- 114.84 KB
- 7页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
ExperimentalandTheoreticalInvestigationsonGeocell-SupportedEmbankments123G.MadhaviLatha;K.Rajagopal;andN.R.KrishnaswamyAbstract:Thispaperstudiestheadvantagesofgeocellreinforcementontheperformanceofearthembankmentsconstructedoverweakfoundationsoilthroughlaboratorymodeltestsandproposesasimplemethodforthedesignofgeocell-supportedembankments.Modelembankmentswereconstructedabovealayerofgeocellsformedusinggeogridsontopofasoftclaybedpreparedinasteeltesttank.Uniformsurchargepressurewasappliedonthecrestandpressure-deformationbehavioroftheembankmentandstrainsinthewallsofgeocellsweremonitoredcontinuouslyuntilthefailurewasreached.TheinßuenceonthebehavioroftheembankmentofvariousparametersÑliketensilestiffnessofgeocellmaterial,heightandlengthofgeocelllayer,pocket-sizeofthecell,patternofformationofgeocells,andtypeofÞllmaterialinsidethecellsÑwasstudied.Geocellreinforcementwasfoundtobeadvantageousinincreasingtheload-bearingcapacityandreducingthedeformationsoftheembankments.Theexperimentalresultswerevalidatedusingageneralpurposeslope-stabilityprogramandadesignprocedureusefulforthepreliminarydesignofgeocell-supportedembankmentsisillustrated.DOI:10.1061/ASCE1532-364120066:130CEDatabasesubjectheadings:Geogrids;Modeltests;Slopestability;Embankment;Design;Reinforcement.Introduction¥Minimizesconstructiontimeandeliminatesexcavationandreplacementcosts;Constructionofembankmentsoverweaksoilsisacommonly¥Preventsbearingcapacityfailureandminimizesexcessiveencounteredprobleminmanygeotechnicalapplicationslikehigh-settlementsandlateraldeformations;and¥Providesshort-andlong-termglobalstabilitytothewayandairportrunwayembankments,containmentdikes,ßoodembankment.protectionlevees,earthdams,andberms.Suchjobsarechalleng-Limitedinvestigationswerereportedinliteratureontheperfor-ingforengineersbecauseofthelowshearstrengthofthefoun-manceofgeocellreinforcedearthstructuresbyBathurstanddationsoil,whichcausesexcessiveconsolidationsettlementsandJarrett1988,Jenneretal.1988,Bushetal.1990,Deanandbearingcapacityfailure.Muchresearchhasbeendoneandanum-Lothian1990,BathurstandKarpurapu1993,CowlandandberofgroundimprovementtechniqueshavebeenreportedasWong1993,BathurstandKnight1998,Hendrickeretal.solutionstothisproblem.Amongvariousstabilizationtechniques1998,andKrishnaswamyetal.2000,etc.available,providinghigh-strengthgeosyntheticreinforcementatInthispaper,resultsfromaseriesofloadtestsonmodelthebaseoftheembankmentissimple,fast,andcosteffective.embankmentsconstructedoverasoftclaybedwithandwithoutThelatestinventionforreinforcingtheembankmentsoverweakgeocellreinforcementarepresented.Theresultsareanalyzedtosoilsisgeocell.Geocellsarethree-dimensionalformsofgeosyn-understandthemechanismofgeocellreinforcementinimprovingtheticmaterialswithinterconnectedcellsÞlledwithsoil.Geocellstheload-bearingcapacityofsoftfoundationsoilandreducingcanbeusedintheÞeldsofearthretention,slopeerosioncontrol,settlements,andalsotoshowtheinßuenceofvariousparametersandchannelprotection,inadditiontogroundstabilization.Theontheperformanceofgeocellreinforcedembankments.importantadvantagesofhavingageocelllayeratthebaseoftheThefailureofmodelembankmentsatlimitingsurchargeembankmentareitpressureestimatedfromexperimentswascheckedusinga¥Actsasanimmediateworkingplatformfortheconstruction;general-purposecomputerprogramforslope-stabilityanalysis.