- 520.50 KB
- 21页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
结构力学天津城市建设学院力学教研室STRUCTUREMECHANICS
第2章平面体系的几何组成分析2.1概述一、几何不变体系:在不考虑杆件应变的假定下,体系的位置和形状是不会改变的体系(图1)。(图1)二、几何可变体系:在不考虑杆件应变的假定下,体系的位置和形状是可以改变的体系(图2)。(图2)PP几何组成分析
三、几何组成分析的目的:1、判别某一体系是否为几何不变,从而决定它能否作为结构。2、区别静定结构、超静定结构,从而选定相应计算方法。3、搞清结构各部分间的相互关系,以决定合理的计算顺序。几何组成分析
一、自由度决定体系几何位置的彼此独立的几何参变量数目。1、一个点在平面上有两个自由度(图1)。2、一个刚片在平面上有三个自由度(图2)。3、平面结构的自由度必须小于或等于零(W0)。xyyxA(x,y)o(图1)yx(图2)yoxA(x,y)2.2几何不变体系的基本组成规则二、刚片体系几何形状和尺寸不会改变,可视为刚体的物体。三、点、刚片、结构的自由度几何组成分析2.3瞬变体系
四、约束(联系)1、约束:凡能减少自由度的装置。2、一根链杆相当于一个约束(图3)。yox(图3)yoxxy3、一个简单铰相当于两个约束(图4)。yox(图4)yoxxy几何组成分析
4、联结n个刚片的复铰相当于(n-1)个简单铰,减少(n-1)×2个约束(图5)。5、刚性联结或固定端约束相当于三链杆,即三个约束(图6)。(图5)yoxxyyox(图6)yoxxy几何组成分析
1、两个刚片之间的联结(规则一):两个刚片上用一个铰和一根不通过此铰的一根链杆相连结,形成无多余约束的几何不变体系(或:两个刚片上用三根不交于一点、也不全平行的三根链杆相连结,形成无多余约束的几何不变体系)。刚片2刚片1DE刚片1刚片2ABCDOEF特殊情况:(1)三根链杆交于一点ABC实饺:几何可变虚饺:几何瞬变几何组成分析五、几何不变体系的基本组成规则
三个刚片上用不在同一直线上的三个铰两两相联结,形成无多余约束的几何不变体系。(2)三根链杆相互平行2、三个刚片之间的联结(规则三):实饺虚饺三饺共线(瞬变)几何组成分析
3、一个刚片与一个结点之间的联结(规则三):在刚片上用两根不在一条直线上的链杆联结出一个结点,形成无多余约束的几何不变体系(或:在一个刚片上增加二元体)。刚片1B注意:1、若同时用三根链杆联结C点,则必有一链杆多余。其中任一根链杆称为“多余约束”。D2、若两链杆共线,则形成“瞬变体系”;见下图。ACABCC’几何组成分析
2.4几何组成分析举例一、方法一般先考察体系的计算自由度,若W0,则体系为几何可变,不必进行几何组成分析;若W0,则应进行几何组成分析。二、步骤1、若体系可视为两个或三个刚片时,则直接应用三规则分析。2、若体系不能直接视为两个或三个刚片时,可先把其中已分析出的几何不变部分视为一个刚片或撤去“二元体”,使原体系简化。`三、举例例题1结论:无多余约束几何不变体系几何组成分析
例题2结论:无多余约束几何不变体系例题4例题3结论:有2个多余约束的几何可变体系结论:有3个多余约束的几何不变体系几何组成分析
几何组成分析2.5体系几何组成与静力特性的关系一、几何可变体系一般无静力解答。二、无多余联系的几何不变体系静力解答唯一确定。三、几何瞬变体系其平衡方程或者没有有限值解答,或在特殊情况下,解答不确定。四、具有多余联系的几何不变体系静力解答有无穷多组解。
几何组成分析体系几何组成分析习题课一、几何组成分析的目的二、几何不变体系的简单组成规则(三个规则)三、自由度的计算方法1、平面刚片系统:W=3m-3g-2h-b式中:W——自由度数m——刚片数g——刚性联结数h——简单铰数b——链杆数2、平面铰结系统:W=2j-b-r式中:W——自由度数j——结点数数b——内部链杆数r——外部链杆数1、判别某一体系是否为几何不变,从而决定它能否作为结构。2、区别静定结构、超静定结构,从而选定相应计算方法。3、搞清结构各部分间的相互关系,以决定合理的计算顺序。
几何组成分析四、注意点1、复铰的概念:联结n个刚片的复铰相当于(n-1)个简单铰,减少(n-1)×2个约束。。O简单铰O复铰2、复杆的概念:联结n个结点的复杂链杆相当于(2n-3)个简单链杆,减少(2n-3)个约束。。简单链杆复杂链杆
几何组成分析3、封闭框格不能视为一个刚片,其内部有三个多余约束。4、对体系进行几何组成分析时,如何给出结论:若体系为几何可变或几何瞬变,则“该体系为几何可变体系”或“该体系为几何瞬变体系”即为最后结论。若体系为几何不变体系,则除指出“该体系为几何不变体系”外,还必须指出该体系有无多余约束及多余约束的个数。
几何组成分析五、练习:答案:(2)3次超静定(3)几何瞬变(5)6次超静定(8)h=3m其余静定。试对图示体系进行几何组成分析:
几何组成分析六、虚铰在无穷远的情况1、一个虚铰在无穷远的情况(1)构成虚铰的两链杆与第三杆平行且等长——几何可变体系。(2)构成虚铰的两链杆与第三杆平行但不等长——几何瞬变体系。(3)构成虚铰的两链杆与第三杆不平行——几何不变体系(左图)。
几何组成分析2、两个虚铰在无穷远的情况(1)构成虚铰的四根链杆平行且等长——几何可变体系。(2)构成虚铰的四根链杆平行但不等长——几何瞬变体系。(3)构成虚铰的四根链杆两两不平行——几何不变体系(右图)。3、三个虚铰在无穷远的情况几何瞬变体系。因为无穷远处的所有点都在一条广义直线上。
几何组成分析课后考查(1):试对图示体系进行几何组成分析答案:(1)几何不变体系,有4个多余约束。(2)几何不变体系,有6个多余约束。(3)几何不变体系,有3个多余约束。(4)几何不变体系,有2个多余约束。(5)几何不变体系,有6个多余约束。(6)几何不变体系,无多余约束。
课后考查(2):试对图示体系进行几何组成分析答案:(1)几何不变体系,有2个多余约束。(2)几何不变体系,有10个多余约束。(3)几何不变体系,有2个多余约束。(4)几何瞬变体系。(5)几何可变体系。几何组成分析
课后考查(3):试对图示体系进行几何组成分析答案:(1)几何瞬变体系。(2)几何可变体系。(3)几何不变体系,有3个多余约束。(4)几何不变体系,有2个多余约束。(5)几何不变体系,有10个多余约束。几何组成分析