.混凝土结构.武汉工业大学出版社.2003:(5):1~5[5]蓝宗建主编.混凝土与砌体结构.东南大学出版社.2003,(3):19~20[6]周国行主编.工民建专业毕业设计指南.中国建筑工业出版社.2003,(1):45~46。[7]中国建筑科学研究院主编.高层建筑结构设计.中国建筑工业出版社.2003,(4):51~8[8]同济大学主编.房屋建筑学教材.中国建筑工业出版.2002[9]同济大学主编.地基与基础教材.中国建筑工业出版.2001[10]计算机应用操作基础[11]天正软件使用指南[12]结构设计软件使用指南(PM,PK)[13]建筑结构荷载规范GB50009-2001[14]建筑地基基础设计规范GB50007-2002[15]建筑抗震设计规范GB50011-2001[16]混凝土结构设计规范GB50010致谢辞将近一个学期的毕业设计已接近尾声,毕业设计让我学到了很多有用的东西,不仅仅是知识上的进步,更重要的是我得到大家庭给我的无微不至的关怀和帮助。毕业设计的过程就是我们成长的过程,在这个过程中我们相互帮助、相互协作、团结一致,无论是学习还是工作都让我们变得成熟。在设计之初我确感到了压力,对从事土木工程的设计及施工我们没有多少知识和经验,这无形让我们犯了难,正因此,我感到学习以来从未有过的压力和困难。但经过了这一学期的设计经历,我获得了各位老师和同学的帮助,使我充满 信心的去搞毕业设计。在这里也让我感到设计组大家庭的温暖,感到同学们给自己的友情和老师孜孜不倦的治学态度。在此特别的感谢我的指导老师石老师还有所有土木工程专业的老师们,是他们给我教诲和帮助,为我们提供的方便和帮助,使我们在工作中有良好的条件专心搞设计。最后感谢学院给我们提供良好的设计条件和良好的物质保证。这次能圆满完成任务,我感到骄傲和欣慰,在这里我由衷的感谢我上面提到的各位老师和同学以及院领导,由衷的对他们说声谢谢。'