¥Actsasarigidbasetotheembankment,promotinguniformTheminimumfactorsofsafetyforallthemodelembankmentssettlements;loadedwithcorrespondingfailuresurchargepressureobservedinexperimentswerecalculated.1AssistantProfessor,Dept.ofCivilEngineering,IndianInstituteofScience,Bangalore,India.E-mail:madhavi@civil.iisc.ernet.in2Professor,Dept.ofCivilEngineering,IndianInstituteofLaboratoryExperimentsTechnology,Madras,India.E-mail:gopal@civil.iitm.ernet.in3Professor,Dept.ofCivilEngineering,IndianInstituteofTechnology,A1,800mm800mm1,200mmsteeltankwasfabricatedforMadras,India.E-mail:kswamy@civil.iitm.ernet.inconductingthemodeltestsonembankments.ThetankwasÞttedNote.DiscussionopenuntilJune1,2006.Separatediscussionsmustwithperspexsheetononesidesothatobserverscouldvisualizebesubmittedforindividualpapers.Toextendtheclosingdatebyonethefailureoftheembankment.Theotherthreesidesofthetankmonth,awrittenrequestmustbeÞledwiththeASCEManagingEditor.ThemanuscriptforthispaperwassubmittedforreviewandpossibleweremadesmoothandrigidtocreateplanestrainconditionsinpublicationonFebruary11,2004;approvedonApril28,2005.Thisthetank.Asoftclaybedof600mmdepthwaspreparedinthispaperispartoftheInternationalJournalofGeomechanics,Vol.6,No.testtank.Theclaywasmixedwithalargeamountofwaterand1,January1,2006.©ASCE,ISSN1532-3641/2006/1-30Ð35/$25.00.consolidatedunderasurchargepressureof10kPa.Thebedwas30/INTERNATIONALJOURNALOFGEOMECHANICS©ASCE/JANUARY/FEBRUARY2006
Table1.PropertiesofFoundationClayBedTable3.PropertiesoftheEmbankmentFillCBRvalue0.55Placementmoisturecontent12%Vaneshearstrength20kPaPlacementdensity1.9Mg/m3Insitudensity1.7Mg/m3Angleofinternalfriction30¡Insituvoidratio0.907Cohesivestrength10kPaParametersStudiedcuredforonefullweektoachieveuniformproperties.Undis-TheperformanceoftheembankmentswithandwithoutageocellturbedsamplesweretakenfromthebedfordeterminingtheCBRlayerwascomparedtobringouttheadvantagesgeocellreinforce-valueandvaneshearstrengthoftheclaybed.Thedensity,mois-ment.Testswereconductedonmodelsofembankments,varyingturecontent,vaneshearstrength,andCBRvalueoftheclaybedparametersliketypeofgeogridusedfortheformationofthewerekeptsameforallthemodeltestsbycarefullycontrollingthegeocelllayer,pocketopeningsize,heightofgeocelllayer,andwateraddedduringmixing.ThepropertiesofthesoftclaybedaretypeofÞllmaterialinsidethegeocells.FourdifferenttypesofgiveninTable1.geogridswereusedformakinggeocells.TheheightofgeocellAfterlevelingtheclaybed,alayerofgeocellswasformedonlayerhwasvariedfrom100to250mmintheincrementsoftopoftheclaybedbycuttingthegeogridsfromfullrollstothe50mm.Twodifferentpocketsizesdp,200and400mm,wererequiredlengthandbreadthandplacingthemintransverseandtested.ClayandclayeysandwereusedasÞllmaterialinsidethediagonaldirectionswithbodkinjointsinsertedattheconnections.geocells.ThetensilestrengthpropertiesforvariousgeogridsusedinthemodeltestsaredeterminedfromwidewidthtensilestrengthtestsandpresentedinTable2.ThegeogridsintheorderofincreaseinResultsandDiscussiontheirtensilestrength/stiffnessisNP-1,NP-2,BX,andUX.Aftertheformationofgeocelllayer,pocketsofgeocellswereÞlledInallthemodeltestsconducted,failurewastheresultofthewithsoilandthissoilwascompactedusingasteelrod.Theunitformationofslipcircleswithinthefoundationsoil.Theslipsur-weightoftheinÞllsoilwasmaintainedat17kN/m3forallthefaceswereobservedtopassthroughthesoftfoundationsoil;tests.ThecompactionqualityofthislayerwasveriÞedbytestingdeeperslipcirclesappearedinembankmentswithstiffergeocellundisturbedcoresamplescollectedfromatleastsixindividualreinforcementasshowninFig.2.Thesoilbeyondtheembank-cells.Abovethegeocelllayer,halfoftheembankmentwascon-mentwasobservedtoheaveupastheembankmentsettledintostructedusingclayeysandinlifts.Eachlayerwascompactedwiththesoftclaysoil.Ruptureofgeogridorfailureofbodkinjointsacalculatednumberofblowstoachieveanaveragedensityof1.9Mg/m3.Thepropertiesofthesoilintheconstructedembank-ment,determinedbytakingundisturbedsamples,aregiveninTable3.Surchargepressurewasappliedontheembankmentusingahydraulicjack,andtheintensityofthepressurewasincreasedgradually.LoadingwasdoneaspertherelevantASTMstandards,eachincrementalloadappliedwhenthedeformationsunderanyparticularloadreachedasteadystatevalue.Thesurchargeloadwasmeasuredusingaprovingring.UniformdistributionofthesurchargepressurewasattainedusinganarrangementoftwosteelI-sectionsrunningforfullwidthofthetank,arigidsteelplate,andanexpandedpolypropylenesheetplacedontopoftheem-bankment.Dialgaugeswereplacedatdifferentlocationsintheembankmenttomeasureverticalandhorizontaldisplacements.Fig.1showstheproÞleoftheembankmentandtheexperimentalsetupforloadtestsonembankments,showingthepositionsofvariousdialgauges.Table2.PropertiesofGeogridsPropertyofthegeogridUXBXNP-1NP-2UltimatetensilestrengthkN/m40204.57.5Failurestrain%28251055InitialmoduluskN/m2671837595Secantmodulusat5%strain2001607070Secantmodulusat10%strain951254550Aperturesizemm210163535505087Fig.1.SectionalelevationandtestsetupofmodelembankmentINTERNATIONALJOURNALOFGEOMECHANICS©ASCE/JANUARY/FEBRUARY2006/31
Fig.2.Failuresurfacesobservedinmodelembankmentswasnotobservedinanymodeltest.ThevaluesofultimateorfailuresurchargepressureoftheembankmentqfordifferentloadtestsaregiveninTable4.Foranymodelembankment,failuresurchargepressurewasdeterminedfromtheloadversushorizontaldeformationcurve.ThefailuresurchargepressureFig.3.PressuredeformationresponsemodelembankmentswasdeÞnedasthevalueofsurchargepressureatthepointofsupportedongeocellsmadeofdifferentgeogridsintersectionoftangentsdrawntoinitialandÞnalportionsofload-deformationcurve.Typicalload-deformationcurvesforem-bankmentssupportedongeocelllayersformedusinggeogridsofdifferenttensilestrengthsisshowninFig.3.SomeofthetestsonthattheuseofclayasÞllmaterialinsidethegeocellswillmodelembankmentswereconductedtwiceasshowninFig.3toconsiderablyimprovetheperformanceofembankmentswhenensuretherepeatabilityoftestprocedureandtheconsistencyofgranularsoilisnotavailablelocally.ButÞllinggeocellswithclaytestresults.Itcanbeobservedthatgeocell-supportedembank-consumesaconsiderableamountoftime,besidesincreasingthementshaveexhibitedhighersurchargecapacityandlowerdefor-difÞcultyofmaintainingstraightgeocellwalls.Whentheaspectmationscomparedtounreinforcedembankment.Thesurchargeratioheight-diameterratioofgeocellswasincreasedeitherbycapacityoftheembankmentreinforcedwithageocelllayerofreducingpocketsizeorbyincreasingtheheightofthegeocell100mmheightand400mmpocketsizemadeupofuniaxiallayer,theultimatesurchargepressurewassubstantiallyincreased.geogridUXwasobservedtobealmosttwicethesurchargeca-pacityoftheunreinforcedembankment,allotherconditionsbeingsame.ThevariationintheresponseofmodelembankmentswithTheoreticalAnalysistheheightofthegeocelllayer,keepingthepocketsizethesame400mmisshowninFig.4.Fig.5showstheresponsewithclayTheresultsofexperimentsonmodelembankmentswerecheckedandsandasÞllmaterialsinsidegeocells.Thegeocelllayersareusingaslope-stabilityprogram.ThecomputerprogramdevelopedmadeofbiaxialgeogridBXforthetestsshowninFigs.4and5.forconductingslope-stabilityanalysisofgeocell-supportedem-FromFig.5,wecanobservethatthedifferenceinfailurebankmentsreadstheslopeparameters,heightofthegeocelllayer,surchargepressuresbetweenembankmentswithgeocellsÞlleddepthofthefoundationsoil,shearstrengthparametersofthewithclayandclayeysandisnotsubstantial13%.Thissuggestsembankmentsoilandgeocelllayer,propertiesofthefoundationTable4.ResultsfromDifferentModelEmbankmentTestsHeightEquivalentAdditionalAdditionalCohesiveFactorofofPocketinitialSecantconÞningcohesionstrengthofSurchargesafetyfromTypeofgeogridgeocellsizeofdiameterofmodulusstressduetoduetoofgeocellgeocellpressureslopeusedformakinglayergeocellscellsofgeogridgeocellsgeocellslayerlayeratfailurestabilitygeocellshmdpmD0mMkN/m3kPacrkPacgkPadegreesqkPaanalysisUnreinforcedÑÑÑÑÑÑÑÑ501.07UX0.100.40.225620047.8415130951.02BX0.100.40.225616037.1324230751.05BX0.150.40.225616037.1324230851.11BX0.200.40.225616037.1324230911.15BX0.250.40.225616037.1324230951.17BX0.100.20.112816074.2647430951.01BXclayÞlled0.100.40.225616025.513230650.85NP-10.100.40.22567016.4142430651.07NP-20.100.40.22567022.5192930701.0432/INTERNATIONALJOURNALOFGEOMECHANICS©ASCE/JANUARY/FEBRUARY2006
Inthisanalysis,ageocelllayerwastreatedasalayerofsoilwithacohesivestrengthgreaterthantheencasedsoilandanangleofinternalfrictionthesameastheencasedsoil.Geocellsprovideall-aroundconÞnementtothesoilasaresultofthemem-branestressesinthewallsofgeocells;thiscausesapparentcohe-siontodevelopinthesoil.UsingtherubbermembranetheoryproposedbyHenkelandGilbert1952,BathurstandKarpurapu1993analyzedthecohesivestrengthofsoilencasedinasinglegeocellintriaxialcompression.ThesameanalysiswasextendedformultiplegeocellsandalsoforgeocellsmadeofgeogridsbyRajagopaletal.1999andMadhaviLatha2000.Inthispaper,equationsdevelopedfromtheaboveanalyseshavebeenusedforestimatingthecohesivestrengthofalayerofgeocells.Inthecaseofgeocellsmadeofgeogrids,ifweconsiderindividualcells,thesoilisnotfullyconÞned,asincaseofgeocellsmadeofgeotex-tile,becauseofaperturesingeogrids.However,duringloading,thesoilineachgeocellissubjectedtolateralconÞnementthatresultsfromtheinteractionmechanismbetweencells.Thevalid-ityofequationsforcohesivestrengthbasedontherubbermem-branetheoryforgeocellsmadeofgeogridswasveriÞedbyRajagopaletal.1999andMadhaviLatha2000bytestingsoilencasedinageocellmadeofopenmesh.Fig.4.PressuredeformationresponseofmodelembankmentsTheadditionalconÞningpressurecausedbymembranesupportedongeocelllayersBXofdifferentheightsstressescanbewrittenasHenkelandGilbert19522Mc1soil,porepressurecoefÞcient,andvalueofuniformsurcharge3=1D1−apressureonthecrest.TheporepressurecoefÞcientwaschosenaszero,andtheslipcircleswereassumedtobetangentialtothehardwherea=axialstrainatfailure;c=circumferentialstrainatfail-base.TheprogramusesBishopÕsmethodofslicesforcalculatingure;D=diameterofthesampleatanaxialstrainofa;andthefactorofsafety.TheprogramautomaticallysearchesdifferentM=modulusofthemembrane.StraingaugesÞxedonthediago-trialslipcirclesandgivestheminimumfactorofsafetyandco-nalgeogridsofthegeocelllayerrecordedthecircumferentialordinatesofthecenterofthecriticalslipcircle.Thereliabilityofstraincinthegeocells.Ifthevolumeofthesoilsampleremainsthecomputerprogramwasensuredbyrunningsomeexampleconstantduringthetest,therelationbetweentheaxialstrainandproblems.Thefactorofsafetyobtainedfromtheprogramwasincircumferentialstraincanbederivedasfollows.Iftheinitialdi-agreementwiththeminimumfactorofsafetyobtainedfromameterofthesampleisD0,comparingtheinitialvolumeandgraphicalconstruction.volumeafterapplicationofstrainD2L=D2L20044whereL0=initiallengthofthesample;andL=lengthofthesampleatanaxialstrainofaD0D0D==3L/L01−aThenthecircumferentialstrainccanbecalculatedasD−D0D−D01−1−ac===4D0D01−aSubstitutingEqs.3and4inEq.1,theadditionalconÞningpressurecausedbymembranestressescanbewrittenas2M1−1−a3=5D01−aTheaboveequationwasusedtocalculatetheadditionalconÞningpressurecausedbygeocellreinforcement,usingtheparametersasfollows.D0wastakenastheinitialdiameterofgeocell.Thegeo-cellpocketsarenotcircularbutaretriangularinshapehigh-lightedinFig.1.TheequivalentdiameterforthetriangularFig.5.PressuredeformationresponseofmodelembankmentsshapedgeocellswasobtainedbyequatingtheareaofthetrianglesupportedongeocelllayersBXwithdifferentÞllmaterialstoacircleofequivalentarea.MmodulusofthegeocellmaterialINTERNATIONALJOURNALOFGEOMECHANICS©ASCE/JANUARY/FEBRUARY2006/33
Fig.7.Crosssectionoftheembankmentindesignexampleanalysisisfoundtobereasonablygoodinestimatingfailureofembankmentswhentheyareloadedtotheirultimatecapacity.Forpreliminarydesignproblems,ifthegeometryoftheem-Fig.6.Mohrcirclesforcalculatingthestrengthimprovementduetobankment,propertiesofthefoundation,andembankmentsoilsaregeocellreinforcementgiven,wecanperformslope-stabilityanalysiswithtrialvaluesoftheheightofthegeocelllayeranddeterminethecohesivestrengthofthegeocelllayerrequiredtogetadesiredfactorofataxialstraina,determinedfromtheload-straincurvesobtainedsafety.Fromthiscohesivestrength,wecanbackcalculatethefromwidewidthtensilestrengthtestongeogrids.modulusofgeocellrequiredforassumedvaluesofthepocketsizeTherelationshipbetweentheinducedapparentcohesiveofgeocellandaxialstraininthewallsofgeocell.strengthandtheadditionalconÞningstresscausedbythegeocellcanbederivedbydrawingMohrcirclesfortheunreinforcedandreinforcedsoilsamples,asshowninFig.6.FromMohr-CoulombDesignExamplefailuretheory,theultimatestressonasoilsamplecanbecalcu-latedbyconsideringthesoilasacompositelargecircleasTheconstructionofa4mhighembankmentovera6mthicklayerofsoftcohesivesoilhavinganundrainedshearstrengthof1=kp3+2crkp615kPaisproposed.Asurchargeof55kPawillbeapplied.TheInwhichkp=coefÞcientofpassiveearthpressure.Ifthesameisembankmentsoilhasacohesionof12kPaandanangleofinter-consideredasanunreinforcedsoilwithanadditionalconÞningnalfrictionof35¡.FindoutthetypeandconÞgurationofgeocellsstressof3,thefailurestresscanbecalculatedasneededtoachieveadesiredfactorofsafetyof3.Acrosssectionoftheembankmentforthisproblemisshown1=kp3+37inFig.7.Fromslope-stabilityanalysisofunreinforcedembank-ment,theminimumfactorofsafetywasobtainedas0.633.TheCombiningEqs.6and7,theadditionalcohesivestrengthduecenterofthecriticalslipcirclewasobtainedas7.975,15.983.tothegeocelllayercanbeobtainedasAssumingthattheembankmentsoilitselfwillbeusedasÞllmaterialinsidethegeocellsandthattheheightofthegeocelllayer3cr=kp8is2m,thegeocelllayerwillhaveanangleofinternalfrictionof235¡.Byconductingslope-stabilityanalysiswithtrialvaluesofSubstitutingthevalueof3obtainedfromEq.5inEq.8,thegeocelllayercohesionforafactorofsafetyofone,thecohesiveapparentsoilcohesioninducedbygeocellconÞnementisob-strengthofgeocelllayercgwasobtainedas30kPa.Becausethetained.ThisadditionalcohesivestrengthisaddedtotheoriginalÞllsoilhasanoriginalcohesivestrengthof12kPa,theadditionalcohesivestrengthofsoilencasedingeocellstogetthecohesivecohesivestrengthneededfromgeocellreinforcementstrengthofgeocelllayercg.cr18kPa.Foravalueof35¡,kp3.69.SubstitutingtheThefailuresurchargepressureforthemodelembankments,valuesofcrandkpas18kPaand3.69inEq.8,318.7kPa.determinedfromtheexperiments,wasusedasaninputvalueforAssumingthattheaxialstrainingeocellwallis5%andthatthetheprogram.Theresultsfromtheslope-stabilityanalysisarepre-pocketsizeofthegeocelllayeris1m,theequivalentdiameterofsentedinTable4.Forallthemodelembankments,theminimumthecells0.564m.Substitutingthevaluesof3,D0,andainfactorofsafety,determinedfromslope-stabilityanalysisbasedonEq.5,M200kN/m.Thus,ageocelllayerof2mheightandaexperimentalresults,wascloseto1.However,theprogramhaspocketsizeof1mwithgeocellsmadeofUXgeogridsnotgivensatisfactoryresultsforclay-Þlledgeocells.ThiscouldM=200kN/mcouldbeprovidedatthebaseofthegivenem-bebecauseoftheexperimentaldifÞcultiesinvolvedinachievingbankmenttoachieveafactorofsafetyof3.uniformcompactionwithingeocellsÞlledwithsoftclay.Thecriticalslipsurfacesobtainedfromtheslope-stabilityprogramareassumedtobetangentialtothebase,whereasinrealmodelssomeConclusionsslipsurfacesaremuchabovethebase.Hence,theyarenotcom-pared.ThisdiscrepancyiscompensatedbythemodeltankÕssizeAtheoreticalapproachinwhichthegeocelllayeristreatedasabecauseintheexperimentthesoftclaylayerislimitedtothefoundationsoillayerwithadditionalcohesivestrengthcausedbywidthofthetank,whereasitisnotconÞnedinthetheoreticalconÞnementisdiscussedinthispaper.Theapparentcohesionanalysis.Irrespectiveofallthelimitations,theslope-stabilityimpartedtothesoilbecauseofgeocellconÞnementisestimated34/INTERNATIONALJOURNALOFGEOMECHANICS©ASCE/JANUARY/FEBRUARY2006
usingequationsdevelopedbasedontriaxialcompressiontestsCowland,J.W.,andWong,S.C.K.1993.ÒPerformanceofaroadconductedonsoilsconÞnedwithsingleandmultiplegeocellsembankmentonsoftclaysupportedonageocellmattressfoundation.Ómadeoftextilesandgrids.Asimplemethodbasedonslope-Geotext.Geomembr.,12,687Ð705.Dean,R.,andLothian,E.1990.ÒEmbankmentconstructionproblemsstabilityanalysishasbeenproposedforthepreliminarydesignofembankmentssupportedongeocells,replacingthegeocelllayeroverdeepvariablesoftdepositsusingageocellmattress.ÓPerfor-withasoillayerofequivalentpropertiesintheanalysis.Stabilitymanceofreinforcedsoilstructures,BritishGeotechnicalSociety,London,443Ð447.analysisofexperimentalmodelembankmentswithrespectiveHendricker,A.T.,Fredianelli,K.H.,Kavazanjian,E.,Jr.,andMc.measuredsurchargecapacitiesrevealedthatthisapproachisrea-Kelvey,J.A.,III.1998.ÒReinforcementrequirementsatahazardoussonablygoodincapturingtheeffectsofthedimensionsofageo-wastesite.ÓProc.,IVInt.Conf.onGeosynthetics,IFAI,St.Paul,celllayerandthesecantmodulusofthegeocellmaterialandinMinn.,1,465Ð468.estimatingthecollapseloads.Henkel,D.J.,andGilbert,G.D.1952.ÒTheeffectoftherubbermem-braneonthemeasuredtriaxialcompressionstrengthofclaysamples.ÓGeotechnique,31,20Ð29.ReferencesJenner,C.G.,Bush,D.I.,andBassett,R.H.1988.ÒTheuseofsliplineÞeldstoassesstheimprovementinbearingcapacityofsoftgroundBathurst,R.J.,andJarrett,P.M.1988.ÒLargescalemodeltestsofgivenbyacellularfoundationmattressinstalledatthebaseofangeocompositemattressesoverpeatsubgrades.ÓTransportationRe-embankment.ÓProc.,Int.Geotech.Symp.TheoryandPracticeofsearchRecord1188,TransportationResearchBoard,Washington,EarthReinforcement,Balkema,Rotterdam,209Ð214.D.C.,28Ð36.Krishnaswamy,N.R.,Rajagopal,K.,andMadhaviLatha,G.2000.Bathurst,R.J.,andKarpurapu,R.1993.ÒLargescaletriaxialtestsonÒModelstudiesongeocellsupportedembankmentsconstructedoverageocellreinforcedgranularsoils.ÓGeotech.Test.J.,163,296Ð303.softclayfoundation.ÓGeotech.Test.J.,232,45Ð54.Bathurst,R.J.,andKnight,M.A.1998.ÒAnalysisofgeocellreinforcedMadhaviLatha,G.2000.ÒInvestigationsonthebehaviorofgeocellsoilcoversoverlargespanconduits.ÓComput.Geotech.,22,supportedembankments.ÓPhDthesis,IndianInstituteofTechnology,205Ð219.Madras,India.Bush,D.I.,Jenner,C.G.,andBassett,R.H.1990.ÒThedesignandRajagopal,K.,Krishnaswamy,N.R.,andMadhaviLatha,G.1999.constructionofgeocellfoundationmattresssupportingembankmentsÒBehaviorofsandconÞnedinsingleandmultiplegeocells.ÓGeotext.oversoftground.ÓGeotext.Geomembr.,9,83Ð98.Geomembr.,17,171Ð184.INTERNATIONALJOURNALOFGEOMECHANICS©ASCE/JANUARY/FEBRUARY2006/35